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Abstract6

White roof is a widely-studied urban heat mitigation strategy and frequently incor-7

porated into climate adaptation plans by cities. Assessing the effects of white roofs on8

temperature has often been approached from the perspective of applied meteorology. Here,9

the white roof problem is reframed as a climate science problem by focusing on the roof10

surface temperature, incorporating concepts of climate forcing, sensitivity, and feedback,11

and utilizing a linearized surface energy balance (SEB) model. Different from the Albedo12

Cooling Effectiveness (ACE) index used for quantifying white roof effects, a new index13

called Albedo Cooling Sensitivity (ACSs, where the subscript ‘s’ indicates surface) is pro-14

posed as a stepping stone towards understanding white roof effects. The variability of15

ACSs simulated by the Weather Research and Forecasting (WRF) model is found to be16

strongly related to the variability of convective heat transfer efficiency. It is recommended17

that climate forcing, sensitivity, and feedback be systematically integrated into the anal-18

ysis of diverse urban adaptation strategies.19
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1 Introduction25

Urban meteorology and climatology are often viewed as a branch of applied meteorology and26

climatology [20]. According to [2], applied climatology covers four basic areas: 1) design of27

structures and planning of activities; 2) assessments of current and past conditions, including28
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evaluation of extreme events; 3) study of the relationships between weather/climate condi-29

tions and those in other parts of the physical and socioeconomic worlds; and 4) operation30

of weather-sensitive systems that employ climatic information in making decisions. Clearly,31

urban climatology fits into this scope. For example, urban meteorological and climate infor-32

mation is pivotal for the design of buildings and other infrastructure in cities.33

As urban populations grow and global temperatures rise, urban meteorology and climatol-34

ogy are playing an increasingly crucial role in fostering more sustainable, resilient, and livable35

cities. A case in point is climate adaptation, particularly in relation to heat mitigation. One36

area of active research in urban meteorology and climatology is the assessment of the ef-37

fectiveness of climate action plans using numerical modeling. This line of research has been38

primarily approached from the perspective of applied meteorology, where the effects of various39

adaptation strategies (on temperature and other environmental variables) are quantified for40

studied cities and periods [e.g. 11].41

The premise of this paper is that evaluating the effectiveness of climate action plans offers42

not only opportunities to test and improve our simulation capabilities, but also new avenues43

to enhance our understanding of urban climate processes. White roof, a widely studied heat44

mitigation strategy, is used as an illustrative example.45

2 Albedo Cooling Effectiveness (ACE)46

2.1 Definition and Calculation47

The basic physics of the white roof problem are straightforward: as the roof surface albedo48

(α) is increased, more solar radiation is reflected and thus less is absorbed, leading to less49

sensible heating of the near-surface air and less heat conduction into the roof deck and thus50

building interior. A common theme in urban climate research over the last two decades51

has been developing physically based modeling tools to simulate the urban environment,52

based on which the white roof effects can be quantified. A highly successful model for such53

purposes [3] is the so-called single-layer urban canopy model (SLUCM) [9], where an idealized54

urban canyon consisting of roof, wall, and canyon floor (Figure 1a) is used to represent three-55

dimensional, complex urban environments in coarse-resolution weather and climate models56

(e.g., the Weather Research and Forecasting or WRF model [19]). Using this idealized canyon57

representation of urban environment, white roofs can be readily simulated by increasing the58

albedo of the roof facet (c.f., Figure 1c and 1a).59

A typical study of SLUCM-enabled simulation of white roof effects is shown in Figure60

2. Here the simulations are performed for the greater Boston area over a 5-day heatwave61

event (July 20-24, 2022, with a spin-up day of July 19) using WRF (version 4.2.2). The62

domain configurations and physical parameterizations follow a previous study [12], where63

model validation can be also found. To quantify the white roof effects, two runs are performed:64

a control run with the roof albedo of 0.2 (Figure 2a) and a high albedo run with the roof65

albedo of 0.6 (Figure 2b). Here the simulated near-surface air temperature (represented by66

the widely used 2-m air temperature T2) in the domain with a spatial resolution of 1 km is67

shown. Focusing on urban grid cells, the majority of urban land experiences lower T2 in the68

