
ARC Geophysical Research (2025) 1, 8

Alternative Formulations of the Watertable Fluctuation Method

of Recharge Estimation: A Quantitative Comparison
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Abstract

Groundwater recharge estimation is vital for ensuring the sustainable management of
water resources and the protection of ecosystems. The watertable fluctuation method
(WTFM) is commonly used to estimate distributed groundwater recharge in unconfined
aquifers. There are many variations in the method’s implementation, mainly in the ex-
trapolation of recession curves to estimate groundwater discharge during recharge events.
Despite the popularity of the WTFM, the results of the most popular variations have not
been compared to assess their accuracy. This study examines six alternative forms of the
WTFM by applying them to 1,000 model-generated hydrographs to determine the most
accurate approach. Recharge estimation error was characterised according to model input
parameters: model input recharge, specific yield, aquifer length, transmissivity, distance
between the observation well and the groundwater divide (relative to the aquifer length),
and distance between the observation well and the groundwater discharge boundary. The
RISE method, which does not account for ongoing discharge during recharge events, was
the poorest performing, underestimating gross recharge by an average of 22% for the cases
tested. The exponential local recession curve method (the most common approach) also
tended to underestimate recharge (by an average of 14% for the cases tested). The fixed-
timestep master recession curve method was the most accurate, underestimating recharge
on average by 4% for the cases tested. This approach assumes a greater rate of discharge as
the watertable rises, which is more consistent with Darcy’s Law. The linear local recession
curve was the second-most accurate method despite its simplicity, underestimating gross
recharge by an average of 7% for the cases tested. The widest range of recharge estimation
error occurred near the groundwater discharge boundary, for all variants tested. For those
cases, a high transmissivity increased the likelihood of recharge underestimation. These
findings provide valuable insights for improving the reliability of WTFM applications in
groundwater recharge investigations.
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1 Introduction

Groundwater recharge estimation is vital for ensuring the sustainable management of water re-
sources, including the protection of ecosystems and the prediction of system reliability under
increasing water demands. Recharge is difficult to directly measure given the spatial vari-
ability in soil and landscape properties and the transience of surface hydrological processes.
This is compounded by the need to obtain recharge at scales relevant to water management
areas. For this reason, Scanlon et al. [26] recommend applying multiple methods to esti-
mate recharge because all approaches are accompanied by significant uncertainties. The most
widely used approaches to estimate recharge are based on groundwater responses to recharge
(and discharge), such as watertable fluctuations or the groundwater salinity, thereby provid-
ing recharge values that integrate complex infiltration and evapotranspiration processes over
significant spatial and/or temporal scales [6] .

A widely used method to estimate distributed recharge in unconfined aquifers is the water-
table fluctuation method (WTFM). The WTFM assumes that a watertable rise is due to
infiltration from the land surface arriving at the watertable [15] rather than focused recharge
derived from surface water bodies or lateral groundwater inflows from neighbouring aquifers.
The WTFM can be expressed as:

Re = Sy
∆hr
∆t

, (1)

where Re is the groundwater recharge [L T-1] obtained from application of the WTFM; Sy is
aquifer specific yield [-]; ∆hr is the change in watertable elevation attributable to recharge [L];
and ∆t is the period over which recharge causes an observable change in the hydrograph [T],
typically equal to the duration of watertable rise. The extraction of ∆hr from a groundwater
hydrograph is shown in Figure 1.

A detailed discussion of the WTFM methodology and its limitations is provided by Becke
et al. [3], who identified various methods for calculating ∆hr in Equation 1. Some applications
of the WTFM consider only the groundwater-level rise (line CD, Figure 1) resulting from a
recharge event in assigning values to ∆hr [e.g., 9]. This approach neglects the groundwater
discharge occurring during periods of watertable rise due to, for example, evapotranspiration
of groundwater, discharge to surface water bodies, lateral groundwater flow away from the
recharge area, etc. When only the watertable rise is adopted for ∆hr, the 'net recharge' is
obtained [14]. In most groundwater management applications, an estimate of gross recharge
is required, for example, as an input into groundwater models [7]. The gross recharge is the
sum of net recharge (line CD, Figure 1) and an approximation of the groundwater discharge
(line DE, Figure 1) that occurred during the period of recharge. A common approach to
estimate the latter is to project the antecedent recession curve forward to the time of the
peak watertable elevation [3], as shown by line BE in Figure 1.

The projected recession curve is generally assumed to represent the decline in the water-
table that would have occurred in the absence of recharge [9, 14, 18, 30, 34, 37]. The for-
ward projection (line BE, Figure 1) of antecedent recession curves (line AB, Figure 1) for this
purpose usually adopts exponential decay or power functions [e.g., 23, 25, 33]. This includes
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Figure 1: Schematic of a groundwater hydrograph (blue line) illustrating an application of the
WTFM. The antecedent recession curve is represented by line AB, while line BE depicts the
projection of line AB. The change in watertable elevation attributable to recharge (∆hr) is
delineated as line CE when considering gross recharge, or line CD for the estimation of the net
recharge. Line DE represents a drop in the watertable elevation attributable to groundwater
discharge. Line BD denotes the duration of watertable rise, presumed to coincide with the
period of recharge (∆t).

WTFM applications that involve manual extrapolation (i.e., “graphical method”) of the reces-
sion curve [3]. The rate of discharge obtained from these approaches, represented by the slope
of line BE (Figure 1), decreases as the watertable rises. That is, the forward-extrapolation
of the antecedent recession curve using an exponential decay function will tend towards a
horizontal line (no change in groundwater discharge) with time, despite a rising watertable.
This is in contradiction with general concepts of groundwater hydraulics, whereby discharge
is proportional to the hydraulic gradient (i.e., in accordance with Darcy’s Law), which is
expected to increase as the watertable rises considering that discharge is usually associated
with topographic low points of largely stable elevation in the landscape [e.g., 8, 29]. Linear
extrapolation of the recession curve, such as that used by Wilopo and Putra [35], can be
considered to represent a constant rate of discharge (during watertable rise), presuming that
a watertable rise or fall is proportional to the associated storage change in the aquifer.

Fixed-timestep WTFM approaches estimate groundwater recharge (and discharge) as the
difference between groundwater level changes and projected recession curves at fixed intervals
[e.g., 16], as an alternative to the event-based approach [e.g., 27] shown in Figure 1. The
method of application of fixed-timestep WTFM approaches leads to greater rates of discharge
when the watertable is higher, even where exponential-decay curves are adopted in assessing
groundwater discharge [5]. This is prima facie more consistent with Darcy’s Law (i.e., higher
groundwater heads lead to greater discharge to surface features of fixed elevation) than event-
based WTFM approaches (i.e., Figure 1) that adopt exponential-decay curves. Whether or
not a better estimate of recharge is obtained with these different time-stepping and recession
extrapolation techniques has not been systematically assessed.

