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Abstract

We study solute dispersion under non-ergodic conditions using a linear Boltzmann
equation for the evolution of the joint distribution of the position and speed of solute
particles in steady spatially heterogeneous flow fields. We show that the linear Boltzmann
equation is equivalent to a time-domain random walk in which particle speeds follow a
stationary spatial Markov process. It is assumed that velocity transitions can be described
by stationary Gaussian copulas, which is supported by the Doob theorem. This transport
framework allows to systematically study the impact of velocity correlation and non-
ergodic source conditions on solute dispersion. Thus, we analyze particle transport in
terms velocity statistics, displacement moments, spatial profiles and breakthrough curves
for particle injections in high, intermediate and low velocity regions. We find that non-
ergodic initial conditions have a significant impact on dispersion at early and intermediate
times with different scaling exponents for the displacement variance than expected under
ergodic conditions. They can give rise to distinctly bimodal particle distributions, and
are imprinted in the peak behaviors of breakthrough curves. These results shed new light
on the interpretation of dispersion data and the modeling and prediction of dispersion in
heterogeneous media from the pore to the regional scales.
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1 Introduction

Solute dispersion in geological and engineered media is determined by spatial heterogeneity
in the hydraulic medium properties and in the Eulerian flow properties [11, 22, 42]. Spatial
heterogeneity is present at all scales, ranging from the pore to the regional scale. At the pore
scale, flow heterogeneity is induced by the complex structure of the pore space and variability
in pore sizes [6]. At the continuum scale, in heterogenous porous media, flow heterogeneity is
caused by the spatial distribution of hydraulic conductivity due to the presence of different
permeable materials [42]. For fractured and karst media, flow heterogeneity is due to the
network structure of these media, the distribution of fracture apertures and conduit radii [4, 7].
The quantitative assessment and prediction of solute dispersion in these media is a key item
in a variety of subsurface applications including groundwater contamination, underground
hydrogen and carbon dioxide storage, radionuclide migration.

The impact of medium heterogeneity on solute dispersion has been quantified in terms
of hydrodynamic dispersion coefficients, which integrate the effect of flow fluctuations on the
spreading of a solute plume. At high Péclet numbers, the longitudinal dispersion coefficients
can be quantified in terms of the average flow velocity and the characteristic heterogeneity
length scale. The latter is given by the pore length on the pore scale [43], the correlation
scale of hydraulic conductivity fluctuations on the continuum scale [10, 23], and the fracture
or conduit lengths on the network scale. Hydrodynamic dispersion provides a framework for
solute dispersion across scales, which predicts Fickian transport behaviors quantified by an
advection-dispersion equation. It can explain the observation of scale effects in the dispersion
of tracer plumes [24].

However, spatial variability in the hydraulic medium properties may give rise to dispersion
behaviors that cannot be described by an upscaled advection-dispersion equation. Behaviors
such as forward and backward tails in the spatial solute distributions and breakthrough curves
as well as the non-linear evolution of the spatial moments of the distribution of solute con-
centration. Such deviations from Fickian behaviors have been observed at pore, continuum
and regional scales, in fracture and karst networks [1, 6, 25, 30]. They can be traced back to
broad distributions of solute travel times, which can be induced by broad distributions of flow
velocities [16]. In heterogeneous media, velocities persist over the characteristic heterogeneity
lengths scales. Thus, low velocities may persist for much longer times than high velocities,
which gives rise to intermittent Lagrangian velocity series. These mechanisms can be quanti-
fied naturally in the framework of time-domain and continuous time random walks [5, 38, 39].
Furthermore, in systems with strong medium heterogeneities and velocity contrasts, the dis-
persion behavior depends critically on the initial solute distribution. That is, it depends on
whether the solute can initially sample the full flow variability (ergodic conditions), or whether
it can sample only a part of the flow spectrum (non-ergodic conditions). Dagan [12] studied
the impact of non-ergodic initial distribution on longitudinal effective dispersion coefficients
using perturbation theory in the velocity fluctuations. Frampton and Cvetkovic [21], Hyman
et al. [29], Kang et al. [32] studied the impact of the injection mode, that is, flux or resident
injection on solute transport in fracture networks.

In this paper, we analyze the impact of non-ergodic conditions on preasymptotic and
asymptotic non-Fickian dispersion, which is quantified in terms of a linear Boltzmann equa-
tion for the joint distribution of position and speed of solute particles. Linear Boltzmann
equations have been used for the description of solute transport in fracture media [3, 47].
Unlike upscaled advection-dispersion equations, the Boltzmann equation can be conditioned
on the medium and flow heterogeneity in the source region, and thus, provides a framework
for the systematic investigation of non-ergodic and non-Fickian solute transport. The evo-
lution of Lagrangian velocities in this framework is determined by an integral term, whose
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kernel is determined by the conditional probability of particle velocities, or velocity transition
probability. We present the Boltzmann equation and the equivalent Lagrangian transport
formulation in terms of time-domain and continuous time random walks. We discuss the
representation of the velocity transition by Gaussian copula densities, and the parameteriza-
tion of the model equations in terms of the Eulerian flow distribution. Then, we analyze the
Lagrangian velocity statistics and solute dispersion for extreme non-ergodic initial conditions
characterize by a single velocity value. We characterize intermittency of Lagrangian velocity
series in terms of the increments of the normal score transforms of the particle velocities. The
non-ergodic dispersion behaviors are studied in terms of spatial solute profiles and moments
as well as solute breakthrough curves.