high albedo run (c.f., Figure 2b and 2a), as expected. However, in certain areas T2 increases69

in the high albedo run (more about this later). The difference between the high albedo run70

and the control run in terms of T2 (denoted as ∆T2, where ∆ indicates the difference between71

the high albedo run and the control run with the high albedo run minus the control run)72

ranges from -0.6 to 0.2 K (Figure 2c).73

An index called Albedo Cooling Effectiveness (ACE) is often used to quantify the effec-74
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Figure 1: (a) A schematic of the SLUCM in WRF. For each grid cell that is classified as an
urban grid cell, WRF-SLUCM treats the grid cell as a combination of an impervious part
(with a fraction of furban) and a pervious grass part (with a fraction of 1 − furban). In this
figure, T is temperature and r is the resistance for heat transfer, and the subscripts A, R,
W, C, G, GRASS represent atmosphere, roof, wall, canopy air, canyon ground, and grass,
respectively. H, R, G represent the building height, the roof width, and the canyon width,
respectively. (c) Similar to (a) but with white roof. (b) A schematic for changes (∆) in
temperatures due to white roofs. The solid line indicates the temperature profile without
white roofs and the dashed line indicates the temperature profile with white roofs. White
roofs lead to cooler surface temperature Tsurface of this entire grid cell, which further leads to
cooler 2-m air temperature T2 and atmospheric temperature TA. Here it should be emphasized
that Tsurface is an aggregated surface temperature of the entire grid cell, and is not an area-
averaged surface temperature across all facets within this grid cell. (d) Similar to (b) except
that the atmospheric temperature TA is increased when white roofs are implemented, leading
to increased 2-m air temperature T2. In (b, d), the temperature profile within the surface layer
is assumed to be logarithmic for illustration purposes, although in reality the temperature
profile is not always logarithmic. A change in the slope of the temperature profile due to
white roofs indicates a change of atmospheric stability within the surface layer.
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Figure 2: White roof effects on 2-m air temperature (T2) over the greater Boston area sim-
ulated by WRF at a spatial resolution of 1 km (roughly corresponding to the neighborhood
scale). (a) T2 of the control run (K), (b) T2 of the high albedo run (K), (c) ∆T2 (K), (d) ACE
(K). The inset in (d) shows the histogram of ACE. Only the results over urban grid cells are
shown and the results are averaged over a 5-day period from July 20 to July 24, 2022.
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tiveness of reflective materials [7, 8], defined as75

ACE = −∆T

∆α
, (1)76

where ∆T (K) is the change of neighbourhood scale (on the order of a few hundred meters77

to a kilometer), near-surface air temperature due to the change in the neighbourhood scale78

albedo (∆α). The change in the neighbourhood scale albedo (∆α) can be further expressed as79

∆α = ∆αsfs, where the subscript ‘s’ refers to the modified surface. Hence, ∆αs is the change80

in albedo of the modified surface and fs is the horizontal area of modified surface divided by81

the horizontal area of the neighborhood. In the WRF results shown in Figure 2d, ACE is82

computed as −∆T2/(∆αRfR), where the subscript ‘R’ indicates that the modified surface is83

the roof with ∆αR = 0.6− 0.2 = 0.4. Note that within each grid cell, only a fraction of land84

is the impervious land (i.e., furban in Figure 1a) and only a fraction of the impervious land is85

roof (i.e., R/(R+G) in Figure 1a). In these WRF simulations, the impervious land fraction86

varies across the domain, resulting in spatially variable fR.87

The ACE values reported by different modeling studies in the literature range from 0 to88

20 K, as summarized in a recent review [8]. Focusing on a sub-sample of 47 higher quality89

modeling studies, the reported ACE values range from 2 to 6 K [8]. In the simulations shown90

in Figure 2, the majority of ACE values ranges from -2 to 8 K, with a median ACE value of91

2.2 K and a mean ACE value of 2.8 K. These median/mean ACE values are within the range92

reported in previous studies [8].93

2.2 Transferability and Interpretability94

Intercomparing ACE values from different studies may lead to the mistaken perception that95