Prior attempts to compare alternative approaches of the WTFM against known recharge
values include the study of Águila et al. [1], who conducted a parametric and numerical analy-
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sis of the uncertainties of the WTFM using two variants of the method: (a) the RISE method,
which uses a fixed timestep and neglects the groundwater discharge occurring during periods
of watertable rise (therefore estimating net recharge), and (b) the graphical method, which
is event-based and involves manual projection of recession presuming an exponential-decay
function. Águila et al. [1] applied the RISE and graphical methods to synthetic hydrographs
created from numerical models. They found that the errors of the graphical approach were
up to 15% less than those of the RISE method when compared to the known recharge input
to the numerical model. The RISE method underestimated recharge (i.e., the gross recharge
applied to the model) by up to 80% when the river water level remained constant during the
recharge event. If the river stage rose simultaneously with the watertable during recharge
events, and the monitoring location was close to the river (within 50 m), the RISE method
over-estimated recharge by approximately 400% when stream-aquifer connectivity was high,
and by 8% when stream-aquifer connectivity was low.

Solórzano-Rivas et al. [27] also applied the WTFM to synthetic hydrographs, which they
created using an analytical solution for intermittent recharge. Two approaches were exam-
ined: an exponential Local Recession Curve (LRC) approach, and an exponential event-based
Master Recession Curve (MRC) approach. LRC approaches consider only the recession be-
haviour immediately prior to individual groundwater-level rise events, while MRC approaches
use a recession function that represents the average behaviour of multiple recession periods.
As both approaches adopt exponential functions, the rate of discharge decreases as the water-
table rises (for reasons explained above). Solórzano-Rivas et al. [27] examined the accuracy
of these methods by applying them to 3,000 recharge events for which recharge was a-priori
known. They concluded that the LRC and MRC approaches under-estimated recharge by
an average of 13% and 14% respectively, highlighting the need to revise the approaches used
to extrapolate the antecedent recession curve. Interestingly, the underestimation of recharge
observed in the Solórzano-Rivas et al. [27] study contradicts the findings of numerous field
studies, which conclude that the WTFM often overestimates recharge [e.g., 20, 32, 36]. Over-
estimation in field-based studies is often attributed to uncertainty in Sy [e.g., 5, 10] and the
inclusion of watertable fluctuations unrelated to recharge in WTFM calculations [20, 32, 36].
However, there has been less focus on the uncertainties associated with ongoing drainage
estimates.

Other studies have compared alternative forms of the WTFM in field applications [e.g.,
9, 11, 21, 24]. For instance, Delin et al. [9] reported significant discrepancies, with deviations
of up to 63%, between recharge estimates from a fixed-timestep MRC approach and the RISE
method. Gumu la-Kawecka et al. [11] also compared a fixed-timestep MRC approach and the
RISE method, finding that estimates derived from the former were more than twice those
of the latter. Nimmo et al. [24] undertook a comparative analysis between a fixed-timestep
MRC approach and an event-based MRC approach, revealing mismatch between the two
that ranged from -37% (fixed-timestep MRC recharge < event-based MRC recharge) to 41%.
Likewise, Lanini [21] observed that the RISE method consistently underestimated recharge
by 12 to 50% compared to the event-based MRC approach, based on the application of these
methods to a multitude of case studies.

The current study builds on these prior comparisons of WTFM approaches by quan-
titatively evaluating six commonly used variants of the WTFM to find the most accurate
approach, thereby addressing the recommendations of Becke et al. [3] who concluded that
the optimal approach for extrapolating the recession curve is unclear when implementing the
WTFM. Solórzano-Rivas et al. [27] found that the two forms of the WTFM that they applied
produced biased recharge estimates, although they tested only the event-based MRC and ex-
ponential LRC approaches, representing a small subset of the methods adopted in published
cases. They concluded that approaches involving linear extrapolation of the recession curve,
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or functions with an increasingly negative gradient over time, merit further investigation.
The WTFM variants compared in this study make differing assumptions regarding the rate
of groundwater discharge that occurs during recharge events, and they have not previously
been compared. WTFM variants are evaluated by applying them to synthetic hydrographs
with known gross recharge and Sy, where the latter is constant in both time and depth. As
such, we evaluate only the method of recession extrapolation, and omit an assessment of Sy,
measurement error, and other factors contributing to uncertainty in WTFM applications. The
practical challenges associated with implementing each WTFM variant were also assessed by
applying the variants to data observed in the field. This paper extends the work of Águila
et al. [1] and Solórzano-Rivas et al. [27] by comparing a wider array of WTFM approaches
beyond the RISE and graphical methods of Águila et al. [1], and the exponential LRC and
event-based MRC approaches of Solórzano-Rivas et al. [27].

2 Methods

2.1 Watertable Fluctuation Method Approaches

The six variants of the WTFM used in this study to estimate recharge are distinguished by the
technique used to approximate the head change, ∆hr, that is adopted in Equation 1. These
include the following approaches: (1) linear LRC, (2) power LRC, (3) exponential LRC, (4)
event-based MRC, (5) fixed-timestep MRC, and (6) RISE method. Recharge was calculated
using Equation 1 for all approaches. A summary of the approaches used is provided in Table 1,
whilst each approach is depicted graphically in Figure 2.

Table 1: Summary of the WTFM approaches examined in the current study.

Category
of
recession
analysis

Name of
method

Type of
recharge
estimated

Time-
step

Groundwater
discharge
rate (with
watertable
rise)

Reference

LRC Linear
LRC

Gross Event-
based

Constant Wilopo and Putra
[35]

Power
LRC

Gross Event-
based

Decreasing Wendland et al.
[34]

Exponential
LRC

Gross Event-
based

Decreasing Solórzano-Rivas
et al. [27]

MRC Event-
based
MRC

Gross Event-
based

Decreasing Nimmo et al. [24],
Nimmo and
Perkins [23]

Fixed-
timestep
MRC

Gross Fixed Increasing Heppner and
Nimmo [16]

No
recession
projection

RISE Net Fixed Not
considered

Delin et al. [9]
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Figure 2: Graphical comparison of the WTFM approaches explored in this study: (a) linear
LRC, (b) power LRC, (c) exponential LRC, (d) event-based MRC, (e) fixed-timestep MRC,
(f) RISE approach, (g) close-up of (e), (h) close-up of (f).

Three variants of event-based LRC’s were applied by fitting the antecedent recession curve
(line AB, Figure 1) using alternative fitting functions to describe the rate of groundwater level
change (dh/dt), which is necessary to construct the projected recession. For example, the
linear LRC (Figure 2a), outlined by Wilopo and Putra [35], assumes that dh/dt is constant
and equal to –m:

h = −mt + w . (2)

Here, h is the watertable elevation [L] at a given time; and m [L T-1] and w [L] are obtained
by fitting to periods of hydrograph recession.

