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Abstract

We propose a simplified model for the time rate of change of average basin temperature
for a freshwater lake which has two connected basins: a shallow littoral zone of depth D1,
and a deeper main basin of depth D2. This system is cooled below the temperature of
maximum density (Tmd) with a constant and uniform outgoing surface heat flux, Ho.
The differential cooling that is established via this set-up gives rise to an exchange flow
between the two basins which we approximate as a time dependent heat flux controlled
by the strength of the time dependent density difference between the two basins.

Our model is a coupled system of two ordinary differential equations which allows for a
process based investigation into the importance of exchange on the timing of ice-onset for
a lake with a shallow littoral zone. While basin geometry plays a role in the overall timing
of ice-onset for the system, it is the relative strength of Ho to the exchange flow related
heat flux due to the density anomaly of fresh water, ρ∗, which dictates the behaviour
of the cooling system. We show that at sufficiently large values of the heat flux ratio,
Φ, the difference in timing of ice onset between the littoral zone and main basin becomes
insensitive to the initial conditions in the lake. We use data from Base Mine Lake, Canada,
to both verify our model assumptions and evaluate the predictions made by our simple
model.
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1 Introduction

Littoral zones are the most productive region of a lake, and thus play a vital role to lake
ecosystems [e.g., 43]. An important feature of littoral zones is that they cool (and warm)
quicker than the deeper pelagic zones in a process called differential cooling (or warming).
This process is due to depth differences and sets up a baroclinic pressure gradient between the
littoral and pelagic zones which ultimately drives an exchange flow between the two regions.
This process has been the subject of study for decades, with particular attention given to
cooling periods. The circulation pattern set up by differential cooling of a lake is referred
to as a thermal siphon [e.g., 29]. Thermal siphoning-like circulation is well documented in
a number of water bodies around the world, including various regions of the Red Sea [30–
32], in 61 near-shore regions of the ocean around the world [19], and in various lakes [7, 12].
In essence, thermal siphons act as transport routes between near-shore zones and deeper
interiors. As such, thermal siphons can regulate the thermal environment of littoral water
and impact the distribution of organic and inorganic material [e.g., 3, 8, 26], making them
important hydrodynamic processes for sensitive near-shore ecosystems like coral reefs [e.g.,
28] and for water quality [36].

Given the varied impacts and observations of thermal siphons, researchers have sought
to characterise these circulation patterns. Over the past few decades, thermal siphons have
been investigated and described using laboratory experiments [e.g., 39, 44, 45], numerical
experiments [e.g., 16, 42], and analytical and scaling analyses [e.g., 42]. These studies have
explored the role of rotation [e.g., 39], the effects of an unsteady surface forcing [e.g., 22], and
the effects of bottom topography [e.g., 38]. However, all of these studies have considered cool-
ing situations where the equation of state can be approximated as linear. In reality, however,
many freshwater lakes around the world freeze, necessitating a better understanding of littoral
zone cooling both around and below Tmd and the role of thermal siphon-like circulation on
the timing of littoral zone ice onset.

There is a large body of work that focuses on the physics behind one water body above Tmd

and one water body below Tmd converging, and the associated cabbeling instability [e.g., 15].
Cabbeling occurs around the so-called ‘thermal bar’, which is the Tmd isotherm separating the
body of water above Tmd and that below Tmd [e.g. 9]. While differential cooling is identified
as a possible mechanism by which the cabbeling instability can be initiated [e.g. 11], much of
the work related to the thermal bar and cabbeling instability are focused on the convergence
of lake inflows, like rivers, with the lake itself [e.g. 4]. Furthermore, to our knowledge, no one
has considered the effect of a thermal bar on the ice onset time in a lake.

While little has been done in the way of characterising a cooling littoral zone around and
below Tmd, there is a preponderance of work focused on characterising when the surface of a
lake might begin to freeze. Simply stated, the surface of a lake should begin to freeze when
the water surface temperature is at the appropriate freezing point. Thus, in a broad sense,
all models of lake ice onset aim to predict when the water surface temperature reaches this
freezing point, which is strongly connected to air temperature [e.g., 23]. Most models to date
can be classified as either empirically based ones connecting ice onset with air temperature
[e.g., 27, 35] or lake surface heat flux [e.g. 2], or as deterministic 1D hydrodynamic models
[e.g. 25]. The problem is that on the one hand, the empirically based models are far too
simple, and on the other, the data required to run a 1D hydrodynamic model are typically
unavailable. [41] begin to bridge this gap with a more process based approach focused on
the combined effect of thermal energy loss due to atmospheric cooling and mechanical energy
input from surface wind stresses acting to vertically stir the lake below Tmd.

All of the models of lake ice onset to our current knowledge assume that the lake in
question can be represented in an average sense, that is, lake bathymetry is not included.
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This is in large part due to the broadly 1D nature of the models to date. While this is an
appropriate choice when the main interest is in using lake ice phenology as a climate variable,
this approach has the potential to inadequately predict ice onset in a littoral zone which is
likely to freeze well before ice is observed over the main body of the lake.

In order to improve ice predictions for lakes with littoral zones, we investigate the impact
of thermally-driven exchange on the ice onset time of the littoral zone of a freshwater lake.
Our focus is given to cooling around and below Tmd, and the role that the non-linearity in
the equation of state might play in determining the strength of the exchange flow. We derive
a simple box model which describes the time-rate of change of basin-averaged temperature
motivated by observations made at Base Mine Lake (BML) in Alberta, Canada. Our results
can be regarded as an initial step in understanding the role of differential cooling around and
below Tmd on the timing of ice onset in a littoral zone.

We begin in section 2 with the derivation of the governing equations describing the cooling
during fall turnover for a lake with a littoral zone and a main basin. In section 3, we explore
the parameter dependence of our cooling lake model and derive analytical expressions for the
time at which a littoral zone will begin to freeze (tf,1), the time at which a main basin will
begin to freeze (tf,2), and the temperature difference between the main basin and the littoral
zone at the littoral zone ice-onset time (∆θ(tf,1)). In section 4, we discuss our model in the
context of a case study lake, Base Mine Lake, before concluding with section 5.

2 Conceptual Model Development

We consider a freshwater lake which freezes in winter following fall turnover. This lake has two
distinct basins whose geometry can be approximately represented by the model depicted in
figure 1(a–b). Namely, there is a littoral zone of constant depth D1, length L1 and width B1,
and a main basin of constant depth D2, length L2, and width B2 where D1 < D2, L1 ≤ L2,
and B1 ≤ B2. Each basin of this lake is assumed to be well mixed through time, even below
the temperature of maximum density, Tmd. We can thus use a basin averaged temperature in
place of one with spatial dependence, and define T1 and T2 as the basin-averaged temperatures
of the littoral zone and main basin, respectively. The temperature of each basin is related
to the density via a quadratic equation of state for freshwater under the neglect of pressure
effects [e.g. 6, 33],

ρi = ρmd − ρ∗

(
1− Ti

Tmd

)2

, (1)

where the subscript i = 1 refers to the littoral zone and i = 2 refers to the main basin, ρmd (kg
m−3) is the maximum density which is attained at the temperature of maximum density, Tmd

(◦C), and ρ∗ = 0.132 kg m−3 is the density anomaly which accounts for the density difference
between that at the maximum density (ρmd, occurring at Tmd) and the freezing temperature
of fresh water (ρf , occurring at T = 0◦C). Further details on the density anomaly can be
found in [10].

We will assume that heat exchange only occurs at fluid–fluid interfaces in the lake. There
are two fluid–fluid interfaces, the first is the surface of the lake with the atmosphere (solid
blue line in figure 1a) and the second is the interface between the littoral zone and main basin
(dashed black line in figure 1a–b). We will further assume, for simplicity, that the heat flux
at the lake–atmosphere interface can be represented by a constant value through time and
space, Ho = const.. This constant value reflects the average daily heat loss from the lake
due to the cumulative sum of all heat incoming and outgoing fluxes at the lake boundaries.
That is, Ho represents the sum of all heating (e.g., geothermal effects and solar insolation)
and cooling (e.g., net negative heat loss at lake surface during the night) spread out over the
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course of a day. Since the lake as a whole is cooling over time during the fall cooling period,
we expect Ho during this time to be a loss term. The time rate of change of total heat in
each basin can thus be expressed as

Ė1(t) = −HoL1B1 +Hex(t)D1B1 (2)

Ė2(t) = −HoL2B2 −Hex(t)D1B1, (3)

where {̇} denotes a derivative with respect to time, Ei = CpρiViTi (in Joules, J) is the total
heat of basin i, Ho (W m−2) is the net heat flux between the lake surface and the atmosphere,
and Hex (W m−2) is the net heat flux between the littoral zone and main basin, and Cp = 4200
J kg−1 ◦C−1 is the heat capacity of fresh water, Vi = DiLiBi is the volume of the basin (m3).

The first term on the right-hand side of equations (2)–(3) represents the average net heat
flux between the lake water surface and the atmosphere for the littoral zone and main basin,
respectively. In our model, Ho accounts for both radiative fluxes (short-wave and long-wave)
and non-radiative fluxes (evaporation/condensation, precipitation onto the water surface, and
effects of inflows and outflows) [18]. The average net water–atmosphere heat flux is a loss term
for the lake system during fall turnover. This loss is accounted for in the heat budgets (2)–(3)
by defining Ho > 0 and making the term as a whole negative. As a first approximation,
we have assumed that both the littoral zone and main basin are subjected to the same net
outgoing surface heat flux, and that Ho is constant through time, and can thus be regarded
as the average net water–atmosphere heat flux for the entire seasonal cooling period leading
up to ice onset.