The paper is organized as follows. Section 2 introduces the linear Boltzmann equation and
equivalent Lagrangian formulation, Section 2.3 discusses the transition probability of particle
velocities, and Section 3 the dispersion behaviors resulting from non-ergodic conditions.

2 Linear Boltzmann Equation

We consider particle transport in heterogeneous porous media at high Péclet numbers, this
means, we disregard hydrodynamic dispersion and diffusion. As particles are transported
along the streamlines of a heterogeneous flow field, they change position and velocities ac-
cording to the spatial flow organization. We describe the joint distribution p(x, v, t) of particle
position and velocity by the following linear Boltzmann equation [3, 35, 46, 47]

∂p(x, v, t)

∂t
+
v

χ

∂p(x, v, t)

∂x
= −v

ϵ
p(x, v, t) +

∞∫
0

dv′
v′

ϵ
ps(v, ϵ|v′)p(x, v′, t). (1)

The left side denotes ballistic transport of the particle distribution, the right side quantifies
transitions between velocities as particles move along streamlines. The first term on the right
describes transitions away from the current velocity to any other velocity, the second term
quantifies transitions from a velocity v′ to the current velocity v. Transitions occur at variable
rates that are proportional to the velocity. The transition probability is denoted by ps(v, ϵ|v′),
ϵ is an intrinsic microscopic length scale over which particle velocities persist. Note that v is
the particle speed, χ is advective tortuosity, and v/χ is the streamwise particle velocity. The
marginal distribution c(x, t) of particle positions at time t is given by

c(x, t) =

∞∫
0

dvp(x, v, t). (2)

Analogously, the distribution of particle speeds is obtained by marginalization of p(x, v, t) as

p(v, t) =

∞∫
−∞

dxp(x, v, t). (3)

Integration of (1) over x gives the evolution equation for p(v, t) as

∂p(v, t)

∂t
= −v

ϵ
p(v, t) +

∞∫
0

dv′
v′

ϵ
ps(v, ϵ|v′)p(v′, t). (4)
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The steady state speed distribution is equal to the Eulerian speed distribution pe(v) due to
volume conservation [17]. According to (4), it satisfies the equation

vpe(v) =

∞∫
0

dv′v′ps(v, ϵ|v′)pe(v′). (5)

We define now ps(v) = vpe(v)/⟨ve⟩, where ⟨ve⟩ is the mean Eulerian speed. Thus, we can
write (5) as

ps(v) =

∞∫
0

dv′ps(v, ϵ|v′)ps(v′). (6)

This means ps(v) is the eigenfunction of the transition probability ps(v, ϵ|v′) with eigenvalue
1, and is related to pe(v) through velocity weighting,

ps(v) =
vpe(v)

⟨ve⟩
. (7)

2.1 Lagrangian Formulation

The Boltzmann equation (1) is equivalent to the following stochastic equations of motion of
idealized solute or fluid particles

dx(s)

ds
= χ−1,

dt(s)

ds
=

1

vs(s)
, (8a)

where the particle velocities {vs(s)} form a Markov chain whose transition probability ps(v, s|v′)
satisfies the evolution equation

∂ps(v, s|v′)
∂s

= −1

ϵ
ps(v, s|v′) +

1

ϵ

∞∫
0

dv′′ps(v, ϵ|v′′)ps(v′′, s|v′), (8b)

for the initial condition p(v, s = 0|v′) = δ(v−v′), see also Appendix A. The variable s denotes
the distance along the particle trajectory. The spatial profile is given in terms of x(s) by

c(x, t) = ⟨δ(x− x[s(t)/χ])⟩, (9)

where s(t) = sup(s|t(s) ≤ t). For the numerical solution of the transport equation (1) we use
particle tracking based on the discretized version of the system of equations (8) as outlined
in Appendix A. In Section 2.3, we discuss the representation of the transition probability
ps(v, ϵ|v′) in terms of copula functions.