The power LRC (Figure 2b) adopted from Wendland et al. [34] assumes that dh/dt is a
power function of one degree lower (g – 1) than the recession equation, where g – 1 is negative:
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h = f(t− u)g . (3)

Here, f [T-1], g [-] and u [T] are fitting parameters.
The exponential LRC (Figure 2c) adopted from Solórzano-Rivas et al. [27] assumes that

dh/dt is linearly proportional to h:

dh

dt
= −ah + b , (4)

where a [T-1] and b [L T-1] are fitting parameters. Solving for h and applying boundary
conditions results in:

h (ti) =
b

a
−
[(

−aho + b

a

)
e−a(ti−to)

]
. (5)

Here, t0 [T] and h0 [L] represent the time and the watertable elevation (respectively) at
the beginning of the antecedent recession (point A, Figure 1). The subindex i indicates the
timestep.

Equation 2, Equation 3 and Equation 5 were fit to antecedent recession curves using
nonlinear regression analysis applying the Python ‘curve fit’ function from the SciPy library,
version 1.10.1 [31]. The relevant fitting parameters (m and w ; f, g and u; or a and b) were
obtained by optimising Equation 2, Equation 3 or Equation 5, respectively, against measured
heads using the ‘Trust Region Reflective’ algorithm [31]. The antecedent recession curve was
then projected forward to the time of peak h (point C, Figure 1) applying the respective
equations, depending on the selected method of extrapolation. Then, ∆hr was calculated as
the difference between peak h and the projected watertable elevation (point E, Figure 1), as
shown in Figure 2a to Figure 2c. The power LRC solution could not be found for 3 of the
3,000 applications, suggesting possible limitations in its applicability.

The application of MRC approaches included the event-based method described by Nimmo
et al. [24] and Nimmo and Perkins [23]. This approach assumes a linear relationship between
dh/dt and h (an exponential-decay function), similar to Equation 4, although in this case, a
finite-difference approximation of the head gradient ∆h/∆t(≈ dh/dt) was adopted. This is
given as:

∆h

∆t
= −nh + p . (6)

Here, n [T-1] and p [L T-1] are fitting parameters. While Equation 4 was integrated to
obtain the fitting function for recession extrapolation, the finite-difference alternative given
in Equation 6 was applied to individual timesteps to obtain fitting parameters and to project
recession curves.

To derive the MRC, recession events were identified as periods of falling groundwater
levels (negative ∆h/∆t) within the hydrograph record, utilising the ‘gradient’ algorithm from
the NumPy library, version 1.24 [13]. Fitting parameters (n and p) in Equation 6 were then
obtained by correlating rates of groundwater decline (negative ∆h/∆t) to h, using the curve fit
function (with the Trust Region Reflective algorithm) in the SciPy library [31]. The projected
recession curve was then obtained (to the time of peak h) using a daily timestep, as:

h∗i = h∗i−1 + ∆t (nh∗i−1 + p) . (7)

Here, h* is the projected watertable elevation [L] and i is the timestep [T]. ∆hr was then
calculated as the difference between the hydrograph’s peak h (for a given recharge event)
and the projected watertable elevation, as shown in Figure 2d. Equation 7 (rather than
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Equation 5) was adopted in applying the MRC in the current study to align with the approach
of Nimmo et al. [24] and Nimmo and Perkins [23].

A preliminary comparison was undertaken to examine differences between the analytical
and finite-difference applications given by Equation 5 and Equation 7, respectively. An indi-
vidual MRC was constructed (as described in preceding paragraphs) for 1,000 hydrographs
(synthetic hydrograph creation is discussed in subsection 2.2). The recession curve was then
projected using the fitting parameters obtained from the MRC with both Equation 5 and
Equation 7 for the first recharge event of each hydrograph. When the finite-difference ap-
proach adopted ∆t = 1 day (as was done in this study), errors in ∆hr (relative to the analytical
value) ranged from –0.1% to 0.1%. The difference between the two approaches increased with
increasing ∆t, as is usual for finite-different approximations. For example, when the finite-
difference approach adopted ∆t = 30 days, errors in ∆hr (relative to the analytical value)
ranged from –8.1% to 5.0%.

The event-based MRC approach used in this study differs slightly from the approach
described by Nimmo et al. [24] and Nimmo and Perkins [23] as their method further reduces
∆hr to account for watertable rise not attributable to recharge, such as changes in temperature,
atmospheric pressure and the Lisse effect (described by Crosbie et al. [5] as occurring when
intense rainfall traps air in the unsaturated zone causing rapid water level rise). For our
application to idealised synthetic hydrographs, reducing ∆hr to account for these phenomena
was deemed unnecessary.

The fixed-timestep MRC approach was implemented using the method suggested by Hep-
pner and Nimmo [16]. Firstly, average values of h and ∆h/∆t were calculated for each pair of
successive points in the entire hydrograph. Then, following the same approach as the event-
based MRC, fitting parameters n and p were obtained by correlating ∆h/∆t recession data
to h using Equation 6. The recession curve was subsequently projected in daily timesteps
(Figure 2e and Figure 2g) using:

h∗i = hi − ∆t (p− nhi) . (8)

∆hr was calculated for each timestep as the difference between the observed hi+1 and h∗i .
The overall ∆hr for the recharge event was calculated as the sum of values obtained for
each timestep. This latter step allowed for a comparison of event-based and fixed-timestep
methods, in terms of groundwater discharge estimation.

The RISE approach, as described by Delin et al. [9], was also applied. To estimate recharge
for each event, ∆hr was calculated by summing ∆h for each daily timestep in the recharge event
(Figure 2f and Figure 2h). The bin-averaged methodology of obtaining MRC’s [16, 23] was
tested, including for both the event-based and fixed-timestep MRC approaches. However, the
results obtained were similar to the event-based and fixed-timestep MRC approaches described
above, and therefore, the bin-averaged methodology was consequently omitted from this paper
for brevity.

The relative error (E r [%]) in the WTFM-estimated recharge value was calculated for each
recharge event using the following equation:

Er =

(
Re −Rk

Rk

)
× 100 , (9)

where Rk is the model input recharge [L T-1].