The second term on the right-hand side of equations (2)–(3) represents the net flux of heat
between the littoral zone and main basin which couples the heat budgets of the two basins.
The exchange of heat between the two basins is achieved via a horizontal free convective
process often referred to as an exchange flow which is driven by a baroclinic pressure gradient
between the two basins. In other words, heat flux at the littoral zone–main basin interface will
occur when there is a density difference between the two basins. The density of each basin is
dictated by the basin temperature in accordance with equation (1), and thus convective heat
transfer between the two basins in our model is thermally driven.

The convective heat flux between the two basins can be considered as an exchange of water
between the two basins which is constrained by the width of the littoral zone, B1. There is
a volume flux from the littoral zone to the main basin, q1 = u1y1B1, where u1 is the speed
at which water travels from the littoral zone to the main basin and y1 is the depth of the
littoral zone current. Likewise, there is a volume flux from the main basin to the littoral
zone, q2 = u2y2B1, where u2 is the speed at which water travels from the main basin to the
littoral zone and y2 is the depth of the main basin current. We assume that changes in the
water density associated with cooling lead to negligible volume changes in the entire basin,
and thus use conservation of volume in place of conservation of mass similar to [41]. Under
the Boussinesq assumption (i.e., |1− ρ1/ρ2| ≪ 1), we can make the rigid lid approximation
and assume that y1 + y2 = D1 is constant [21].

The littoral zone current carries water at the temperature of the littoral zone, T1(t), and
the main basin current carries water at the temperature of the main basin, T2(t). The heat
flux due to exchange between the littoral zone and main basin is thus given as

Hex(t) =
Cpρmdu1y1

D1
(T2(t)− T1(t)) , (4)

where we have applied an assumption of incompressibility and volume conservation to simplify
further using u1y1 = u2y2. In order to solve for u1y1 in terms of temperature and the problem
geometry, we must consider the underlying hydraulics dictating the convective heat exchange
between the two basins.
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The step change in depth (and possibly width) at the interface between the two basins
(figure 1a–b) acts as a vertical (horizontal) contraction, and we can assume that the location
where the exchange should initiate is also a location of internal hydraulic control. Thus, the
composite Froude number, G, at this location is unity, the expression for which simplifies
under the Boussinesq approximation [e.g., 1, 20] to

G2 =
u21

|g′| y1
+

u22
|g′| y2

= 1, (5)

where
g′ =

g

ρ2
(ρ2 − ρ1) ≈

g

ρmd
(ρ2 − ρ1) , (6)

is the reduced gravity. We have used the absolute value of the difference between the main
basin and littoral zone densities in order to strike a balance between the convention that
ρ2 > ρ1 in defining the reduced gravity and our choice of notation, which will not change
when the littoral zone is in fact denser than the main basin. Assuming that frictional effects
are negligible, it can be shown that at the point of internal hydraulic control, the depth of
each layer is equal, i.e., y1 = y2 = 1

2D1, and thus the velocity of each layer is also equal,
u1 = u2 = uex. The velocity of the gravity current due to the exchange process at the point
of internal hydraulic control can be solved for using (5), giving

uex = 1
2

√
|g′|D1. (7)

Because heat exchange between the two basins is thermally driven, it is convenient to
express the time rates of change of total heat content in the littoral zone and main basin
as time rates of change of basin averaged temperature instead. Upon substitution of the
definition of total heat content, Ei = CpρmdViTi, where we now use ρmd in accordance with
the Boussinesq approximation, into equations (2)–(3), along with equations (1), (4), (6), and
(7), we obtain expressions for the time rates of change of basin averaged temperature for the
littoral zone and main basin, given respectively by

Ṫ1 = − Io
D1

+
1

4L1D1

√
gρ∗D3

1

ρmd

∣∣∣∣∣
(

T1

Tmd
− 1

)2

−
(

T2

Tmd
− 1

)2
∣∣∣∣∣
1/2

(T2 − T1) (8)

Ṫ2 = − Io
D2

− B1

4B2L2D2

√
gρ∗D3

1

ρmd

∣∣∣∣∣
(

T1

Tmd
− 1

)2

−
(

T2

Tmd
− 1

)2
∣∣∣∣∣
1/2

(T2 − T1) (9)

where Io = Ho/(ρmdCp) (◦C m s−1) is the kinematic heat flux from the lake surface to the
atmosphere. Equations (8)–(9) form a system of two coupled ordinary differential equations
(ODEs) and are subject to the initial conditions T1(0) and T2(0).

Firstly, when (T1/Tmd − 1)2 = (T2/Tmd − 1)2, the second term related to exchange on
the right hand side of equations (8) and (9) is zero, and the outgoing surface heat flux will
more rapidly cool the littoral zone relative to the main basin. This differential cooling process
is thus particularly important for establishing density differences between the two basins.
Secondly, the impact of the heat flux due to exchange between the two basins will be larger
for the littoral zone, even if the littoral zone and main basin have the same surface areas.
This is again due to the difference in depth between the two basins and that D1 < D2. This
difference in impact will only be exacerbated by differences in the surface areas of the two
basins. Lastly, there are two ways by which the exchange heat flux does not affect the total
heat in either basin. The first is when T1 = T2, which, disregarding any implication this has
on the nature of the exchange flow itself, makes perfect sense given that any exchange when
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Figure 1: (a) Elevation schematic and (b) bird’s eye schematic of the model lake. D2, L2, and
B2 are the depth, length, and width of the main basin, respectively. D1, L1, and B1 are the
depth, length, and width of the littoral zone, respectively. Ho is the constant and uniform
outgoing heat flux from the lake to the atmosphere. T1 is the temperature of the littoral zone,
and T2 is the temperature of the main basin. A simple sketch of the exchange between the
littoral zone and main basin is shown in panel (a) for the example where the main basin is
denser than the littoral zone. The depths of the exchange flow gravity currents travelling from
the littoral zone to the main basin and vice versa are given by y1 and y2, respectively; q1 and
q2 are the water volume fluxes from the littoral zone to the main basin and the main basin
to the littoral zone, respectively; the dashed red line is a simple sketch to aid in visualisation
of the direction of the exchange of heat between the two basins. Panels (c) and (d) show an
example temperature time series and associated density at selected snapshots, respectively,
for a littoral zone (solid blue line) and main basin (solid orange line) which are cooling due
to a constant and uniform surface heat flux in the absence of exchange.
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T1 = T2 would result in a net zero change in temperature between the two basins. The second
is when (T1/Tmd − 1)2 = (T2/Tmd − 1)2, which is when ρ1 = ρ2. Obviously, ρ1 = ρ2 when
T1 = T2, but because of the quadratic dependence on temperature of the equation of state
for fresh water, so long as T1 and T2 are equidistant from Tmd, ρ1 = ρ2, and there will be no
exchange flow to enable an exchange of temperature.

It is advantageous to non-dimensionalise (8)–(9) in order to better investigate the pa-
rameter dependence of this lake cooling model. Let t̃ = t/τ be the nondimensional time,
where τ = D1Tmd/Io is the freezing onset time for the littoral zone in the absence of ex-
change with the main basin, θi = (Ti/Tmd − 1) be the non-dimensional temperature, and
ρ̂i = (ρi − ρmd) /ρ∗ = −θ2i . Upon substitution, we obtain the non-dimensional set of coupled
ODEs

θ̇1(t) = −1 +
1
4Tmd

√
g′∗D

3
1

IoL1

∣∣θ1(t)2 − θ2(t)
2
∣∣1/2 (θ2(t)− θ1(t)) (10)

θ̇2(t) = −D1

D2
−

(
B1L1D1

B2L2D2

) 1
4Tmd

√
g′∗D

3
1

IoL1

∣∣θ21(t)− θ22(t)
∣∣1/2 (θ2(t)− θ1(t)) , (11)

where g′∗ = gρ∗/ρmd is the reduced gravitational acceleration scale based upon the density
anomaly of fresh water, ρ∗, and we have dropped the tilde on time. There are three parameters
in this problem, the depth ratio of the littoral zone and main basin, δ = D1/D2, the surface
area ratio of the littoral zone to that of the main basin, α = B1L1/B2L2, and a ratio of
the total heat flux per unit width due to exchange at the g′∗ scale to that due to loss to the
atmosphere in the littoral zone,

Φ =
1
4Tmd

√
g′∗D

3
1

IoL1
. (12)

In terms of these parameter definitions, the non-dimensional coupled ODEs representing
the time rate of change of temperature in the littoral zone and main basin are

θ̇1(t) = −1 + ϕ(t) (13)

θ̇2(t) = −δ (1 + αϕ(t)) (14)

respectively, subject to the initial condition

θ1(0) = θ2(0) = θ0 (15)

where,

ϕ(t) = Φ
∣∣θ1(t)2 − θ2(t)

2
∣∣1/2 (θ2(t)− θ1(t)) (16)

is the non-dimensional time-dependent heat flux due to exchange between the littoral zone and
main basin. We solve the system defined by (13)–(16) both numerically and using analytical
techniques. Numerical solutions were computed with a specified relative and absolute error
tolerance of 1 × 10−12 using MATLAB’s ode45 solver, which is based on an explicit Runge-
Kutta formula [37].