2.2 Continuous Time Random Walks

The system of equations (8) describes a time-domain random walk (TDRW) because the time
increments dt = ds/vs(s) are correlated random variables. Their evolution is described by the
spatial Markov processes for the particle velocities (8b) whose transition probability satisfies
the Chapman-Kolmogorov equation. For space increments ℓ0 larger than the correlation
length ℓc, subsequent velocities are independent and (8) can be coarse-grained as

xn+1 = xn + ℓ0 tn+1 = tn + τn, τn =
ℓ0
vn
, (10a)
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where the scale ℓ0 ≥ ℓc depends on the properties of the transition probability ps(v, s|v′). The
velocities vn are independent identically distributed random variables characterized by the
distribution ps(v), such that the time increment τn is distributed according to

ψ(t) =
ℓ0
t2
ps(ℓ0/t). (10b)

Equations (10) describe a continuous time random walk (CTRW). This allows us to use well-
known results from the CTRW framework to assess the asymptotic transport behaviors, that
is, for long times and travel distances.

2.3 Transition Probability of Particle Velocities

The transition probability ps(v, s|v′) lies at the heart of the Boltzmann approach to particle
motion in heterogeneous flow fields. Here we briefly discuss the analysis and modeling of
ps(v, s|v′). To this end, we recall the kinematic equation that describes particle motion in a
steady heterogeneous flow field (x),

dx(t)

dt
=ℓ (t), (11)

where ℓ(t) = [x(t)] is the isochrone Lagrangian velocity. The travel distance s(t) and the
travel time t(s) along a particle paths are

ds(t)

dt
= vℓ(t),

dt(s)

ds
=

1

vℓ[t(s)]
≡ 1

vs(s)
. (12)

where vℓ(t) = |ℓ(t)|. The equidistant Lagrangian speed vs(s) is obtained by sampling the
speed vℓ(t) at times t(s) that correspond to streamline distances s. Thus, the series {vs(s)} of
Lagrangian speeds are obtained through equidistant sampling along particle trajectories [17,
26, 41]. The transition probability from v′ = vs(s) to v = vs(s+∆s) is defined by

ps(v,∆s|v′) =
ps(v, v

′,∆s)

ps(v′)
, (13)

where we assume that the velocity series is stationary, that is, its statistics depends only on
the space increment ∆s. The joint distribution of v(s+∆s) and v(s) is defined by sampling
along trajectories as

ps(v, v
′,∆s) =

〈
δ[v − v(s+∆s)]δ[v′ − v(s)]

〉
, (14)

where the angular brackets denotes the average over all particles and δ(·) denotes the Dirac
delta. The one-point distribution is defined by

ps(v) = ⟨δ[v − v(s)]⟩. (15)

Many stochastic Markov models [31, 33, 44] for the quantification of dispersion in heteroge-
neous media employ empirical transition probabilities. One can obtain further insight into
the nature of the velocity transitions by considering the copula of the velocity series.

Copula functions characterize the correlation properties of the velocity series {vs(s)} with-
out bias from the marginal distribution ps(v) and thus provide an objective basis for the
modeling of the velocity transition probability. The transition probability or conditional
probability ps(v, s|v′) can be written in terms of the copula density θ(u, u′) as [37]

ps(v, s|v′) = ps(v)θ[ps(v), ps(v
′)], (16)
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see Appendix B for further details. The copula function can be seen as the transition proba-
bility between equiprobable velocity bins. To see this, we define the velocity ranks u(s) ∈ [0, 1]
as

u(s) = Ps[v(s)], Ps(v) =

v∫
0

dv′ps(v
′). (17)

Thus, the copula density can be obtained by jointly sampling u(s) and u(s′) along particle
trajectories,

θ(u, u′) = ⟨δ[u− u(s)]δ[u′ − u(s′)]⟩. (18)

By definition, the marginal distributions of u and u′ are uniform, and thus, the joint dis-
tribution θ(u, u′) is identical to the conditional distribution, or transition probability. Thus,
the intervals or bins [u, u+ du] are equiprobable and so are the corresponding velocity inter-
vals. Therefore, θ(u, u′)du denotes the transition probability between equiprobable velocity
intervals.

We focus in the following on the Gaussian copula density [37]

θG(u, u
′, r) =

exp
[
Φ−1(u)2r2−2rΦ−1(u)Φ−1(u′)+Φ−1(u′)2r2

2(1−r2)
,
]

√
1− r2

, (19)

where r denotes the correlation coefficient. The cumulative Gaussian distribution Φ(w) and
its inverse Φ−1(u) are given by

Φ(w) =
1

2

[
1 + erf(w/

√
2)
]
, Φ−1(u) =

√
2inverf(2u− 1), (20)

where inverf(u) is the inverse error function. The transition probability ps(v, s|v′) reads in
terms of the Gaussian copula as

ps(v, s|v′) = ps(v)θG[Ps(v), Ps(v
′), C(s)]. (21)

Note that the correlation coefficient r ≡ C(s) in general depends on the distance s between
the sampling points.