2.2 Synthetic Hydrograph Creation

One thousand synthetic hydrographs, each with three unique recharge events, were created
using Python following the methodology of Solórzano-Rivas et al. [27], who used a form of the
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Maasland [22] solution. The solution assumes a homogeneous unconfined aquifer (linearised
so that transmissivity (T ) [L2 T-1] is constant) bounded on one side by a no-flow condition,
representing a groundwater divide, with a constant-head condition applied to the opposite
boundary, representing the effect of a surface feature (e.g., a river or the ocean) receiving
groundwater discharge. Intermittent groundwater recharge is uniformly distributed in space.
For each hydrograph, the aquifer length (L) [L], distance between the observation well and
the groundwater divide (relative to the aquifer length) (ξ) [-], Rk, Sy, and T were randomly
selected within pre-defined limits, which are given in Table 2. This was accomplished using the
‘random.Generator.uniform’ function from the NumPy library [13]. All parameter limits were
chosen to match those used by Solórzano-Rivas et al. [27], other than ξ, which adopted the
range 0.05 – 0.95 to allow the margins of the aquifer to be analysed. The distance between the
observation well and the constant-head boundary (d) [L] is (1 − ξ)L. The period of recharge
was set to 30 days, occurring at times 90 – 120 days, 210 – 240 days and 360 – 390 days,
thereby creating periods of hydrograph recession equal to 60, 90 and 120 days, respectively.

Table 2: Parameter limits used to create synthetic hydrographs.

Parameter Parameter limits Interval

Transmissivity, T 50 — 3,000 m2/d 1

Aquifer length, L 1,000 — 5,000 m 1

Specific yield, Sy 0.02 — 0.27 [-] 0.01

Relative observation well location, ξ 0.05 — 0.95 [-] 0.01

Recharge, Rk 0.0005 — 0.0180 m/d 0.0001

3 Results

3.1 Synthetic Hydrograph Application

Figure 3 shows examples of the projected antecedent recession curve for a single recharge
event, for which the relative error (E r) of each WTFM variant was obtained. Negative E r

represents underestimation of Rk, while positive E r represents overestimation of Rk.
To determine the most accurate WTFM approach, |E r| was used to rank (from 1 to 6) the

WTFM variants for each recharge event. A rank of 1 indicates that the method produced the
closest match to the known recharge value (i.e., shown as “0% E r” in Figure 3), reflecting the
highest accuracy, while a rank of 6 indicates the method is furthest from the known recharge
value (i.e., highest |E r|), implying lowest accuracy. Figure 4 compares the rankings obtained
for the 3,000 simulated recharge events.

Whilst all methods exhibited rankings from 1 to 6, the fixed-timestep MRC approach
consistently outperformed others, ranking as 1 for the majority (52%) of recharge events. On
average, the fixed-timestep MRC approach underestimated recharge by 10.4% when ranked as
1. The hydrograph model parameters for these events were wide-ranging within the parameter
limits listed in Table 2. The fixed-timestep MRC approach ranked as the least accurate (rank
6) for only 1% of the events. For those recharge events, recharge was overestimated by 0.001%
to 11.1%. Where this occurred, Sy was greater than 0.1, T was less than 920 m2/d, and the
observation point was located nearer to the groundwater divide (ξ < 0.63). The average
E r was positive where the fixed-timestep MRC ranked less than 1, reflecting a tendency to
overestimate recharge. These results indicate that where the fixed-timestep MRC approach
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Figure 3: Example of relative error (E r) values obtained for each WTFM variant when applied
to a synthetic hydrograph, where Rk = 0.002 m/d, T = 2450 m2/d, L = 2230 m, Sy = 0.26
and ξ = 0.5. The ∆hr required to estimate recharge correctly is labelled as E r = 0%. Summed
values from the RISE and fixed-timestep MRC approaches (shown as dotted lines) represent
the summation of projected recession over individual timesteps during the period of watertable
rise.
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Figure 4: WTFM variants ranked from 1 to 6 after application to 3,000 individual recharge
events. A rank of 1 identifies WTFM applications that produced the lowest error (smallest
|E r|), while a rank of 6 represents the method with the greatest |E r| for each recharge event.
The percentage refers to the proportion of recharge events assigned to a given ranking.

is the best choice, it tends to underestimate recharge, but conversely, where it overestimates
recharge, other WTFM approaches tend to produce an improved value of recharge.

The event-based MRC approach ranked as 1 for the second-highest portion of events
(18.7%) with an average E r of -1% for these cases. This was followed by the linear LRC
approach, which ranked as 1 for 12.2% of events with an average E r of -0.3% for these cases.
Conversely, the event-based MRC approach ranked as 6 more often than the linear LRC
approach (6.2% and 1.4% of cases, respectively), indicating that the linear LRC approach
and the fixed-timestep MRC approach are the least likely to produce the poorest predictions
of recharge, amongst the methods tested. The RISE method proved the least accurate of the
six variants, ranking as 6 for 70.2% of the recharge events with an average E r of -17.6% for
these cases. This reflects the need to incorporate estimates of groundwater discharge into
WTFM approaches given the lack of discharge effects in the RISE method. Table A1 lists
error statistics for each WTFM variant and for each ranking, including the range of E r, the
average E r, the average |E r|, and the count.

Figure 5 presents box plots of E r for the six WTFM variants, showing that the linear
LRC, exponential LRC and fixed-timestep MRC had median E r values close to 0%. However,
the interquartile range (i.e., the middle 50% of results) was much narrower for the linear LRC
and fixed-timestep MRC than for the exponential LRC, confirming that the linear LRC and
fixed-timestep MRC estimated recharge more accurately for a wider range of recharge rates
and aquifer parameters. The power LRC, exponential LRC and event-based MRC tended
to underestimate recharge across the range of conditions assessed. We attribute this to the
decreasing rate of groundwater discharge that is assumed in those methods as the watertable
rises, as explained in section 1. The median, minimum, maximum and the 25th and 75th

percentile values that define the box plots in Figure 5 are provided in Table A2.
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Figure 5: Box plot illustrating the distribution of E r from the application of six variants of
the WTFM. The median is represented by the line within each box, while the upper and lower
edges of the box correspond to the 25th and 75th percentiles (i.e., the interquartile range),
respectively. Whiskers extend to 1.5 times the interquartile range from the quartiles (i.e.,
edges of the box), with larger error values represented as individual points. The grey dashed
line indicates 0% E r.

All variants of the WTFM exhibited large error values (shown as individual points in
Figure 5), with the vast majority being underestimates of recharge, with E r approaching
−100% in extreme cases. Only the linear LRC and fixed-timestep MRC exhibited large errors
that overestimated recharge. Figure 6 explores relationships between the occurrence of large
errors and model input parameters for the fixed-timestep MRC approach, showing E r in
relation to ξ and third variables of T, Rk, L and Sy. Figure 7 presents the same analysis for
the exponential LRC approach. Similar plots for the remaining WTFM variants are available
in Appendix A (Figure A1 to Figure A4).