Our present analysis focuses on an initial isothermal lake condition, θ0, as it can be
assumed that θ1(0) ≥ θ2(0). This is because systems that differentially cool also differentially
warm, meaning that at the start of seasonal cooling, shallower regions can be assumed to be
warmer than deeper regions, if not at the same temperature. In the case where θ1(0) > θ2(0),
due to differential cooling, there will be some time t0 at which θ1(t0) = θ2(t0) = θ0, making
the initial isothermal condition the most general initial condition for a seasonally cooling lake
and justifying a restriction of the initial condition parameter space.
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The dynamics of a differentially cooling lake around and below θmd are elegantly repre-
sented by the coupled system of nonlinear ODEs given by (13)–(16) subject to the initial
condition θ1(0) = θ2(0) = θ0. The cooling of both the littoral zone and main basin is due
to a constant and uniform surface heat flux (first term on the right-hand sides of (13) and
(14)), and a time-dependent heat flux due to exchange between the littoral zone and main
basin (second term on the right-hand sides of (13) and (14)). For a fixed value of Φ, the
strength of the exchange flow heat flux depends upon the temperature difference between the
two basins, θ2 − θ1, and the non-dimensional speed of the exchange related gravity currents,
|θ21 − θ22|1/2. The combined effect of the heat flux ratio, Φ, the speed of the exchange-related
gravity currents, |θ21 − θ22|1/2, and the temperature difference between the two basins, θ2 − θ1,
makes up the total exchange-flow related heat flux, ϕ(t).

The depth ratio between the littoral zone and main basin is represented by the parameter
δ, and their surface area ratios is represented by the parameter α. While δ affects the overall
cooling rate of the main basin with respect to the littoral zone, the influence of α is only
observed in the relative importance of the time dependent exchange heat flux, ϕ(t), to the
cooling rate of the main basin. When α ≪ 1, the impact of exchange on the cooling in the
main basin is effectively negligible. When δ ≪ 1, as is the case by definition of our littoral
zone, the main basin is effectively decoupled from the littoral zone, and the leading order
cooling regimes can be defined from the perspective of the littoral zone. Both the sign and
the magnitude of ϕ are of importance. When ϕ > 0, the littoral zone is cooler than the
main basin (θ1 < θ2), and thus exchange with the main basin acts to slow the cooling rate
in the littoral zone. Conversely, when ϕ < 0, the littoral zone is warmer than the main basin
(θ1 > θ2), and any exchange with the main basin acts to increase the rate of cooling in the
littoral zone. For the purposes of the present paper, we will focus on the situations where the
littoral zone is never warmer than the main basin, i.e., ϕ(t) ≥ 0.

For ϕ(t) ≥ 0, there are two basic cooling regimes (i.e., θ̇1(t) ≤ 0) for the littoral zone
according to (13). When ϕ(t) ≪ 1, exchange with the main basin is very weak and the rate
of cooling in the littoral zone is dominated by the outgoing surface heat flux. When ϕ(t) ≈ 1,
exchange with the main basin warms the littoral zone at a rate commensurate with the cooling
due to surface heat loss and the littoral zone cools in a quasi-steady state with the main basin.
When ϕ(t) ≫ 1, exchange with a warmer main basin overcomes cooling due to surface heat
loss, and the littoral zone actually warms (i.e., θ̇1(t) > 0). However, this warming regime
is only possible under extreme initial conditions not considered here. For the cooling lake
systems considered by the analysis here, only cooling in the weak exchange and quasi-steady
state regimes are of practical importance.

To illustrate the two cooling regimes, the solution to the system (13)–(14) subject to the
initial conditions θ1(0) = θ2(0) = 1 at set parameter values Φ = 10 and α = δ = 0.1 is shown
in figure 2. In this example solution, the littoral zone begins cooling in the weak exchange
regime during which it cools at a rate commensurate with that dictated by the surface heat
loss alone (θ̇1 ≈ −1). As the littoral zone rapidly cools in relation to the main basin, the
density difference between the two basins grows (figure 2b), leading to the development of
weak exchange with the main basin and thus a growth in the magnitude of the exchange
related heat flux, ϕ(t) (see figure 2d). Once a large enough density difference between the
two basins is established, the littoral zone cooling transitions to quasi-steady cooling regime
wherein the littoral zone cools in a quasi-steady state with the main basin. Because both the
littoral zone and main basin are still above θmd, the quasi-steady cooling regime is interrupted
by the littoral zone’s passage through θmd which allows the two basins to once again attain the
same density, despite now being at different temperatures (figure 2). During this transition
period, the exchange flow slows down and shuts off, causing the littoral zone to decouple from
the main basin and cool in the weak exchange regime at a rate θ̇1 ≈ −1 again. Further cooling
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Figure 2: Differential cooling behaviour of a freshwater lake when both the littoral zone and
main basin begin cooling from θi = 1, the depth ratio δ = 0.1, the surface area ratio α = 0.1,
and the heat flux ratio Φ = 10. The time evolution of (a) nondimensional temperature (θi =
(Ti − Tmd)/Tmd), (b) nondimensional density (ρ̂i = (ρi − ρmd)/ρ∗ = −θ2i , (c) nondimensional
reduced gravity (g′ = ρ̂2 − ρ̂1), and (d) nondimensional exchange related heat flux ϕ(t) =
Φ∆θ

√
|g′| are shown. As a point of comparison, the solutions for the temperature in the

littoral zone and main basin in the absence of exchange, θd1(t) and θd2(t), respectively, are
shown as dashed lines in panel (a). The time-axes of panels (a)–(d) span t = 0 to t = tf,1,
where tf,1 is the time of ice-onset in the littoral zone defined as when θ1(tf,1) = −1. The time
at which the direction of the exchange circulation changes is indicated as a dash-dotted line
in panels (a)–(d), and occurs when g′ changes sign. Schematics of the exchange circulation
direction are given in panel (b).
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of the littoral zone after the shut-down of the exchange flow now decreases the density of the
littoral zone relative to the main basin, which re-establishes a baroclinic pressure gradient
between the two basins and thus restarts exchange with the circulation changing direction, as
seen by the change in the sign of g′ (dashed black line in figure 2c). Once the exchange flow is
re-established, the littoral zone continues cooling in a quasi-steady state with the main basin
until the onset of freezing (2).

As expected, cooling within the weak exchange regime is associated with minima in |g′|
(solid black line in figure 2c), which occurs due to the initial conditions of the system (θ1(0) =
θ2(0)), and when the temperatures of the two basins become equidistant from Tmd (see dash-
dotted vertical line indicated in figures 2a and b). Likewise, cooling within quasi-steady regime
occurs when ϕ(t) ≈ 1 (figure 2d). Notably, after the second transition from the weak exchange
regime to the quasi-steady cooling regime, around t = 7, cooling in the littoral zone seems to
stagnate completely. However, ϕ(t) reaches a maximum just past 1 before settling at a value
around ϕ(t) ≈ 0.9 until the littoral zone reaches the freezing temperature of fresh-water.

3 Parameter Dependence and Analytical Predictions

The time evolution of the littoral zone and main basin temperatures, θ1(t) and θ2(t), re-
spectively, are functions of the four governing parameters in the model (13)–(16). These
parameters are

1. Φ, the scaled heat flux ratio between the exchange heat flux and surface heat flux in the
littoral zone,

2. θ0, the initial isothermal condition,

3. δ, the ratio of the littoral zone depth to the main basin depth, and

4. α, the ratio of the littoral zone surface area to the main basin surface area.

Our primary focus is on the impact of the governing parameters Φ and θ0. There are two
primary quantities of interest: 1) the timing of ice onset in the littoral zone and main basin,
tf,1 and tf,2, respectively, and 2) the temperature difference between the main basin and the
littoral zone at t = tf,1, given as

∆θ(tf,1) = θ2(tf,1)− θfrz, (17)

where by definition of tf,1 and tf,2, θ1(tf,1) = θ2(tf,2) = θfrz where θfrz ≥ −1 is the depth
averaged temperature at which surface freezing occurs for the lake. We allow flexibility in
the value of θfrz because lakes generally experience the onset of surface ice while the depth
averaged temperature is above the freezing temperature. For example, in Base Mine Lake
(section 4), θfrz ≈ −0.7.

In section 3.1 we investigate the model’s dependence upon the governing parameters, Φ and
θ0. We show that ∆θ(tf,1) becomes insensitive to initial lake temperature as the importance of
exchange increases relative to the constant surface forcing (i.e., increasing Φ). We demonstrate
the model’s insensitivity to θ0 for Φ > 1 and justify the pursuit of an analytical solution to
(13)–(16) subject to the initial condition θ0 = 0 for Φ ≫ 1, δ ≪ 1, and α ≪ 1. This analytical
solution is derived in appendix B.

In section 3.2.1, we construct predictions for tf,1, tf,2, and ∆θ(tf,1) from the analytical
solution to (13)–(16) for θ0 = 0. We then generalise these analytical predictions for any θ0 ≥ 0
in section 3.2.2, subject to the condition that ice onset in the littoral zone occurs during the
quasi-steady state cooling period. We compare our analytical predictions to the numerical
results and find excellent agreement for Φ ≫ 1, δ ≪ 1 and α ≪ 1. We discuss our results in
the context of a real-world lake system in section 4.

10
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3.1 Dependence on Φ and Initial Conditions

For illustrative purposes, we will consider the limiting case where θfrz = −1 and set δ = α =
0.1 in our probing of the Φ–θ0 parameter space. We demonstrate the impact of θfrz on the
applicability of our analytical predictions in section 3.2.2. Figure 3 showcases the combined
effect of the heat flux ratio, Φ, and the temperature of the lake at the start of seasonal cooling,
θ1(0) = θ2(0) = θ0 on (a) the timing of ice onset in the littoral zone, tf,1, (b) the timing of
ice onset in the main basin, tf,2, (c) the ice onset time lag between the two basins, ∆tf , and
(d) the temperature difference between the two basins when the littoral zone experiences ice
onset, ∆θ(tf,1).