The statement that the velocity series {vs(s)} has a Gaussian copula, is equivalent to
the statement that the normal score transform of {vs(s)} describes an Ornstein-Uhlenbeck
process, under the condition that C(s) = exp(−s/ℓc), where ℓc is the correlation length scale.
This proposition is shown in Appendix C by using the Doob theorem [19]. The normal score
transform of vs(s) is defined by

ws(s) = Φ−1(Ps[vs(s)]). (22)

Thus, if vs(s) has a Gaussian copula with an exponential correlation function, ws(s) describes
the Ornstein-Uhlenbeck process

dws(s)

ds
= ℓ−1

c ws(s) +

√
2ℓ−1

c ξ(s), (23)

where ξ(s) denotes a Gaussian white noise with zero mean and correlation function ⟨ξ(s)ξ(s′)⟩ =
δ(s − s′). The Ornstein-Uhlenbeck process has been shown to describe particle motion and
velocity transitions at the pore [36, 40], Darcy [8] and fracture network scales [15, 28]. Thus,
this indicates that the process {vs(s)} can indeed by characterized by a Gaussian copula for a
range of scales in porous and fractured media. Thus, in the following, we will use the Gaussian
copula, or equivalently, the Ornstein-Uhlenbeck process for the normal score of vs(s) in order
to explore the impact of non-ergodic conditions on particle dispersion in heterogeneous flow
fields.
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Figure 1: The left panel shows the (blue) Lognormal distribution with σ2f = 4 and (black)
Gamma distribution with α = 1/2 for ⟨ve⟩ = 1. The right panel shows the corresponding
transition time distributions ψ(t).

3 Non-Ergodic Dispersion Behaviors

The Boltzmann equation (1) provides a model for solute and particle transport in across scales
in heterogeneous media that can be conditioned on the initial velocity data, that is, it can
be conditioned on the injection location if information on the permeability distribution of
flow velocities is available. In the following, we highlight transport features that emerge from
non-stationary initial conditions, that is, from initial conditions that are far from equilibrium.
With equilibrium condition we mean an initial distribution that is equal to the steady state
velocity distribution, which is the Eulerian distribution pe(v) for velocity sampling in space
and the flux-weighted Eulerian distribution ps(v) for sampling in time.

As models for the Eulerian velocity distribution pe(v), we consider here the lognormal and
Gamma distributions

pe(v) =
exp

(
− [ln(v)− µ]2 /2σ2f

)
v
√

2πσ2f

, (24)

pe(v) =
1

v0Γ(α)

(
v

v0

)α−1

exp [−(v/v0)] . (25)

The lognormal distribution, and power-law distributions of the type of the Gamma distribu-
tion have been found to represent the variability of hydraulic conductivity in heterogeneous
porous media at pore and continuum scale [2, 9, 14, 18, 20]. The Lagrangian speed distri-
bution ps(v) is related to the Eulerian distribution pe(v) by (7). In order to compare the
transport behaviors for the two speed distributions, we consider the same mean speeds. The
mean Eulerian speed for the lognormal and Gamma distributions are

⟨ve⟩ = exp(µ+ σ2f/2), ⟨ve⟩ = αv0. (26)

respectively. We set in the following ⟨v⟩ = 1. Furthermore, for the computational examples
discussed in the following, we set σ2f = 4 and α = 0.5 as illustrated in Figure 1 along with the
corresponding transition time distributions ψ(t) defined by Eq. (10b). As non-ergodic initial
conditions, we consider the deterministic

p0(v) = δ(v − v0). (27)
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Figure 2: Distribution of increments of the normal score transform of the particle velocities
(left) for different time lags and (right) for different space lags along trajectories for Gamma-
distributed velocities with α = 1/2 and ⟨ve⟩ = 1. The dashed lines indicated the increment
distribution for uncorrelated normal scores.

This extreme initial condition corresponds to tracer injection into a region characterized by
the velocity v0, and serves to illustrate the impact of non-ergodic injection conditions on
solute dispersion. The behaviors for these initial conditions are contrasted with the ones for
ergodic initial conditions. As outlined in Section 2, p(v, t) evolves toward the stationary limit
pe(v), the Eulerian velocity distribution. The distribution ps(v, t) of particle velocities in
space evolves toward the stationary distribution ps(v). Thus, in the following, we employ the
ergodic initial condition

p0(v) = pe(v), (28)

when we consider displacement statistics. When we consider breakthrough curves, that is,
arrival time distribution measured at fixed positions in space, the ergodic initial condition is
the flux-weighted Eulerian distribution,

p0(v) = ps(v). (29)

We solve the Boltzmann transport equation (1) using the random walk particle tracking
algorithm detailed in the previous section and in Appendix A. The correlation length is set to
ℓc = 1. We first discuss the Lagrangian velocity statistics as a function of time and distance
along streamlines. Then we analyze the impact of non-ergodic initial conditions on spatial
concentration profiles, the displacement mean and variance, and solute breakthrough curves.