Figure 6 shows that, for the fixed-timestep MRC approach, large overestimation of recharge
(E r > 12%) occurred at observation points relatively close to the groundwater divide (0.05 <
ξ < 0.22). For the 64 cases where this occurred, the mean L (1,639 m) was 55% of the overall
mean L of 2,976 m, calculated from all 3,000 cases. No clear relationship was observed between
the occurrence of large overestimation errors and model input parameters T, Rk and Sy. Large
overestimation errors (E r > 18%) were also observed for the linear LRC method (in 28 cases),
again at observation points near the groundwater divide (0.05 < ξ < 0.16; Figure A1). The
mean L (1,636 m) of these cases was also 55% of the overall mean L, with no clear relationship
observed between occurrences of large overestimation errors and model input parameters T, Rk

and Sy. These results suggest that ξ and L are key factors influencing the large overestimation
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Figure 6: Scatter plots illustrating relationships between E r and ξ for the fixed-timestep MRC
approach: (a) E r vs ξ with respect to T, (b) E r vs ξ with respect to Rk, (c) E r vs ξ with
respect to L, (d) E r vs ξ with respect to Sy. The orange and red rectangles highlight large
error values (represented as individual points in Figure 5) that underestimate and overestimate
recharge, respectively.

13



Becke et al. ARC Geophysical Research (2025) 1, 8

Figure 7: Scatter plots illustrating relationships between E r and ξ for the exponential LRC
approach: (a) E r vs ξ with respect to T, (b) E r vs ξ with respect to Rk, (c) E r vs ξ with
respect to L, (d) E r vs ξ with respect to Sy. The orange rectangle highlights large error values
(represented as individual points in Figure 5) that underestimate recharge.
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of recharge by the fixed-timestep and linear LRC approaches. Table A3 provides the mean,
standard deviation, minimum and maximum values for model input parameters, including
for cases where a large overestimation of recharge occurred (for the fixed-timestep and linear
LRC methods) and for the overall dataset.

While the exponential LRC, power LRC, event-based MRC and RISE methods did not
produce large overestimation errors (as defined above), they did overestimate recharge for
1,411, 159, 329 and 30 of the 3,000 cases, respectively. For the exponential LRC approach,
the 25 cases that produced the maximum overestimation of recharge (E r > 12%) occurred
relatively close to the groundwater divide (0.05 < ξ < 0.2; Figure 7), as occurred in applica-
tions of the fixed-timestep MRC and linear LRC approaches. Conversely, for the power LRC
and event-based MRC, the maximum recharge overestimation occurred closer to the constant-
head boundary (0.67 < ξ < 0.9; Figure A2 and Figure A3), albeit the number of cases in
which this occurred was small for those approaches. No trend was observed between ξ and
the overestimation of recharge for the RISE method. Taking the various methods together,
it appears that application of the WTFM in observation wells relatively close to groundwater
divides has a greater potential to produce recharge overestimation in all approaches aside
from the RISE method. For some methods (power LRC and event-based MRC), observation
wells relatively close to fixed-head boundaries (locations of groundwater discharge) may also
produce recharge overestimation.

The linear LRC, power LRC and event-based MRC variants produced large underes-
timation errors across the entire range of ξ tested, as evident in Figure A1, Figure A2 and
Figure A3, respectively. Large underestimation errors from the fixed-timestep MRC approach
occurred more so when the observation well was sited closer to the constant-head (groundwa-
ter outflow) boundary (0.55 < ξ < 0.95; Figure 6). This was also apparent from the results
of the exponential LRC and RISE methods, although for larger ranges in ξ (ξ > 0.4 and ξ >
0.27, respectively; Figure 7 and Figure A4). For all WTFM variants tested, more than 90% of
large underestimation cases occurred when ξ was greater than 0.6. For the exponential LRC,
RISE, linear LRC, power LRC and event-based MRC methods, where large underestimation
errors occurred at a ξ of less than 0.6, L was less than 1,759 m and Sy was smaller than 0.12.
Lower values of Sy and L did not appear to increase the occurrence of large underestimation
errors for the fixed-timestep MRC approach when the observation well was located further
from the constant-head boundary (ξ < 0.6) (Figure 6c and Figure 6d).

The widest range of E r was found to occur relatively close to the constant-head boundary
for all WTFM variants tested, and this appeared to be unaffected by Rk or Sy. However,
higher values of T (> 1,500 m2/d) were associated with greater recharge underestimation
for cases where 0.8 < ξ < 0.95 (near the constant-head boundary), while E r ranged from
overestimation to large underestimation when T < 1,500 m2/d (e.g., Figure 7a).

Smaller values of L (< 2,000 m) appeared to lead to greater recharge underestimation for all
WTFM variants where the observation well was relatively close to the constant-head boundary
(0.8 < ξ < 0.95), whereas when L exceeded 2,000 m, both overestimation and large underes-
timation of recharge occurred (e.g., Figure 7c). The role of L on the under/overestimation of
WTFM recharge was explored further through sensitivity analysis. Additional scenarios were
undertaken with L fixed (for all realisations), at values of 1,000 m and 5,000 m. This allowed
for the effects of L on the WTFM error to be distinguished from the effect of d (distance to the
constant-head boundary). The relative position of the observation well (i.e., ξ) was set so that
values of d were comparable in both the 1,000 m cases and the 5,000 m cases. The results,
provided in Figure A5, indicate that for scenarios where L = 5,000 m, and d ranged between
50 m and 250 m, recharge was underestimated by at least 35%, 48%, 51%, 19% and 19% for
the linear LRC, power LRC, exponential LRC, event-based MRC, fixed-timestep MRC and
RISE method, respectively. Whereas, when d was 250 m to 500 m (for L = 5,000 m), E r
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ranged from overestimation of recharge to large underestimation of recharge for all WTFM
variants, except for the RISE method, for which recharge was underestimated by 0.7% to
87%. This trend of increasing underestimation of recharge for cases with smaller d (observa-
tion well closer to the constant-head boundary) in the L = 5,000 m cases also occurred for
the scenarios where L = 1,000 m. Thus, we conclude that d and T are the primary controls
on the magnitude of recharge underestimation near the constant-head boundary, rather than
L. The initial indication that recharge underestimation is worse for small values of L arose
because the observation point was more likely to occur closer to the constant-head boundary
(i.e., d was smaller on average) for cases of smaller L. d was not found to impact results near
the groundwater divide.

3.2 Field Data Application

To evaluate the practical challenges associated with implementing the WTFM and to validate
the findings of the synthetic study, we applied each WTFM variant to six recharge events
observed in observation well RN12030004. This well is situated within an unconfined alluvial
aquifer in North Queensland, Australia (Latitude -20.4844, Longitude 145.4822). The bore
casing is screened between 13.35 to 15.35 m below ground level, intersecting a stratigraphic
sequence of coarse and fine sands, within which the watertable fluctuates.