To better understand how Φ affects ∆θ(tf,1), it is instructive to first consider the limiting
case of no exchange (Φ = 0). At Φ = 0, ϕ(t) = 0 for all t, and the two basins are decoupled
because there is no exchange. The model (13)–(14) simplifies to

θ̇d1 = −1 (18)

θ̇d2 = −δ, (19)

where the superscript d is used to denote this completely decoupled case. When the two
basins are completely decoupled, they both cool at a linear rate dictated by their depth and
the strength of the surface forcing. From (18)–(19), the decoupled ice onset times for the
littoral zone and main basin are

tdf,1 = θ0 − θfrz (20)

tdf,2 =
1

δ
(θ0 − θfrz) , (21)

respectively. The temperature difference at the ice onset time in the littoral zone is given by

∆θd(tdf,1) = (1− δ) (θ0 − θfrz) , (22)

which is shown as circles with colours corresponding to θ0 in figure 3(d). In this decoupled
scenario, where Φ = 0, the difference in temperature between the two basins at tdf,1 is dictated
by the difference in depth between the two basins and the initial temperature of the system.
As an example, if δ = 0.5, it will take the main basin twice as long to cool from θ0 to the
freezing temperature of fresh water because the main basin cools at half the rate of the littoral
zone.

At a small, but finite Φ, exchange processes have the capacity to impact the cooling of
the littoral zone, but this depends upon the initial state of the lake. When the two basins
start at the same initial temperature, the cooling behaviour will start in the weak exchange
regime, which is characterised by rapid cooling of the littoral zone relative to the main basin.
It is useful to recall that during the weak exchange regime,

ϕ(t) = Φ
(
θ21(t)− θ22(t)

)1/2
(θ2(t)− θ1(t)) ≪ 1, (23)

meaning that the main basin and the littoral zone must attain a larger temperature (and
density) difference in order for exchange processes to become important to the cooling of the
littoral zone when Φ ≪ 1. Thus, if θ0 is close enough to θfrz, it is possible for the littoral zone
to experience ice onset before the system transitions to a quasi-steady regime. Conversely, if
the lake begins cooling from a temperature which is far enough from θfrz (and θmd), there
will be enough time for the rapid littoral zone cooling of the weak exchange regime (weak
coupling with the main basin) to establish a strong enough density difference with the main
basin for the system to transition to the quasi-steady cooling regime.

11
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Figure 3: Ice onset time and temperature difference between basins as a function of both
the heat flux ratio, Φ = 1

4Tmd

√
g′∗D

3
1/ (IoL1), and the initial lake temperature θ0, for the

illustrative depth ratio δ = 0.1 and surface area ratio α = 0.1. The numerical solutions for (a)
the ice onset time in the littoral zone, tf,1, (b) the ice onset time in the main basin, tf,2, (c)
the ice onset time lag between the main basin and littoral zone, ∆tf = tf,2 − tf,1, and (d) the
temperature difference between the main basin and littoral zone at the ice onset time in the
littoral zone, ∆θ(tf,1) = θ2(tf,1) + 1. All solutions have been computed for the limiting case
where the basin averaged temperature at which ice onset occurs is θfrz = −1. The predictions
for ∆θ(tf,1) in the zero-exchange limit (Φ = 0), ∆θd(tf,1) given by (22), are shown as solid
circles on the Φ = 0 axis.
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Figure 4: Illustration of the loss of sensitivity to initial conditions when the heat flux ratio, Φ,
is sufficiently large. This example is for Φ = 10, a depth ratio δ = 0.1 and a surface area ratio
α = 0.1. Solutions to the governing equations, (13)–(16), for the initial conditions θ0 = 1,
and θ0 = 0 are shown for comparison. The solutions θ1(t) (solid blue line) and θ2(t) (solid
orange line) show the cooling in the littoral zone and main basin, respectively, from an initial
non-dimensional temperature θ0 = 1. The solutions θ∗1(t+tshift) (solid black) and θ∗2(t+tshift)
(dashed black) show the time-shifted cooling in the littoral zone and main basin, respectively,
from an initial non-dimensional temperature θ0 = 0. The time shift, tshift, applied is the
time that it takes the main basin to cool to the temperature of maximum density, θmd = 0,
which depends linearly on the initial condition according to (32). For the example shown,
tshift is the amount of time it takes the main basin to cool from θ2(0) = 1 to θ2(tshift) = 0,
or tshift ≈ 9.5.

Increases in Φ correspond to a decrease in both the ice onset time lag (figure 3c) and the
temperature difference between the littoral zone and main basin at tf,1 (figure 3d). Since the
main basin is effectively decoupled from the littoral zone at all times (valid for δ ≪ 1, α ≪ 1,
and Φ ≪ 1/ (δα)), a decrease in ∆θ(tf,1) can be interpreted as an increase in the amount
of time that it takes the littoral zone to experience ice onset compared to the completely
decoupled case (Φ = 0). This behaviour is clearly shown in figure 3a. Additionally, there
is a clear loss of sensitivity to initial conditions with increasing Φ, with no observable effect
of θ0 ≥ 0 on ∆tf or ∆θ(tf,1) for Φ > Φthresh = 1.3 (figure 3c–d). This threshold value of
Φ, Φthresh, changes depending upon the range of initial conditions under consideration. This
threshold value also has a lower bound, which for θfrz = −1 is approximately Φthresh ≈ 0.78,
shown as a dashed grey line in all panels of figure 3.

The existence of the threshold value, Φthresh, above which ∆tf and ∆θ(tf,1) become insen-
sitive to the initial state suggests that we can solve for the Φ dependence for all Φ > Φthresh

of the system, (13)–(14), subject to the simplest initial condition at fixed δ and α. In this
case, the simplest initial state is cooling the system from Tmd, i.e., θ1(0) = θ2(0) = 0, which
we address in the following section. As a proof of concept, we compare the solution to (13)–
(14) cooled from θ1(0) = θ2(0) = 1, θ1(t) (solid blue line) and θ2(t) (solid orange line), to
the time-shifted solution to (13)–(14) cooled from θ1(0) = θ2(0) = 0, θ∗1 (solid black) and θ∗2
(dashed black line), in figure 4. The time-shift, tshift, is defined as the time at which the main
basin reaches the temperature of maximum density (θ2(tshift) = θmd).

As shown in figure 4, the numerical solution to (13)–(14) cooled from θ0 = 1, θ1(t), agrees
remarkably well with the time-shifted numerical solution, θ∗1. This suggests that if one knows
the solution to (13)–(14) cooled from θ1(0) = θ2(0) = 0, and how to predict the time shift for
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Figure 5: Numerical solutions θ1 (solid blue line) and θ2 (solid orange line) to the governing
equations (13)–(16) for θ0 = 0, Φ = 10, and δ = α = 0.1. The comparative analytical
composite solutions for the littoral zone (θC1 , given by (24)), and main basin (θC2 , given by
(25)) are shown as solid and dashed black lines, respectively.

a change in initial state of the system, then one can predict the ice onset time in the littoral
zone for all initial states. This agreement, however, only occurs when both θ1(t) and θ∗1(t)
are cooling in a quasi-steady state with the main basin. This suggests that use of θ∗1 and an
appropriate time-shift will only work when ice onset occurs at a temperature near enough
to the freezing temperature so that the non-linearity in the littoral zone solution is avoided
altogether (see 5 < t < 10 in figure 4). This particular condition on θfrz is discussed in more
detail in section 3.2.

3.2 Analytical Predictions

The solution to the governing equations (13)–(16) subject to the initial condition θ0 = 0 for
Φ ≫ 1, δ ≪ 1, and α ≪ 1 is given by

θC1 (t) = θC2 (t)− Φ−1/2
(
tanhΦ1/2t− 1

)
− Φ−2/3

(
Φ−1/2 − 2θC2 (t)

)−1/3
, (24)

θC2 (t) = −δ (1 + α) t. (25)

The solution, (24)–(25), is a composite of the solution to an initial weak exchange regime,
θ1(t) = θW1 (t) and θ2(t) ≈ 0, and the solution to the quasi-steady state regime, θ1(t) = θQ1 (t)

and θ2(t) = θQ2 (t), the details of which can be found in Appendix B.
The solution, (24)–(25), for θ0 = 0, Φ = 10, and δ = α = 0.1 are compared against the

equivalent numerical solution to (13)–(16) in figure 5, showing good agreement. This solution
is characterised by an initial period of time during which the system cools in the weak exchange
regime (0 < t < 1, dotted line in figure B.1) followed by a comparatively longer time period
during which the system cools in the quasi-steady state regime (t > 1, dot-dashed line in
figure B.1). If θfrz = −1, ice onset in the littoral zone occurs during the quasi-steady cooling
regime around the non-dimensional time t = 7.5. Of note is the apparent divergence of the
analytical solutions from the numerical solutions. The degree of divergence around the time
of ice onset in the littoral zone is controlled by the magnitude of α, with smaller values of α
resulting in better agreement between the numerical and analytical solutions.
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3.2.1 Estimating tf,1, tf,2, and ∆θ(tf,1)

We can construct predictions for the time of ice onset in the littoral and main basin, tf,1
and tf,2, respectively, and the temperature difference between the two basins at tf,1, ∆θ(tf,1),
using the analytical solutions (24) and (25). From (25), the time of ice onset in the main
basin is

tf,2 =
−θfrz

δ (1 + α)
, (26)

where θfrz ≤ 0 by definition, making tf,2 > 0. Since the composite solution for the main
basin is a decaying linear function to leading order for all time, there are no restrictions on
when the estimate given by (26) is valid. For the littoral zone, however, the cooling regime
during which ice onset occurs is vital. Estimation of tf,1 is simplified if we assume that ice
onset in the littoral zone will occur during the quasi-steady cooling period. This requires that
the second term in (24) representing the effects of the weak-exchange regime be negligible,
which happens when tanh

(
Φ1/2t

)
≈ 1. Stated differently, we require that ice-onset in the

littoral zone tf,1 ≫ Φ−1/2, which we will check a posteriori. Assuming that this condition on
tf,1 will be met, we can use the quasi-steady temperature difference between the two basins,
∆θ = θ2 − θ1 to our advantage.