3.1 Lagrangian Velocity Statistics

We discuss here two aspects of Lagrangian velocity statistics in order to highlight the impact
of correlation in time and space on Lagrangian velocity series, and the impact of non-ergodic
initial conditions and their persistence in time and space. For the first item, we consider
distributions of the increments of the normal score transforms of the particle velocities vt(t)
and vs(t) at different lag times and lag distances. For the second item, we consider the
evolution of the conditional mean velocities in time and space.

3.1.1 Distribution of Normal Score Increments

We discuss here the correlation and intermittent character of Lagrangian velocity series. The
distribution of velocity increments is an indicator for intermittency and persistence of particle
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velocities [13, 27, 36]. For the dynamics described by the Boltzmann equation and equivalent
Lagrangian framework, small velocities are more persistent than large transport velocities
because the persistence time is equal to the characteristic length scale ℓc divided by the
current velocity vs(s). This behavior manifests in a peak at zero because the strong correlation
of subsequent velocities implies a small value for the velocity increment. For the velocity
fields under consideration here, this is not practical because the increment statistics even
for uncorrelated velocities show a peak at zero due to the relative high probability of small
velocities. Thus, in order not obscure the peak behavior due to correlation, we consider the
normal scores of the particle velocities vt(t) sampled in time and vs(s) in space. The normal
score transform ws(s) of vs(s) is defined by Eq. (22). The normal score transform of vt(t) is
defined analogously by

wt(t) = Φ−1(ps[vt(t)]). (30)

The single point distributions of ws(s) and wt(t) are by definition given by unit the Gaussian
distribution. The increments of the normal scores are defined by

∆wt(t,∆t) = wt(t+∆t)− wt(t), ∆ws(s,∆s) = ws(s+∆s)− ws(s), (31)

with the lag distances in time and space denoted by ∆s and ∆t. We consider velocity series
under statistically stationary conditions. That is, the distribution of initial velocities v0 is
equal to the Eulerian velocity PDF pe(v) for temporal sampling and for spatial sampling it is
given by ps(v). The increment distribution for uncorrelated normal scores is given by

p∆w =
exp

(
−w2

4

)
2
√
π

. (32)

Figure 2 shows the distribution of normal score increments for Gamma-distributed ve-
locities. For lognormal velocities the behavior is qualitatively very similar and not shown
here. The distributions of ∆wt(t,∆t) are peaked at zero, which indicates the strong velocity
correlation in time, specifically of small velocities as outlined above. The distributions widen
with increasing time lag, but the peak at zero persists even for large ∆t. While the tails of the
distribution converge toward Eq. (32), the peak persists. This is different for the increment
distributions sampled in space. There, the increment distributions are represented by narrow
Gaussians, whose widths increase with increasing lag distance. The distributions converge to
the limit distribution (32) for ∆s > ℓc.

3.1.2 Mean Velocity

We consider the relaxation of the mean transport velocity from a fixed initial value v0 in space
and time toward the respective steady state values ⟨vs⟩ and ⟨ve⟩. They evolve according to

⟨vs|v0⟩ =
∞∫
0

dvps(v, s|v0), ⟨vt|v0⟩ =
∞∫
0

dvpt(v, t|v0). (33)

In the case of a lognormal speed distribution, we obtain for ⟨vs|v0⟩ the explicit expression

⟨vs|v0⟩ = ⟨vs⟩ exp

[
(ln v0 − µ) exp(−γs)−

σ2f exp(−2γs)

2

]
, (34)

Figure 3 shows the evolution of the mean velocity for different out-of-equilibrium initial
conditions in time and with distance. The evolution of ⟨vt|v0⟩ is determined by the initial

9
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Figure 3: Mean velocities for the (top) Gamma distribution and (bottom) lognormal velocity
distribution. The left column shows the evolution in time, the right with distance along
streamlines. The dashed lines indicate the respective asymptotic mean velocities. The solid
lines in the bottom right figure denote the analytical expression (34). The dashed lines denote
the respective asymptotic mean velocities.

velocity v0 because the evolution time scale is given by ℓc/v0. For v0 = ⟨ve⟩, the velocity first
evolves to larger values before it converges back toward ⟨ve⟩. Note that even though v0 = ⟨ve⟩
is equal to asymptotic mean velocity does not imply that the system is in equilibrium. The
spatial evolution of the mean velocity ⟨vs|v0⟩ toward to the asymptotic ⟨vs⟩ is determined
only by the correlation length ℓc and is not affected by the initial velocity.

3.2 Displacement Statistics

Figure 4 shows spatial concentration profiles c(x, t) at different times t for the initial velocities
v0 = 0.1, 1, 10 and for ergodic initial conditions. For the ergodic initial condition, we observe
strong retention in the source region due to sampling from the low flow velocities in the initial
distribution, and a forward peak due to particles with initial velocities higher than the mean.
For v0 = 0.1, we observe the formation of a slowly moving peak due to the persistence of the
low injection velocity and the formation of a forward peak due to particle transitions toward
higher velocities. For increasing v0, the bulk of the particles is transported at high flow speeds,
which manifests in a leading edge and the formation of a trailing tail due to particles that
transition to low velocities. Such features have been observed both in laboratory and field
experiments [1, 34].