For the fixed-timestep and event-based MRC approaches, the MRC fitting parameters
were obtained using MRCfit [23], yielding n = 0.00106 and p = -0.00201. MRCfit allowed
hydrograph recession periods that occurred within 5 days of rainfall events to be excluded
from the MRC derivation, which improved the robustness of the fit. Such exclusions were
not required in the analyses of synthetic hydrographs. Recharge estimates were subsequently
calculated using the methodology described in subsection 2.1.

Figure 8 presents a graphical comparison of the WTFM variants applied to observed
recharge events at RN12030004. Figure 8a shows the observation record of daily water levels,
with coloured overlays indicating the timing of the six recharge events analysed. Figure 8b to
Figure 8e illustrate the application of the WTFM variants to four selected recharge events.
Table 3 summarises the recharge estimates for all six watertable-rise events assuming Sy =
0.1, which is the minimum Sy for a fine sand [19].

Table 3: Recharge estimates (mm) for each watertable-rise sojourn in RN12030004 (between
2018 and 2021) assessed using six WTFM variants. Sy is assumed to equal 0.1.

Recharge/event (mm)

WTFM variant 2018 2019a 2019b 2020 2021a 2021b

Linear LRC 264 443 188 221 335 94

Power LRC 217 NA 186 204 NA 93

Exponential LRC 207 433 237 215 303 106

Event-based MRC 255 413 161 190 314 91

Fixed-timestep MRC 261 432 164 196 325 91

RISE 218 375 107 144 270 65

Of the six recharge events analysed, the RISE approach produced the lowest recharge
estimate for five. The exception was the 2018 recharge event (Figure 8b), where the expo-
nential LRC approach yielded the lowest recharge estimate. This is similar to the result of
the theoretical analysis, in which the RISE method estimated the least recharge for 80% of
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Figure 8: Graphical comparison of the WTFM approaches applied to field data at site
RN12030004: (a) Daily water level observations; WTFM variants applied to the: (b) 2018
recharge event, (c) 2019b recharge event, (d) 2020 recharge event, and (e) 2021b recharge
event. Shaded regions highlight the recharge events analysed in this study. Descriptions of
the respective methods are given in subsection 2.1.
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the recharge events, while the exponential LRC approach did so for 12% of recharge events.
Underestimation of the 2018 recharge event occurred with the LRC approach even though an
excellent fit was obtained between the antecedent recession curve and both the exponential
and power functions (r2 > 0.995), and so a poor fit to the recession period was not the cause.
Rather, the projected recession curves of both the exponential and power functions deviated
from the observed hydrograph prior to the lowest point in the recession, and this appears
to have contributed to the underestimation of recharge. Given that the RISE method con-
sistently underestimated the rate of recharge in the prior analysis of synthetic hydrographs,
it appears that the exponential (and power) LRC approach underestimated recharge in 2018
given that it was exceeded by the RISE method.

The linear LRC approach provided a poorer fit (r2 = 0.967) to the antecedent recession
curve relative to the exponential and power functions, yet its recharge estimate was within 9
mm of those obtained using the event-based MRC and fixed-timestep MRC approach (for the
2018 recharge event). Based on the findings of the prior analysis of synthetic hydrographs,
we expect that the latter estimates are the most reliable of the methods tested, at least for
the 2018 event.

The linear LRC approach yielded the maximum recharge estimates for four of the six
events. For the 2019b and 2021b recharge events, both characterised by shorter antecedent
recession periods (72 and 48 days respectively), the exponential LRC approach produced
the maximum recharge estimates. The theoretical analysis indicates similar results, with
the linear LRC and exponential LRC approaches estimating the maximum recharge for 26%
and 36% of the synthetic recharge events, respectively. The fixed-timestep MRC approach
obtained the maximum recharge for 38% of the synthetic recharge events. For the 2019b
and 2021b recharge events, the exponential LRC approach fitted a downward-sloping curve
to the antecedent recession (Figure 8c and Figure 8e). Downward-sloping curves were also
found to occur in the theoretical analysis. Solórzano-Rivas et al. [27] found that when the
exponential LRC approach projected a downward sloping curve, recharge was overestimated,
and we expect that this also occurred here, notwithstanding that the “true” recharge cannot
be known from the field dataset.

The event-based MRC, fixed-timestep MRC and RISE approaches, which all commence
projection at the lowest point of the recession (point B, Figure 1), tended to yield results in a
consistent order for each recharge event when applied to the observed data. Here, the fixed-
timestep MRC approach estimated more recharge than the event-based MRC approach, which
estimated more recharge than the RISE method for all six recharge events. This is similar to
the synthetic hydrograph analysis, where the fixed-timestep MRC estimated more recharge
than the event-based MRC approach for 99.8% of cases. In the synthetic analysis, the event-
based MRC method produced more recharge than the RISE method for 91% of the events.
For the remaining 9% of cases, the event-based MRC method extrapolated the recession (to
point E; Figure 1) using a curve that increased in time (rather than a negative slope, as
expected from the extrapolation of a recession curve), thereby leading to a lower recharge
value than that produced by the RISE method. The positive slope produced by recession
extrapolation using the exponential function in the event-based MRC approach arose because
it had an asymptote (p/n) at a higher elevation than the lowest point of the recession (point
B, Figure 1) being assessed.

Overall, the application of the WTFM variants to a real-world hydrograph reinforces
the findings of the synthetic hydrograph analysis. For example, large variability in recharge
estimates was produced by the exponential LRC approach when applied to both synthetic
hydrographs and the field data, where it generated both the maximum and minimum recharge
estimates for different events. The power LRC approach, which showed less variability in
recharge estimates compared to the exponential LRC method, failed to generate a solution
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for three recharge events in the synthetic study and for two recharge events in the field
application, highlighting that this method can occasionally become unstable. The fixed-
timestep and event-based variants of the MRC approach estimated recharge consistently, at
least relative to each other, for both the field data and synthetic hydrographs.

Applying the WTFM variants to observed hydrographs introduces practical challenges
that were not faced in the synthetic study. For instance, developing the MRC requires careful
selection of recession periods that represent the ‘natural discharge’ from the aquifer. Identify-
ing the start and end of watertable rises attributable to recharge is no menial task, along with
determining if the observed water level rise required some level of subjective decision making
to assess whether the observed water level rise is solely due to recharge or influenced by other
factors such as air entrapment. Additionally, as highlighted by Crosbie et al. [5], selecting an
appropriate Sy is critical for accurate recharge estimates, although this aspect was beyond
the scope of this study.