During the quasi-steady state regime, the difference in temperature between the two basins
is given by

∆θQ(t) = θQ2 (t)− θQ1 (t) =
(
Φ3/2 − 2Φ2θQ2 (t)

)−1/3
, (27)

which can be assumed to be approximately constant over time scales which are short enough
for θQ2 (t) to be assumed approximately constant. When δ ≪ 1, the main basin is approxi-
mately decoupled from the littoral zone. This decoupling from the littoral zone means that
we can calculate an effective temperature difference between the main basin and littoral zone
at the time of ice onset in the main basin, tf,2. Using (27), this temperature difference at the
time of ice onset in the main basin is given by

∆θQ(tf,2) =
(
Φ3/2 − 2Φ2θfrz

)−1/3
. (28)

If the time lag between ice onset in the littoral zone and that in the main basin, ∆t = tf,2−
tf,1, is sufficiently small, we can assume that ∆θ(tf,2) ≈ ∆θ(tf,1). We can thus approximate
the timing of ice onset in the littoral zone as the time of ice onset in the main basin minus the
amount of time it takes the main basin to cool by ∆θQ(tf,2). That is, that tf,1 = tf,2 −∆t.
According to (28) and (25), it takes the main basin

∆t =

(
Φ3/2 − 2Φ2θfrz

)−1/3

δ (1 + α)
(29)

longer than the littoral zone to experience ice onset. Thus, we can approximate the time of
ice onset in the littoral zone to be

tf,1 =
−θfrz −

(
Φ3/2 − 2Φ2θfrz

)−1/3

δ (1 + α)
, (30)

where, again, θfrz < 0 by definition, making tf,1 > 0.
The applicability of (30) requires that tf,1 ≫ Φ−1/2. We can assess whether there are

limitations on our prediction given by (30) by considering two possibilities: 1) the depth
averaged temperature at which ice-onset occurs is approximately the freezing temperature
(θfrz ≈ −1) and 2) the depth averaged temperature at which ice-onset occurs is approximately

15



K.A. Everard et al. ARC Geophysical Research (2025) 1, 3

the temperature of maximum density (|θfrz| ≪ 1). In the case that θfrz ≈ −1, ice onset in
the littoral zone scales as tf,1 ∼ δ−1. So, to satisfy tf,1 ≫ Φ−1/2 in this case, we require that
δ ≪ Φ1/2. Given that our model is applicable when Φ is sufficiently large and δ ≪ 1, this is
reasonably met.

For the case that |θfrz| ≪ 1, we can first consider θ = 0 as the upper limit on θfrz. In this
case, tf,1 < 0, which is not physically reasonable. If instead θfrz = −Φ−1/2, tf,1 ≈ 1

3δ
−1Φ−1/2,

which is again reasonably met when δ ≪ 1. A general requirement is that

|θfrz| ≥ Φ−1/2 (31)

to ensure that tf,1 > 0, and thus the applicability of the prediction given by (30).

3.2.2 Generalising tf,1, tf,2, and ∆θ(tf,1) for θ0 ≥ 0

The solutions for the ice onset times in the main basin (26) and littoral zone (30) can be
generalised to any initial condition θ0 ≥ 0 by adding the time shift, tshift shown in figure 4.
This time shift is the amount of time that it takes the main basin to cool from some θ0 ≥ 0
to the temperature of maximum density, θ = 0. This time shift can be found using (25) to be

tshift =
θ0

δ (1 + α)
, (32)

which gives the general solutions for the time of ice onset in the littoral zone and main basin
respectively as,

tf,1 =
θ0 − θfrz −

(
Φ3/2 − 2Φ2θfrz

)−1/3

δ (1 + α)
, (33)

tf,2 =
θ0 − θfrz
δ (1 + α)

. (34)

The time lag in ice onset between the main basin and littoral zone is given by

∆tQf = tQf,2 − tQf,1 =

(
Φ3/2 − 2Φ2θfrz

)−1/3

δ (1 + α)
, (35)

and the temperature difference between the main basin and littoral zone at the time of ice
onset in the littoral zone by

∆θQ(tf,1) =
(
Φ3/2 − 2Φ2θfrz

)−1/3
. (36)

Figure 6 provides a comparison between the analytical and numerical predictions for the
ice-onset time lag (panel a) and the temperature difference between the two basins at the
time of ice onset in the littoral zone (panel b) as functions of the heat flux ratio, Φ. Both the
numerical and analytical solutions were computed for the initial condition θ0 = 1, the depth
ratio δ = 0.1, and the surface area ratio α = 0.1. The analytical predictions for both the
ice-onset time lag and the temperature difference at ice onset in the littoral zone are denoted
by superscript Q, ∆tQf (equation 35) and ∆θQ(tQf,1) (equation 36), respectively. The absolute
error between the numerical and analytical predictions is shown for four values of ice-onset
temperature, θfrz = −1 (solid black line), θfrz = −0.5 (dotted black line), θfrz = −0.25,
(dot-dashed black line), and θfrz = 0 (dashed black line).

The importance of θfrz in addition to Φ on the applicability of our analytical solutions is
made evident by the poor performance of both θfrz = −0.5 and θfrz = −0.25. For moderate
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Figure 6: Comparison between numerical solutions and analytical predictions. The absolute
errors for (a) the analytical prediction for the ice onset time lag between the main basin and
littoral zone, ∆tQf , given by (35) and (b) the temperature difference between the main basin

and littoral zone at the time of ice onset in the littoral zone, ∆θ(tQf,1), given by (36) are shown
for θfrz = −1, θfrz = −0.5, θfrz = −0.25, and θfrz = 0. Both numerical and analytical
computations are made for the illustrative initial condition θ0 = 1, depth ratio δ = 0.1, and
surface area ratio α = 0.1.
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values of Φ (e.g., 1 ≤ Φ ≤ 5), an ice onset temperature θfrz = −0.5 places ice onset during
a period of weak exchange. However, when Φ = 10, as is the case in the examples shown in
figures 2 and 4 for θ0 = 1, an ice onset temperature of θfrz = −0.5 places ice onset during
the quasi-steady cooling period. This is reflected by the apparent agreement between the
analytical and numerical predictions in both panels of figure 6 at Φ = 10.

The agreement between the analytical solutions given by (35) and (36), however, is poor
over the entire Φ > 1 space shown for θfrz = −0.25. This is because there is necessarily a
second minimum in g′ due to the littoral zone temperature passing through θmd (see figure
2). The impact of Φ is to effectively narrow the period of time during which the system cools
in the weak exchange regime, meaning that there are narrower restrictions on the value of
θfrz as Φ increases. For the illustrative example shown in figure 2 where Φ = 10, according
to (31), the analytical predictions are not applicable for |θfrz| < 0.32, which is reflected in
both panels of figure 6.

Notably, the lower bound on Φthresh discussed at the end of section 3.1 corresponds with
the peak in the θfrz = −1 line in figure 6. A sharp decrease in the absolute error between
the analytical predictions and the numerical predictions occurs for Φ > Φthresh, as expected.
Further, it is apparent that the magnitude of Φthresh depends upon θfrz. Using figure 6, the
predicted value of Φthresh when θfrz = −0.5 and θ0 = 1 is Φthresh ≈ 3.1.

4 Case Study: Base Mine Lake

We compare our model, (13)–(16), to observations made during fall turnover leading up to ice
onset in 2015 at Base Mine Lake (BML) to serve as a basis of discussion of our model and its
application to real world systems. BML is a dimictic oil sands end pit lake in the Athabasca
oil sands region of Alberta, Canada, and is a site ongoing research [e.g., 5, 17, 40, 47]. The
main basin of BML had an average depth of approximately 8 m during fall turnover in 2015
[5], and the littoral zone had an average depth of approximately 1 m (see figure 7a-b). The
geometry of BML makes it an ideal case study lake for our model for two reasons, 1) the
depths of both the littoral zone and main basin are relatively constant through space and 2)
the transition between the littoral zone and main basin is relatively sharp (see sample depth
transect shown in figure 7b).

4.1 Methods and Data

In order to apply our model, (13)–(16), to BML, we define representative lengths, widths,
and depths for both the littoral zone and main basin of BML, summarised in table 1. These
definitions are based off of water level and bathymetry data, both of which were used to render
figure 7(a) and (b). We use water temperature measurements taken hourly from the Platform
3 mooring (P3, shown as a black cross in figure 7a) to define a representative dynamic surface
heat flux, Io, during fall turnover, defined as

Io = D2ṪBML, (37)

where we have assumed that the rate of temperature change in the main basin is constant and
uniform, i.e., ṪBML ≈ const.. We use a linear regression of the depth-averaged temperature
to define ṪBML, the details of which can be found in [10]. The wind data shown in figure 8(d)
was collected 3.33 m above the water surface at Platform 1 (P1, shown as a black open circle
in figure 7a).
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Table 1: Approximate values of both dimensional and non-dimensional parameters relevant
to Base Mine Lake.