Figure 5 shows the corresponding displacement mean and variance for the Gamma and
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Figure 4: Spatial concentration profiles for the (top) Gamma distribution and (bottom) log-
normal velocity distribution for (left) t = 1 and (right) t = 10 for the initial velocities
v0 = 0.1, 1, 10.

lognormal velocity distributions. Displacement mean and variance are defined by

m(t) = ⟨x(t)⟩, κ(t) = ⟨x(t)2⟩ − ⟨x(t)⟩2. (35)

The mean displacements evolve first with the initial velocity v0 and then converge to the
asymptotic behavior characterized by ⟨ve⟩. The time of convergence depends on the initial
velocity as discussed also in the context of the mean particle velocities in Section 3.1. For
the ergodic initial condition, the mean displacement evolves linearly in time as m(t) = ⟨ve⟩t.
The displacement variances increase at short times as κ(t) ∝ t3 in contrast to the behavior
for an ergodic source, for which we observe ballistic growth as κ ∝ t2, see Appendix D. For
the Gamma distributed velocities, the κ(t) then cross over towards the asymptotic scaling
t2−α, which is obtained from CTRW theory [5, 45]. It is independent from the initial velocity
distribution. For the lognormal velocity distribution, dispersion is asymptotically Fickian,
that is, κ(t) asymptotically scales linearly with time. Due to the broad distribution of particle
velocities, this asymptotic regime is reached only after a long cross-over that itself can be
characterized by power-law tangents as indicated in Figure 5.

3.3 Breakthrough Curves

The breakthrough time t(s) at a distance x = s/χ from the inlet is a random variable according
to Equation (8). The breakthrough curve is determined as the distribution of breakthrough
times

f(t, x) = ⟨δ [t− t(xχ)]⟩. (36)
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Figure 5: The top row shows the mean displacement for (left) Gamma and (right) lognormally
distributed velocities. The bottom row shows the corresponding displacement variance. The
initial velocities are v0 = 0.1, 1, 10.

Figure 6 shows breakthrough curves for the lognormal and Gamma velocity distributions at
distances x = ℓc and 10ℓc from the inlet for non-erogdic and ergodic initial conditions. Note
that the ergodic initial condition is here p0(v) = ps(v). At x = ℓc, the peak arrival times
decrease with increasing initial velocities v0, while the tailing behaviors are similar for all
breakthrough curves. For the Gamma distributed velocities, the tail behavior is determined
by the characteristic power-law f(t, x) ∝ t−2−α which can be obtained from CTRW theory [5]
according to Section 2.2. For the lognormal velocity distribution, the tail behavior does not
follow a clear power law. For x = 10ℓc it can be characterized by a power-law tangent
that scales as t−4. This scaling can be traced back to a corresponding power-law tangent
in the transition time distribution ψ(t) as shown in Figure 1. With increasing distance, the
difference in the peak arrivals has decreases as particles sample more flow speeds away from
the initial velocities. The breakthrough curves converge towards the ergodic breakthrough
curves irrespective of the initial velocity, or in other words, the (spatial) memory of the initial
velocity vanishes.

4 Conclusions

We study solute dispersion in heterogeneous media under non-ergodic conditions as described
by a linear Boltzmann equation for the joint distribution of particle positions and velocities.
The equivalent Lagrangian transport equations are shown to describe a time-domain random
walk, where particle velocities follow a stationary spatial Markov process. Using a Gaussian
copula for the velocity transitions, this transport framework is parameterized by a character-
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Figure 6: Breakthrough curves for (top) Gamma distributed and (bottom) lognormally dis-
tributed velocities for distances of (left) x = 1 and (right) x = 10 from the inlet, for
v0/⟨ve⟩ = 0.1, 1, 10 and for p0(v) = ps(v).

istic correlation length and the steady state speed distribution. This approach is valid across
scales in heterogeneous media for which particle velocities evolve on characteristic medium
length scales. That is, it is valid for pore, continuum and network scale flow and transport,
and can be conditioned on the velocity distribution in the source zone. Thus, it allows to
systematically analyze the impact of velocity correlation and non-ergodic source conditions
on solute dispersion.