4 Discussion

This study evaluated alternative forms of the WTFM to determine the most accurate approach
to estimate ∆hr. The fixed-timestep MRC method proved to be the most consistently accu-
rate, followed by (in descending order of accuracy) the linear LRC approach, the event-based
MRC approach, the power and exponential LRC approaches, and lastly the RISE method.
Despite its accuracy, the fixed-timestep MRC method seems to be underutilised in practice.
For example, a recent review by Becke et al. [3] of 40 published WTFM applications showed
that only seven studies used the fixed-timestep MRC approach. Of the 40 studies, 24 adopted
recession-extrapolation methods (the exponential LRC, power LRC and event-based MRC
approaches) that assume that discharge decreases as the watertable rises (i.e., the opposite of
Darcy-based flow principles, as discussion in section 1), and therefore, we expect those inves-
tigations to have under-estimated the watertable change attributable to recharge. Whether
the recharge was also underestimated depends on the accuracy of specific yield values. The
underutilisation of fixed-timestep MRC methods may stem from the need to have water levels
at a high temporal resolution, such as daily measurements, which are commonly not avail-
able. Nevertheless, the use of WTFM approaches that presume declining discharge as the
watertable rises ought to be reconsidered given the results of the current study.

For the majority of cases tested, all WTFM variants tended to underestimate recharge.
This is consistent with the findings of Solórzano-Rivas et al. [27], who also tested the event-
based MRC and exponential LRC approaches on synthetic hydrographs. Conversely, recharge
overestimation was also found to occur, particularly when applying the linear LRC, expo-
nential LRC or fixed-timestep MRC approaches to observation points near the groundwater
divide.

Field studies using multiple recharge estimation techniques report various outcomes re-
garding the accuracy of recharge estimation using the WTFM. For example, Hagedorn et al.
[12], Hung Vu and Merkel [17] and Somaratne et al. [28] found the WTFM to be the most ac-
curate approach when estimating recharge in Jeju Island (Korea), Hanoi (Vietnam) and South
Australia (Australia), respectively. However, Barua et al. [2], Cartwright et al. [4], King et al.
[20], von Freyberg et al. [32] and Yenehun et al. [36] concluded that WTFM approaches over-
estimated recharge when compared to other field-based recharge estimation techniques. The
latter included chloride mass balance, water balance methods and unsaturated zone modelling.
The apparent overestimation of WTFM recharge when the method is applied to real-world
data may arise from multiple causes, some of which have not been captured when analysing
the approach on synthetic hydrographs as we have undertaken. For example, ’noise’ in real-
world hydrographs (i.e., watertable fluctuations due to causes unrelated to recharge, such as
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atmospheric pressure changes, pumping, evapotranspiration, etc.; [23]) may be interpreted
as recharge in applications of the WTFM. It is likely that fixed-timestep methods are more
susceptible (than event-based methods) to the incorrect interpretation of noise as recharge
events, because event-based methods assess recharge over longer timeframes, and therefore
tend to neglect small watertable variations. Crosbie et al. [5] demonstrated that filtering
high-temporal resolution water-level data to remove noise and non-rainfall-related watertable
fluctuations prior to applying the fixed-timestep MRC approach can mitigate these effects.

The choice of Sy is also known to result in significant uncertainty in WTFM recharge
estimates. For example, Crosbie et al. [5] found that using a constant Sy, particularly in
aquifers with a shallow unsaturated zone, could produce recharge estimates up to 70% higher
than those derived using a depth-dependent Sy. In some cases, this overestimation of recharge
may outweigh the underestimation caused by incorrectly characterising discharge (i.e., the
main source of error investigated in the current study), potentially leading to an overall
overestimation of recharge if Sy is significantly overestimated (as occurs when the watertable
reaches the land surface; [5]).

Our findings show that the largest underestimation of recharge occurred near the constant-
head boundary (i.e., small values of d or large values of ξ) for all WTFM variants tested,
which is consistent with the conclusions for the RISE method reported by Águila et al. [1].
However, for the exponential LRC, RISE, linear LRC, power LRC and event-based MRC
methods, we observed that the combination of relatively low values of Sy and L can result in
large underestimation of recharge across a wide range of ξ values. However, low values of Sy

and L did not produce large underestimation of recharge when applying the fixed-timestep
MRC approach, further underscoring the potential benefits of adopting this method.

The impact of Rk (model input recharge) on recharge estimation error in the current study
differed from prior studies. Águila et al. [1] reported that errors made in estimating recharge
with the RISE method increased with the rate of recharge (for uniform recharge over 30
days, which was also used in the current study). In contrast, our study found no relationship
between Rk and E r for any of the methods tested. This discrepancy is potentially due to
our study testing the rate of recharge in a wider variety of scenarios, or alternatively it could
be due to our study testing a maximum recharge rate of 547 mm/month compared to 1,000
mm/month by Águila et al. [1].

5 Conclusions

Of the watertable fluctuation method (WTFM) variants tested, the fixed-timestep master
recession curve (MRC) approach proved to be the most consistently accurate. This finding
is attributed to its head-dependent extrapolation of the recession curve, which assumes that
discharge increases as the watertable rises, consistent with Darcy’s Law for groundwater dis-
charge to surface water bodies of relatively stable water levels. Despite its higher accuracy,
the fixed-timestep MRC approach appears to be underutilised in practice, according to a
prior review of existing WTFM applications by Becke et al. [3], with other approaches such
as the exponential LRC, power LRC and event-based MRC more often employed. The lin-
ear local recession curve (LRC) method, which assumes a constant rate of discharge as the
watertable rises, was the second most accurate variant. We attribute the lower accuracy of
other approaches, such as the exponential LRC, power LRC and event-based MRC to the
lower discharge rates that are adopted as the watertable elevation rises. The RISE method,
which does not account for ongoing discharge, was the poorest performing method tested.

The widest range of recharge estimation error, for all WTFM variants tested, were observed
relatively near the constant-head boundary, where recharge estimation error ranged from
slight overestimation to large underestimation. Near the constant-head boundary, cases with
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low d (distance between the observation well and the constant-head boundary) and high T
(transmissivity) produced the largest underestimation of recharge. Cases with low L (aquifer
length) and low Sy (specific yield) can also lead to large underestimation of recharge over a
wide range of ξ (distance between the observation well and the groundwater divide (relative
to the aquifer length)) for all WTFM variants tested other than the fixed-timestep MRC
approach. Overestimation of recharge was more pronounced closer to the groundwater divide
when applying the linear LRC, fixed-timestep MRC and exponential LRC approaches, with
low L exacerbating the errors for the linear LRC and fixed-timestep MRC approaches.

These results challenge the long-held assumption that the projected recession curve should
represent the decline in the watertable that would have occurred in the absence of recharge,
typically represented by exponential decay, causing the assumed rate of groundwater dis-
charge in WTFM methods to decrease as the watertable rises. Instead, we demonstrate
that utilising a recession curve that becomes progressively steeper as the watertable rises im-
proves recharge estimation accuracy. This finding has practical implications for sustainable
groundwater management of water resources, including the protection of ecosystems and the
prediction of system reliability under increasing water demands.