Dimensional Non-dimensional

D1

(m)
L1

(km)
B1

(km)
D2

(m)
L2

(km)
B2

(km)
Tmd

(◦C)
ṪBML

(◦C/s)
Ho

(W/m2)
τ
(days)

δ α Φ

1 0.3 1.4 8 2.3 3.3 3.7 −3× 10−6 -100 1.8 0.13 0.05 4.2

4.1.1 Selection of Initial Time

We initialise the model when the depth averaged temperature of the main basin reaches
TBML = 8◦C on October 25, 2015, as opposed to the start of fall turnover which occurred on
September 4, 2015 [5]. There are two reasons for this choice, 1) the cooling rate in the main
basin becomes relatively stationary after reaching TBML = 8◦C, and 2) the temperature of
the littoral zone is of negligible importance given that Φ is continuously sufficiently large after
October 25. The first point is an assumption of our model, and the second point is related
to the insensitivity of our model to the initial conditions. The insensitivity of the model,
(13)–(16), at sufficiently large Φ holds even for unequal initial conditions, θ1(0) ̸= θ2(0). This
means that so long as our choice of initial time is before the observed ice onset time in the
littoral zone and our initial condition in the main basin is well supported, we are free to use
any reasonable initial condition for the littoral zone.

As evidenced in figure 7(c), not only is the rate of temperature change fairly constant,
but BML remains well mixed even through Tmd, which is consistent with our assumption that
there is enough energy to keep the main basin well-mixed until ice onset. There are two time
periods of interest during which noticeable stratification occurs, between 319.0 <DOY< 320.0
and for DOY> 323.0, which as will be seen, are associated with the timing of ice onset in
the littoral zone and in the main basin, respectively. The dimensional and associated non-
dimensional parameters of BML are summarised in table 1. The depth-averaged temperature
time series of the main basin due to a constant and uniform surface heat flux Io defined by
(37) is shown as a dashed red line in figure 7(c) and as a black dashed line in figure 8(a).

4.1.2 Estimation of Ice Onset Time

In order to estimate the timing of ice onset in both the littoral zone and main basin, we rely
upon two different datasets. The first is a temperature dataset from the P3 mooring (see
figure 7c) and the second is a list of ice-cover classifications based off of images taken of the
surface of BML from different angles in November 2015. Five cameras were installed at BML
in August 2015, one of which (camera 2), was directed towards the surface of the littoral zone,
and four of which (cameras 1, 3, 4, and 5) were directed towards different locations of the
main basin. Images were logged hourly during the daylight hours (between 10:00 and 15:00
local time (LT)). To define an ice onset date, we identified the first observation of surface ice
that is not followed by a period of open water until the spring melt. Based off of this, ice
onset occurred for the littoral zone on November 15 at 15:00 LT (DOY = 319.63). Because
of the timing of ice onset in the littoral zone, the uncertainty related to this is approximately
one hour. Ice onset in the main basin occurred approximately three and a half days later on
November 19 at 10:00 LT (DOY = 323.42). All four cameras angled at the surface of the
main basin indicated this ice onset time. The uncertainty related to the estimation of ice
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P3

P1

Figure 7: (a) Bathymetry of Base Mine Lake, Alberta, Canada, reflected as contours of water
depth (m), (b) water depth (m) along a transect through the littoral zone and the main basin
of BML, and (c) time series of temperature observed at data acquisition site P3 with depth
at BML during seasonal cooling in 2015. The location of the depth transect shown in panel
(b) is indicated as a dashed red line in panel (a). The locations of Platform 1 (P1; black
open circle) and Platform 3 (P3; black cross) are shown in panel (a). The arithmetic depth-
averaged temperature of the main basin, TBML is shown as a solid black line in panel (c), with
an associated linear fit shown as a dashed red line, the slope of which gives ṪBML = −Io/D2.
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onset time in the main basin from the image data is approximately 19 hours.
While there is uncertainty in the ice onset dataset compiled from the hourly images of

BML, both the ice onset times in the littoral zone and main basin identified are supported
by the P3 mooring data. This gives us a fair amount of confidence in the estimation of ice
onset in both the littoral zone and main basin. Around November 19, 2015 (DOY= 323.0),
the main basin obviously stratifies and the depth-averaged temperature of the main basin,
TBML, settles to a stationary value of approximately 1.1◦C (figure 7c). The establishment of
stationarity in both TBML and stratification near the freezing temperature of fresh water are
clear indications of ice onset in the main basin. While there is no temperature data in the
littoral zone, there is an obvious stratification event in the main basin around November 15,
2015 (DOY= 319.0), which indicates that the meteorological conditions at BML at the time
were likely favourable for ice onset in the littoral zone (given that it is expected to be cooler
than the main basin at this time).

Because ice onset in the main basin occurs when TBML ≈ 1.1◦C, we will define the ice
onset temperature for BML as Tfrz = 1.1◦C. Since Tmd ≈ 3.7◦C for BML, the non-dimensional
freezing temperature is given as

θfrz ≈ −0.703. (38)

4.2 Comparison with Model and Discussion

According to the numerical solution to the governing equations, (13)–(16) for θ0 = 1.2, ice
onset in the littoral zone of BML occurs in the evening of November 14 (DOY = 318.65). The
uncertainty in this numerical estimate due to our uncertainty in the initial condition of the
littoral zone is approximately 11 hours, shown as time error bars in figure 8(a) (see [10] for
more details). Comparatively, the analytical prediction for tf,1 given by (33) predicts that ice
onset in the littoral zone occurs approximately 8 hours later at DOY= 319.03. Both estimates,
however, are within a reasonable range for ice onset in the littoral zone. Observations based
off of hourly images suggest that littoral zone ice onset occurred at 15:00 on November 15
(DOY= 319.63), and temperature data suggests that ice onset could have reasonably occurred
anywhere between 319.0 <DOY< 320.0 (see stratification event in figure 8b). It is likely that
the depth-averaged temperature at which the littoral zone experiences ice onset is closer to
the freezing temperature of fresh water (θfrz = −1). When we use a value of θfrz closer to
θfrz = −1 in the littoral zone, both our numerical and analytical predictions for the littoral
zone improve. Given the assumptions necessary to derive the asymptotic prediction for ice
onset in a littoral zone, (33), the agreement between the analytical prediction and observations
is remarkable.

Given that we force the model (13)–(16) with a surface heat flux, I0, that is defined using
θ̇BML, it is not surprising that the numerical solution θ2(t) agrees well with θBML(t). Ice onset
is predicted to occur on November 19 at 10:00 LT, which exactly agrees with observations.

4.2.1 Assumption of Constant Surface Heat Flux

Our assumption of well-mixedness of each basin through time allows us to combine all in-
coming and outgoing heat sources and sinks into one net flux at either the top or bottom
interface. The surface heat flux, Ho, which we employ here is a representation of the average
heat loss from the lake system when considering both cooling processes (e.g., outgoing long-
wave radiation from the lake surface) and heating processes (e.g., warming from the bottom
sediments and day-time solar insolation).

The cooling and heating processes that Ho represents are themselves functions of time
and space. The most pressing time-dependence that is ignored is that of heat loss at the
lake-atmosphere surface (e.g., by outgoing long-wave radiation during the nighttime). This
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Figure 8: (a) Timeseries of non-dimensionalised temperature in the littoral zone (θ1; blue line)
and main basin (θ2; orange line) of BML as modelled by the governing equations (13)–(16)
for Φ ≈ 4.2, θ0 ≈ 1.2, δ ≈ 0.13, α ≈ 0.05, and θfrz ≈ −0.7. The decoupled solutions for the
littoral zone (θd1 ; dot-dashed black line) and main basin (θd2 ; dashed black line) are shown,
along with the observed timeseries of depth-averaged temperature at P3 (θBML; solid black
line). The analytical prediction for the timing of ice onset in the littoral zone according to
(33) is shown as an open red circle. Error bars are shown for the numerical time of ice onset in
the littoral zone for the extreme hypothetical initial conditions where the littoral zone is just
above freezing (θ1(0) = −0.7; lower error) and where the littoral zone does not cool before
DOY= 298.0 (θ1(0) = 3; upper error). (b) Timeseries of observed non-dimensionalised water
temperature at P3 at depths 0.5 m (red line), 2.0 m (yellow line), 4.0 m (green line), 6.0 m
(cyan line), and 8.0 m (blue line). The depth-averaged temperature timeseries at P3 is also
shown (θBML; black line). Note that the temperature range is 0◦C – 8◦C, matching figure
7c. (c) Timeseries of the exchange-related gravity current speed in m s−1. (d) Timeseries
of hourly wind speed measurements taken at Platform 1 (P1). The average wind speed
shown as a dashed grey line is 3.5 m s−1. The observed ice onset times for the littoral zone
(DOY= 319.63; November 15 15:00) and main basin (DOY= 323.42; November 19 10:00)
are shown in all panels as vertical dotted lines, with the grey shading associated with the
uncertainty in each observation based off of data availability.
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surface heat flux is driven by the temperature difference between the lake surface and the
atmosphere. While our assumption of a constant-in-time surface heat flux between the lake
and the atmosphere seems appropriate for BML (evidenced by approximately linear decay of
main basin temperature in figure 8b), our assumption that it is constant in space is violated
whenever the littoral zone and main basin are of different temperatures.

Under the assumption that lake surface temperature is the only driver behind the net
surface heat flux and that the surface temperatures of both basins is greater than the tem-
perature of the atmosphere (which is held constant), then the warmer basin would have a
stronger net outgoing surface heat flux. This would mean that when the difference between
the two basins is the greatest (i.e., the littoral zone is at its coldest relative to the main basin),
the rate of cooling of the littoral zone due to surface heat loss would be slower than what
is represented currently by our model. Given that our analytical solutions predict an earlier
ice-onset than observed in the littoral zone, it is possible that the non-homogeneity in the
surface heat flux due to difference in basin temperatures is an important factor to consider. A
full analysis of the impact of a temperature-dependent surface heat flux is needed, however,
to fully assess the error our assumption of homogeneous surface heat flux introduces.