The spatial persistence of particle velocities over the correlation scale implies that small
particle velocities persist over much longer times than high velocities. Therefore, temporal ve-
locity series are characterized by intermittent patterns, that is, long periods of small velocities
and periods of rapid velocity changes. We analyze the intermittency of Lagrangian velocity
series in terms of increment distributions. Intermittency is characterized by a distinct peak at
the origin of the increment distribution, which is caused by the spatial persistence of particle
velocities. Due to the non-Gaussian nature of velocity distributions in heterogeneous media,
the distribution of velocity increments are not well-suited to discuss this aspect because they
are typically skewed towards small values. Thus, we propose to quantify intermittency by
the distributions of increments of the normal scores of the particle velocities, which have by
definition a unit Gaussian distribution. Increment distributions sampled in time show a dis-
tinctly intermittent behavior characterized by persistent peaks at the origin due to the strong
temporal persistence of low velocities. This intermittency is removed for the space-sampled
increments. The spatial and temporal persistence of initial particle velocities have a signif-
icant impact on the preasymptotic dispersion behavior. We analyze particle transport for
source conditions characterized by particle injection into low intermediate and high velocity

13



M. Dentz and A. Massoudieh ARC Geophysical Research (2025) 1, 4

channels. For low initial velocities, the spatial solute distribution can develop double peak
behaviors. At early times, the displacement variance increase with the third power of time as
opposed to ballistic scaling with the square of time, what is expected for ergodic conditions.
For the breakthough curves a notable difference between the injections modes can only be
observed at distances close to the inlet plane.

These findings can shed light on the interpretation of dispersion data in heterogeneous
media measured at the field or laboratory scale, and on their relation to the source conditions
and velocity correlations. They can guide the analysis of Lagrangian velocity series obtained
for example from particle tracking velocimetry in laboratory experiments and direct numerical
simulations, and the identification and classification of non-Fickian and anomalous dispersion
behaviors at pore, continuum and network scales.
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A Lagrangian Equations of Motion and Particle Tracking

The discretized version of (8) is given by

x(s+ ds) = x(s) + ds/χ, t(s+ ds) = t(s) + ds/v(s). (37)

In order to derive the transition probability from v(s) = v′ to v(s+ ds) = v, we consider (8b)
for a lag distance ds ≤ ϵ and expand up to linear order in ds. This gives

ps(v, ds|v′) = δ(v − v′)

(
1− ds

ϵ

)
+
ds

ϵ
ps(v, ϵ|v′), (38)

where we used that ps(v, s = 0|v′) = δ(v − v′).
With this preparation, we show now the equivalence between the Lagrangian formula-

tion (8) and the Eulerian evolution equation (1). Thus, we note that the joint distribution
p(x, v, t) is defined by

p(x, v, t) = ⟨δ[x− s/χ]δ(v − v[s(t)])⟩, (39)

where s(t) = min[s|t(s) ≤ t]. We can write this equation as

p(x, v, t) =

∞∫
0

ds⟨δ[x− s/χ]δ[v − v(s)]δ[s− s(t)]⟩. (40)
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The latter can be written as

p(x, v, t) = v−1

∞∫
0

dsR(x, v, t, s), (41)

where we defined

R(x, v, t, s) = ⟨δ[x− s/χ]δ[v − v(s)]δ[t− t(s)]⟩ (42)

The latter is the density of the Markov process {x(s), v(s), t(s)} and satisfies the Kolmogorov
equation

R(x, v, t, s+ ds) =

t∫
0

dt′
∞∫
0

dx′
∞∫
0

dv′R(x− ds/χ, v′, t− ds/v′)ps(v, ds|v′). (43)

Using expression (38) and considering the limit of ds→ 0, we obtain

R(x, v, t, s+ ds) = R(x, v, t, s)− ds

χ

∂R(x, v, t, s)

∂x
− ds

v

∂R(x, v, t, s)

∂t

− ds

ϵ
R(x, v, t, s) +

ds

ϵ

∞∫
0

dv′R(x, v′, t)ps(v, ϵ|v′) + . . . , (44)

where the dots denote contributions of order ds2. Thus, we obtain in the limit ds→ 0

∂R(x, v, t, s)

∂s
+

1

v

∂R(x, v, t, s)

∂t
+

1

χ

∂R(x, v, t, s)

∂x

− 1

ϵ
R(x, v, t, s) +

1

ϵ

∞∫
0

dv′R(x, v′, t)ps(v, ϵ|v′). (45)

Using that

∞∫
0

dsR(x, v, t, s) = vp(x, v, t) (46)

according to (41), we obtain (1). This shows the equivalence between the Lagrangian frame-
work given by (8) and the Eulerian framework given by (1).