This study further characterises the understanding of recharge estimation errors when
applying the WTFM to homogeneous aquifers. Future research efforts should focus on as-
sessing the reliability of WTFM recharge estimates in more complex aquifer settings, such as
those with heterogeneity, fluctuating head boundaries and temporally and spatially varying
recharge. Addressing these challenges is essential for improving the accuracy and reliability
of groundwater recharge estimates obtained using WTFM techniques.
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Appendix A

Table A1: The range of E r; the average E r and average |E r| (presented in brackets); and the
count (presented in italics) of each WTFM variant for each rank.

Rank Linear
LRC

Power
LRC

Exponential
LRC

Event-
based
MRC

Fixed-
timestep

MRC

RISE

1 -26.5 to
12.4%

(-0.3%,
|3.2%|)

366

-3.3 to
2.5%

(-0.2%,
|0.7%|)

139

-12.7 to
2.5%

(-0.9%,
|1.4%|)

333

-12.9 to
3.1%

(-1.0%,
|1.4%|)

562

-87.0 to
15.6%

(-10.4%,
|12.0%|)

1560

-0.5 to
0.0%

(-0.17%,
|0.17%|)

40

2 -95.7 to
14.6%

(-21.4%,
|23.1%|)

1240

-7.2 to
2.1%

(-0.9%,
|1.5%|)

298

-14.2 to
4.9%

(-0.3%,
|2.2%|)

389

-13.9 to
4.0%

(-2.2%,
|2.4%|)

525

-26.6 to
15.2%
(1.3%,
|4.3%|)

523

-0.7 to
0.6%

(-0.3%,
|0.4%|)

25

3 -6.1 to
13.9%

(-0.7%,
|3.0%|)

450

-96.5 to
1.0%

(-26.5%,
|26.5%|)

890

-29.2 to
6.3%

(-1.7%,
|4.5%|)

260

-89.4 to
4.7%

(-17.3%,
|17.6%|)

1165

0.0 to
13.8%
(4.3%,
|4.3%|)

221

-96.5 to
-0.0%

(-52.4%,
|52.4%|)

14

4 -5.4 to
15.9%

(-0.2%,
|2.6%|)

416

-96.5 to
0.0%

(-18.6%,
|18.6%|)

1109

-68.8 to
7.3%

(-12.7%,
|15.7%|)

295

-91.7 to
0.3%

(-29.0%,
|28.9%|)

394

-0.0 to
13.7%
(4.8%,
|4.8%|)

561

-96.5 to
3.5%

(-51.0%,
|51.1%|)

225

5 -5.1 to
19.3%
(7.8%,
|7.8%|)

486

-89.4 to
0.0%

(-9.3%,
|9.3%|)

555

-96.5 to
12.9%

(-18.6%,
|22.3%|)

1104

-96.5 to
0.5%

(-27.1%,
|27.1%|)

166

-0.0 to
10.5%
(3.3%,
|3.3%|)

100

-91.8 to
0.34%

(-30.9%,
|30.7%|)

589

6 15.7 to
21.1%

(18.4%,
|18.4%|)

42

-68.8 to
-0.0%

(-14.5%,
|14.5%|)

9

-96.6 to
16.2%
(-29.3,

|35.2%|)
619

-96.5 to
5.2%

(-47.0%,
|47.1%|)

188

0.0 to
11.1%

(0.42%,
|0.42%|)

35

-72.6 to
0.4%

(-17.6%,
|17.6%|)

2107
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Table A2: Descriptive statistics of the E r for each WTFM variant.

Linear
LRC

Power
LRC

Exponential
LRC

Event-
based
MRC

Fixed-
timestep
MRC

RISE

Median -0.98 -5.18 -0.69 -2.94 0.58 -15.52

Interquartile
Range

9.67 22.50 29.88 22.58 5.18 21.45

Minimum -95.74 -96.51 -96.57 -96.55 -86.95 -96.52

Maximum 21.09 2.46 16.22 5.20 15.58 3.54

25th percentile -5.80 -24.50 -27.00 -23.58 -1.30 -30.31

75th percentile 3.88 -2.00 2.88 -1.00 3.88 -8.86

Table A3: Mean, standard deviation, minimum and maximum of model input parameters for
the 64 fixed-timestep MRC and 28 linear LRC cases where recharge was largely overestimated,
and for the entire population (3000 cases).

Model
input
parameter

WTFM variant Mean Standard
deviation

Minimum Maximum

T Fixed-timestep MRC 1940 632 628 2906

Linear LRC 1600 494 628 2681

Entire population 1496 853 50 2998

ξ Fixed-timestep MRC 0.11 0.04 0.05 0.22

Linear LRC 0.09 0.03 0.05 0.16

Entire population 0.50 0.26 0.05 0.95

L Fixed-timestep MRC 1639 468 1061 2988

Linear LRC 1636 622 1143 3724

Entire population 2976 1151 1001 5000

Rk Fixed-timestep MRC 0.0086 0.0045 0.0007 0.0174

Linear LRC 0.0076 0.0038 0.0007 0.0151

Entire population 0.0093 0.0051 0.0005 0.0180

Sy Fixed-timestep MRC 0.08 0.06 0.02 0.24

Linear LRC 0.12 0.07 0.02 0.25

Entire population 0.15 0.08 0.02 0.27
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Figure A1: Scatter plots illustrating relationships between E r and ξ for the linear LRC
approach: (a) E r vs ξ with respect to T, (b) E r vs ξ with respect to Rk, (c) E r vs ξ with
respect to L, (d) E r vs ξ with respect to Sy. The orange and red rectangles highlight large
error values (represented as individual points in Figure 5) that underestimate and overestimate
recharge, respectively.
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Figure A2: Scatter plots illustrating relationships between E r and ξ for the power LRC
approach: (a) E r vs ξ with respect to T, (b) E r vs ξ with respect to Rk, (c) E r vs ξ with
respect to L, (d) E r vs ξ with respect to Sy. The orange rectangle highlights large error values
(represented as individual points in Figure 5) that underestimate recharge.
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Figure A3: Scatter plots illustrating relationships between E r and ξ for the event-based MRC
approach: (a) E r vs ξ with respect to T, (b) E r vs ξ with respect to Rk, (c) E r vs ξ with
respect to L, (d) E r vs ξ with respect to Sy. The orange rectangle highlights large error values
(represented as individual points in Figure 5) that underestimate recharge.
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Figure A4: Scatter plots illustrating relationships between E r and ξ for the RISE method: (a)
E r vs ξ with respect to T, (b) E r vs ξ with respect to Rk, (c) E r vs ξ with respect to L, (d)
E r vs ξ with respect to Sy. The orange rectangle highlights large error values (represented as
individual points in Figure 5) that underestimate recharge.
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Figure A5: Scatter plots illustrating relationships between E r, d, and T for all WTFM variants
where L was fixed to 1,000 m and 5,000 m.
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