4.2.2 Role of Wind

Once a lake has cooled to the temperature of maximum density, additional surface cooling no
longer acts as a destabilising surface buoyancy force, and rather becomes a stabilising one. At
this point, the role of wind becomes important in that it is now needed to maintain a surface
mixed layer [e.g. 41]. While it is clear that there is enough energy input to BML to maintain
well-mixedness in the deeper main basin below θmd in a broad sense (see figure 8b), there are
still calmer periods during which stratification is observed in the main basin. In particular,
around DOY= 321.0, the wind speed decreases to around 2 m s−1, and a weak and short lived
stratification event is observed in the main basin (see figure 8b and d). During this very brief
period, the depth of the surface mixed layer is less than 4 m.

A change in the depth of the mixed layer indicates a change in the depth ratio, δ, of our
model. To accommodate the wind’s impact on δ, an effective depth ratio could be used in
place of the strictly bathymetry based depth ratio used here. This effective depth ratio would
be a function of the wind speed. Consider BML as an example. If the wind is only strong
enough to mix to a depth of 5 m, then δ = 0.2 could be used instead of the actual geometrical
parameter value of δ ≈ 0.1. This would understandably decrease the accuracy of our analytical
prediction for ice onset in the littoral zone, (33). There is the further potential to allow a time
varying effective depth ratio, but considering how this might change the cooling behaviour in
the littoral zone is beyond the scope of this work.

Wind can not only impact the depth of the mixed-layer, but can also impact the strength
of the exchange flow between the two basins. Exchange in a shallow confined basin like the one
we consider here is more likely to be controlled by both horizontal density gradients and cross-
shore wind stresses [e.g., 34], depending, of course, on the wind direction. The wind’s impact
on exchange is maximised when the wind is directed perpendicular to the interface between
the littoral zone and main basin, and minimised when directed parallel to this interface. While
wind direction data is not presently available here, approximate bounds on the effect of the
wind on the exchange flow can be estimated using the measured wind speed.

Considering the wind’s potential to either enhance or inhibit exchange between the two
basins, the impact of wind on exchange could be accounted for by either increasing Φ (wind
enhanced exchange) or decreasing Φ (wind inhibited exchange). This, however, would not
account for any wind-driven exchange that might still occur during the weak exchange cooling
regime when thermally-driven exchange becomes negligible. In order to fully accommodate
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wind-driven exchange, an additional term could be added to the governing equations (13) and
(14), which allows exchange even during periods of negligible thermally-driven exchange, but
this too is beyond the scope of the current work.

It is also possible for a thermal bar to develop between the littoral zone and main basin due
to differential cooling during periods of weak wind [e.g. 11]. Were a thermal bar to develop,
however, the littoral zone may freeze much earlier than what is observed (see Appendix G in
[10] for more details). This is because the thermal bar would extend the length of the second
period of decoupled cooling effectively allowing the littoral zone to freeze before the eventual
disappearance of the thermal bar (or end of cabbeling).

4.2.3 Role of θfrz

The depth averaged temperature at which freshwater lakes experience ice onset varies. The
reason behind this being the strength of the stratification at ice onset, which is connected
to the strength of the wind forcing. Lakes experience periods of mixing and stratification
when cooling below Tmd, and the depth of the surface mixed layer is often shallower than the
full basin depth and thus can both decrease and increase through time [41]. Ultimately, this
means that the full depth-averaged temperature of a basin can be above the freezing point at
ice onset because either the mixed layer does not span the full depth of the basin, the basin
stratifies long enough for the surface to reach the freezing point before mixing again, or more
realistically, a combination of the two. If our model allowed the surface mixed layer depth
to change continuously through time, then we would expect the basin to freeze when this
mixed-layer temperature reached the freezing point, i.e., θfrz ≡ −1. As this is not the case,
we have accommodated stratification events and a variable mixed layer depth by allowing
θfrz ≥ −1.

The accuracy of our analytical prediction for the time of littoral zone ice onset, (33),
depends heavily on θfrz. As an example, consider the case where θfrz = −0.25 (T ≈ 3◦C) in
application to BML. In this situation, the littoral zone would experience ice onset during a
period of weak exchange with the main basin (see figure 8a), rather than during the assumed
quasi-steady period. This would invalidate our assumption that the non-linearity due to the
quadratic equation of state was negligible, and our resulting analytical prediction for tf,1, (33),
would fail. In particular, our prediction for tf,1 would be 10 days off, which is a significant
error. However, given that littoral zones are by definition shallower than main basins of lakes,
if there is enough energy to assume well mixedness of the main basin, it is more likely that the
littoral zone will experience ice onset when its depth-averaged temperature is much closer to
the freezing temperature. We suspect that this is the case at BML, which explains the under
prediction of the ice onset time in the littoral zone.

4.2.4 Role of Friction

Our model has neglected frictional effects, including interfacial friction (at the interface be-
tween the two gravity currents), and bottom and side-wall friction in the littoral zone. While
the side-wall frictional effects are likely quite small due to the width of the littoral zone
in comparison with its depth [13], both the bottom friction and interfacial friction would
act to decrease the exchange flow rate in comparison with our inviscid representation [e.g.,
14, 24, 46]. For this reason, our model predicts the upper bound on the heat flux due to a
purely baroclinic exchange flow.

Under the assumption that any barotropic contribution to exchange between the two
basins is negligible, the agreement between our model predictions and the observations would
indicate weak frictional effects. The addition of friction would result in earlier ice onset in
the littoral zone than observed. This is because a reduction in the exchange flow rate is
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equivalent to a reduction in the exchange flow heat flux, and the exchange flow heat flux acts
to slow the rate of cooling in the littoral zone. If our model over-predicted the ice onset time
in the littoral zone, the neglect of frictional effects might be the obvious culprit. However,
our model under-predicts the ice onset time in the littoral zone of BML. While it is possible
that frictional effects are opposed by barotropic strengthening of the exchange flow heat flux,
assessing this possibility is beyond the scope of the current study.

5 Conclusions

We have derived a simple system of two coupled non-linear ordinary differential equations
describing the temperature evolution of the shallow littoral zone and deeper main basin of
a fresh-water lake. The model is forced with a constant and uniform surface heat flux from
the lake surface to the atmosphere. We assume that water density is a quadratic function of
temperature and that each basin remains vertically well mixed, even below the temperature
of maximum density, Tmd. Using both numerical and analytical solutions of our model, we
address two open questions: what role does differential cooling around and below Tmd play in
1) the cooling behaviour of each basin, and 2) the timing of ice onset?

The cooling behaviour of the littoral zone and main basin, respectively, depend upon two
heat fluxes in our model: the constant and uniform surface forcing and a time dependent heat
flux due to thermally driven exchange between the two basins. When the depth of the littoral
zone is small in comparison to that of the main basin (i.e., δ ≪ 1), as it is by definition, the
cooling rate of the main basin due to the surface forcing alone is much slower than that of
the littoral zone. This means that the littoral zone cools more rapidly in relation to the main
basin, which can quickly establish a temperature difference between the two basins. When
the total volume of water in the littoral zone is small in comparison to that of the main basin
(i.e., δ ≪ 1 and the surface area ratio α ≪ 1), the thermal impact of an exchange flow is
much greater for the littoral zone than for the main basin.

Taken together, there are two obvious cooling regimes predicted by our model: a weak
exchange regime during which differential cooling dominates and temperature differences be-
tween the two basins are established, and a quasi-steady state regime during which the warm-
ing of the littoral zone due to exchange balances the more rapid cooling due to it being
shallower. When the thermal behaviour of the littoral zone has the capacity to be sufficiently
dominated by exchange-flow with the main basin (i.e., sufficiently large Φ), the difference in
the timing of ice-set between the littoral zone and main basin becomes invariant to initial
conditions. Using this invariance to initial conditions, the timing of ice onset in the littoral
zone can be solved analytically using (33).

Both our numerical results and analytical predictions reflect the strong dependence of
ice onset in the littoral zone upon the magnitude of Φ. Our model accurately predicts the
approximate four day lag in ice onset between the littoral zone and main basin of Base Mine
Lake (BML), in Alberta, Canada in 2015. This remarkable comparison between simple model
output and observations strongly suggests that consideration of an exchange flow with a
deeper main basin would allow for better prediction of ice onset in the ecologically sensitive
littoral zones of freshwater and brackish lakes.

This work presents a first look in to the role that differential cooling might play in both
the behaviour of a cooling lake system around and below Tmd and consequently in the timing
of ice onset in different lake zones. Given the sensitivity and importance of littoral zones
[e.g., 43], knowledge on the behaviour of differentially cooling lakes and the impact of lake
convection on surface ice onset can have important implications for the ecosystem dynamics
of lakes [e.g., 26]. This could be an important consideration in the design of future lake
reclamation sites like BML.
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Given the nature of this work, there are a number of limitations and remaining open
questions which we hope will be pursued further using this model as a basic framework.
Firstly, BML is an ideal case study lake for comparison against our simple model. In order
to assess whether the model also applies for lakes with less ideal geometries, such as more
continuous sloping interfaces between the littoral zone and main basin or a littoral zone which
surrounds the entirety of the main basin, comparison against observations made in other lakes
is desirable. Other obvious future iterations include the inclusion of interfacial and bottom
stress to improve the representation of exchange flow in the model, a temporally varying heat
flux at the lake surface to better represent the impact of heating and cooling processes in the
system, use of an effective (time dependent) depth ratio to better represent the growth and
decay of the surface mixed layer in response to changes in wind forcing, and inclusion of a
Coriolis term to better represent the potential impact of Earth’s rotation on the exchange
flow. Given that the model developed is a coupled system of autonomous non-linear ordinary
differential equations, further analysis on the dynamics of the system could be conducted using
a phase-plane analysis. Our hope is that this model is used as a basis for further investigation
of differentially cooling lake systems that eventually freeze.
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A Model Dependence on Problem Geometry

With a better understanding of the impact that Φ and θ0 have on the solution, we consider
the role of basin geometry, represented by δ and α. As discussed in section 3.1, when Φ = 0
for all θ0 and when Φ ≪ 1 for θ0 close enough to the freezing temperature, the timing of ice
onset in the littoral zone, tf,1, is inversely proportional to δ and the temperature difference
between the two basins at this time, ∆θ(tf,1), is weakly linearly dependent upon δ. For these
small Φ scenarios, the surface forcing Io is dominant in the cooling of both basins, and thus
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the surface area ratio of the two basins, α, has a negligible impact. The question remains
whether this δ and α dependence changes when Φ is sufficiently large.