The particle tracking simulations are based on the discrete equations

x(s+∆s) = x(s) + ∆s/χ, t(s+∆s) = t(s) + ∆s/v(s). (47)

We choose ϵ ≪ ∆s ≪ ℓc. At each step, particles are displaced by the space increment ∆s/χ
and time increment ∆s/v(s), while the velocity v(s) is drawn from the conditional probability
density ps(v,∆s|v′).
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B Copulas

Here we briefly summarize the copula method for the representation of joint and conditional
probabilities. To this end, we consider the joint distribution

ps(v, v
′,∆s) = ps(v,∆s|v′)ps(v′), (48)

The respective cumulative distributions are defined by

Ps(v, v
′,∆s) =

v∫
0

dv1

v′∫
0

dv2ps(v1, v2,∆s), Ps(v) =

v∫
0

dv′ps(v
′) (49)

The cumulative joint distribution Ps(v, v
′,∆s) can be expressed as [37]

Ps(v, v
′,∆s) = Θ[Ps(v), Ps(v

′)] (50)

where Θ(u, u′) is a copula function. We consider here two-dimensional copula functions.
A Copula function is any monotonically increasing function with respect to its arguments
mapping from [0, 1]2 → [0, 1] with the properties

Θ(u, 0) = Θ(0, u′) = 0, Θ(1, u′) = u′, Θ(u, 1) = u. (51)

Taking the derivative of (50) with respect to v and v′ the joint probability distribution of v
and v′ is

ps(v, v
′,∆s) = ps(v)θ[Ps(v), Ps(v

′)]ps(v
′), (52)

where θ is the copula density function

θ(u, u′) =
∂2Θ(u, u′)

∂u∂u′
. (53)

It is the joint density of u and u′. The transition probability or conditional probability of
p(v|v′) is obtained from (52) according to Bayes theorem as

p(v,∆s|v′) = ps(v)θ[Ps(v), Ps(v
′)]. (54)

C Gaussian Copulas and the Ornstein-Uhlenbeck Process

According to the Doob theorem [19] any process that is Markovian, stationary and Gaussian is
an Ornstein-Uhlenbeck process. The process {ws(s)} has a Gaussian distribution by definition,
that is, ϕ(w) is a unit Gaussian. Thus, the conditional distribution can be directly obtained
by variable transform from Eq. (21) by noting that Ps[vs(s)] = Φ[ws(s)]. This gives

ϕ(w, s|w′) =
exp

(
− [w−w′C(s)]2

2[1−C(s)2]

)
√

2π[1− C(s)2]
. (55)

For ws(s) to be a stationary Markov process, its conditional probability ϕ(w, s|w′) needs to
fulfill the Chapman-Kolmogorov equation, that is,

ϕ(w, s+∆s|w′) =

∞∫
−∞

dw′′ϕ(w,∆s|w′′)ϕ(w′′, s|w′). (56)
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Using (55) on the right side gives

ϕ(w, s+∆s|w′) =
exp

[
−w2+w′2C(s)2C(∆s)−2C(s)C(∆s)ww′

2[1−C(s)2C(∆s)2]

]
√
2π[1− C(s)2C(∆s)2]

(57)

Thus, for the Chapman-Kolmogorov equation to hold C(s) needs to satisfy

C(s+∆s) = C(∆s)C(s). (58)

D Early Time Scaling of Displacement Variance

In this section, we derive the cubic early time scaling of the displacement variance for a non-
ergodic source with fixed velocity v0 and for an ergodic source, for which the initial velocities
are distributed according to pe(v). To this end end, we note first that the particle speed vs(s)
can be written in terms of the normal score ws(s) as

vs(s) = F [ws(s)] = p−1
s (ϕ[ws(s)]). (59)

Then, we consider Eq. (23) for w(s). For small displacements s≪ 1/γ, we can write

w(s) = w0 + ζ(s), ζ(s) =
√
2γ

s∫
0

ds′ξ(s′). (60)

Thus, the particle velocity can be approximated by

vs(s) = F [w0 + ζ(s)] = F (w0) +
dF (w0)

dw
ζ(s) = v0 +

dF (w0)

dw
ζ(s). (61)

The particle displacements s(t) are given by

ds(t)

dt
= vs[s(t)] = v0 +

dF (w0)

dw
ζ(s). (62)

The latter can be approximated by

ds(t)

dt
= v0 +

dF (w0)

dw
ζ(s) = v0 +

dF (w0)

dw
ζ(v0t), (63)

where we have set s(t) = v0t in ζ(s). Thus, we obtain by integration

s(t) = v0t+
dF (w0)

dw
ζ(s) = v0t+

dF (w0)

dw

t∫
0

dt′ζ(v0t
′) (64)

The displacement mean and variance are thus

m(t) = v0t, κ(t) = 4γv20

[
dF (w0)

dw

]2 t∫
0

dt1

t1∫
0

dt2

t1∫
0

dt3

t3∫
0

dt4⟨ξ(v0t2)ξ(v0t4)⟩. (65)

Using that ⟨ξ(v0t2)ξ(v0t4)⟩ = v−1
0 δ(t2 − t4), we obtain for the displacement variance

κ(t) = 4γv0

[
dF (w0)

dw

]2 t∫
0

dt1

t1∫
0

dt2

t1∫
0

dt3 =
4

3
γv0

[
dF (w0)

dw

]2
t3. (66)

This explains the κ(t) ∝ t3 scaling observed in Figure 5 for t≪ τv.
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