10-3 10-2 10-1 100
100

101

102

103

1

1

1

5

5

5

5

10

10

10

10

20

20
20

20

50

50

50

10-3 10-2 10-1 100
10-3

10-2

10-1

100

Figure A.1: Impact of lake geometry on the timing of ice onset in the littoral zone (tf,1) as
predicted by the governing equations (13)–(16) and performance assessment of the analytical
prediction (33) for the illustrative heat flux ratio Φ = 10 and initial condition θ0 = 1. Panel
(a) shows both the relation between the depth ratio, δ, and tf,1 at fixed surface area ratio,
α = 0.1, and the relation between α and tf,1 at fixed δ = 0.1. The numerical predictions in
panel (a) are shown as solid black (varying δ at fixed α = 0.1) and dashed black (varying α
at fixed δ = 0.1) lines with the corresponding analytical predictions according to (33) shown
as solid red (varying δ at fixed α = 0.1) and dashed red (varying α at fixed δ = 0.1) lines.
Panel (b) provides a comparison between the numerical prediction for tf,1 and the analytical
prediction given by (33) as a function of both δ and α. As a method of comparison, the
percent error between the two predictions was calculated using the numerical solution as the
‘observed’ value and the analytical prediction as the ‘expected’ value. The 1%, 5%, 10%,
20%, and 50% error contours are drawn and labelled showing excellent agreement between
the numerical solutions and analytical predictions for δ ≤ 0.1 and α ≤ 0.1 at Φ = 10 and
θ0 = 1.

Figure A.1(a) showcases the sensitivity of the timing of ice onset in the littoral zone to
both δ and α at fixed Φ = 10 and θ0 = 1 as solid and dashed black lines, respectively. It
is apparent that the inverse dependence of tf,1 on δ is retained, even as δ → 1. However,
as α → 1, tf,1 becomes increasingly sensitive to α. Regardless, the system is obviously
more sensitive to changes in δ than to changes in α. These results are compared against the
analytical predictions constructed and discussed in section 3.2, shown as solid and dashed red
lines for δ and α, respectively.

B Derivation of Analytical Solution for θ0 = 0

B.1 Weak Exchange Solution

Because of the initial condition of the system, θ1(0) = θ2(0) = θ0, ϕ(0) = 0, and thus the
littoral zone and main basin begin cooling as if they were decoupled. The system (13)–(14)
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initially reduces to (18)–(19), which for δ ≪ 1, effectively means that the temperature in the
main basin, θ2, is stationary in comparison to the littoral zone. Thus, as the littoral zone
rapidly cools, a temperature and density difference between the two basins establishes due to
the littoral zone’s departure from the initial state. Unlike the case where Φ = 0, however, a
non-zero difference in density between the two basins will begin forcing an exchange flow. As
the littoral zone cools relative to the main basin, the strength of this exchange flow grows,
increasing the effect of the exchange related heat flux on the littoral zone cooling. The ODEs
describing this short initial cooling period are thus given by

θ̇W1 = −1 + Φ
∣∣∣(θW1 )2 − (

θW2
)2∣∣∣1/2 (θW2 − θW1

)
(39)

θ̇W2 = 0, (40)

subject to the initial conditions θW1 (0) = θW2 (0) = 0. By inspection, the solution to (40) is
θW2 (t) = 0, which allows us to simplify (39) to

θ̇W1 = −1− Φ
∣∣θW1 ∣∣ θW1 . (41)

In order to solve for θW1 , it is useful to define θW1 = −Φ−1/2u and t = Φ−1/2s, which upon
substitution in to (41) gives

du

ds
= 1− u2, (42)

which is a separable non-linear ODE whose solution is a hyperbolic tangent. Applying the
initial condition, θW1 (0) = 0, we obtain the short-time solution for temperature in the littoral
zone. The solution during the weak exchange regime is thus given as

θW1 (t) = −Φ−1/2 tanhΦ1/2t, (43)

θW2 (t) = 0. (44)

The weak exchange solution in the littoral zone is shown as a dotted black line in figure
B.1. We can interpret the time and θW1 scaling used to solve (41) as the timescale over which
θ2 ≈ 0 and the temperature scale that θ1 approaches over this period of time, respectively.
As θ1 → −Φ−1/2, however, θ̇1 → 0. This process occurs because a greater density difference
between the two basins means a stronger exchange flow, and thus a stronger incoming flux of
water from the warmer main basin. This growing flux of warmer water from the main basin
acts to decelerate the cooling in the littoral zone, slowing the growth of the exchange between
the two basins. Eventually, the littoral zone cooling becomes limited by the cooling in the
main basin.

B.2 Quasi-Steady State Solution

During the quasi-steady cooling regime, the littoral zone cooling is balanced by the warming
due to exchange with the main basin, and thus ϕ(t) ≈ 1. Expressed differently, during the
quasi-steady cooling regime,∣∣∣∣(θQ1 )2

−
(
θQ2

)2
∣∣∣∣1/2 (θQ2 − θQ1

)
= Φ−1 (45)

and the rate at which the littoral zone cools will be dictated by the cooling rate in the main
basin. Since ϕ(t) ≈ 1, the rate of cooling in the main basin is given by

θ̇Q2 = −δ (1 + α) , (46)
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subject to the initial condition θQ2 (0) = 0. We can again solve for θ2 upon inspection, giving

θQ2 (t) = −δ (1 + α) t, which can be substituted in to (45) to solve for θQ1 . Before doing so,
however, some initial observations are worth making. First of all, since Φ > 0, we require that
θ1 < θ2 to satisfy (45). We also know that θ2 < 0 for all t > 0, so θ1 < θ2 < 0. This means
that |θ1| > |θ2|, and thus that θ21 − θ22 > 0. We can therefore neglect the absolute value sign
in (45) and rewrite (45) as, (

θQ2 − θQ1

)3/2 (
θQ1 + θQ2

)1/2
= −Φ−1. (47)

If we further assume that during this cooling period, θ1 will effectively remain at some set
temperature below θ2, we can substitute θQ1 = θQ2 − c, where c is positive. Since our objective

is an expression for θQ1 , we will only use this substitution to replace θQ1 + θQ2 = 2θQ2 − c.
Given that prior to this quasi-steady cooling regime, the littoral zone cooled to a value on the
order of Φ−1/2 while θ2 ≈ 0, we can immediately replace c with Φ−1/2. We can then rewrite
equation (47) as (

θQ2 − θQ1

)3/2
= Φ−1

(
Φ−1/2 − 2θQ2

)−1/2
. (48)

Upon solving for θQ1 in (48), we obtain the quasi-steady solutions for temperature in the
littoral zone and main basin as,

θQ1 (t) = θQ2 (t)− Φ−2/3
(
Φ−1/2 − 2θQ2 (t)

)−1/3
, (49)

θQ2 (t) = −δ (1 + α) t. (50)

The quasi-steady solution for the littoral zone is shown as a dot-dashed line in figure 5(b).

B.3 Composite Solution

Since the weak exchange solution for the main basin is zero to leading order (see equation
(44)), the quasi-steady state solution for the main basin is the composite solution for the main
basin to leading order. In order to construct a composite solution for the littoral zone, we can
add the weak-exchange solution, θW1 (t), to the quasi-steady state solution, θQ1 (t), and then
ensure that θC1 (t) → 0 in the limit as t → 0. That is, the composite solution for the littoral
zone is of the form,

θC1 (t) = θW1 (t) + θQ2 (t) + C1, (51)

where C1 = Φ−1/2 ensures that θC1 (t) → 0 in the limit as t → 0. Upon substitution of (43)
and (49) into (51), we obtain the analytical solution (13)–(14) cooled from θ1(0) = θ2(0) = 0,
given by

θC1 (t) = θC2 (t)− Φ−1/2
(
tanhΦ1/2t− 1

)
− Φ−2/3

(
Φ−1/2 − 2θC2 (t)

)−1/3
, (52)

θC2 (t) = −δ (1 + α) t. (53)
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Figure B.1: Analytical composite solution in the littoral zone, θC1 (solid black line), and the
associated solution during the weak exchange regime, θW1 (black dotted line) given by (43),

and the solution during the quasi-steady regime, θQ1 (dot-dashed black line) given by (49).
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[18] D. M. Imboden and A. Wüest. Mixing mechanisms in lakes. Physics and chemistry of
lakes, pages 83–138, 1995.

[19] V. Ivanov, G. Shapiro, J. Huthnance, D. Aleynik, and P. Golovin. Cascades of dense
water around the world ocean. Progress in oceanography, 60(1):47–98, 2004.

[20] G. A. Lawrence. On the hydraulics of boussinesq and non-boussinesq two-layer flows.
Journal of Fluid Mechanics, 215:457–480, 1990.

[21] G. A. Lawrence. The hydraulics of steady two-layer flow over a fixed obstacle. Journal
of Fluid Mechanics, 254:605–633, 1993.

[22] C. Lei and J. C. Patterson. Natural convection induced by diurnal heating and cooling in
a reservoir with slowly varying topography. JSME International Journal Series B Fluids
and Thermal Engineering, 49(3):605–615, 2006.
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