ACE is a constant. To be clear, the ACE defined in Eq. 1 cannot be constant. At a minimum,96

it must vary with incoming solar radiation (SWin). A simple thought experiment suggests97

that in regions with stronger solar radiation, the same amount of increase in roof albedo should98

theoretically result in a greater reduction in air temperature, assuming all other factors remain99

equal. This is also why seasonally averaged or wintertime ACE values tend to be lower than100

those during the summer [8].101

A complete understanding of the spatio-temporal variability of ACE remains elusive, which102

poses a problem since, regardless of the indices used to quantify the effects of white roofs,103

their utility relies on our ability to understand (and even predict) their variability across time104

and space. Without this understanding, the results reported in the literature would have105

limited value for reference and, as a result, limited transferability. Under such conditions, the106

problem becomes strictly an applied one, requiring recalculation of the values of these indices107

whenever study locations or periods change.108

A more subtle issue is that ACE is often defined with near-surface air temperature, which109

is notoriously difficult to model in urban environments. The 2-m air temperature (T2) from110

numerical models is widely used to represent the near-surface air temperature. However, its111

interpretation over complex and tall urban canopies remains a challenge [17]. Even if we as-112

sume that T2 is the correct temperature to use in this context, changes in T2 as the roof albedo113

changes can be difficult to interpret. To demonstrate this, ∆T2 in Figure 2c is decomposed114

into contributions from changes in various factors including the roof surface temperature (TR),115

the atmospheric temperature above the urban canopy (TA), the wall and ground surface tem-116

peratures (TB, TG), the grass temperature in the same grid cell (TGRASS), and heat transfer117

resistances (see Figure 1 for the definitions of these temperatures and resistances), following118

the decomposition method in an earlier study [12].119

Here the decomposition is performed separately for grid cells with positive and negative120

∆T2 values to highlight their differences and similarities. It can be seen that for both posi-121
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Figure 3: (a) The decomposition of ∆T2 over urban grid cells with negative ∆T2 values (91%),
(b) The decomposition of ∆T2 over urban grid cells with positive ∆T2 values (9%), (c) The
decomposition of ∆T2 over all urban grid cells. The different bars represent, from left to right,
computed ∆T2 directly using WRF outputs, diagnosed ∆T2 from the decomposition method,
contribution from changes in the roof surface temperature (TR), contribution from changes
in the atmospheric temperature above the urban canopy (TA), contribution from changes in
the wall and ground surface temperatures (TW , TG), contribution from changes in the grass
temperature in the same grid cell (TGRASS), and contribution from changes in heat transfer
resistances. The error bars are standard deviations that indicate spatial variability.

tive and negative ∆T2 cases, contributions from the roof surface temperature are one of the122

most important contributions and are consistently negative, implying that the roof surface123

temperature is always reduced when the roof albedo is increased. This is not surprising given124

that the cooling signal originates from the roof surface. However, contributions from other125

factors such as the atmospheric temperature above the urban canopy, the grass temperature,126

and the heat transfer resistances are not negligible. For negative ∆T2 cases (Figure 3a), the127

atmospheric temperature above the urban canopy is also reduced as the roof albedo increases128

(see Figure 1b for a schematic). However, for positive ∆T2 cases (Figure 3b), the atmospheric129

temperature above the urban canopy is increased as the roof albedo increases (see Figure 1d130

for a schematic). Changes in the atmospheric temperature above the urban canopy are ex-131

tremely difficult to fully understand especially at the weather time scales, as these changes are132

strongly affected or even dominated by non-local atmospheric processes. In the simulations133

shown in Figure 2, it can only be conjectured that in certain regions warm advection causes134

the atmospheric temperature above the urban canopy (TA) to increase even though the roof135

surface temperature (TR) is reduced, leading to positive ∆T2 and thus negative ACE values.136

There is no reason why the effects of white roofs cannot be defined using other temperature137

metrics. In fact, a good candidate is the roof surface temperature (TR), which can serve as138

an intermediate stepping stone. Intuitively, changes in roof albedo first cause the roof surface139

temperature to change (see Figure 4a, b), which then drive other changes such as near-surface140

air temperature, humidity, and wind fields. So the response of roof surface temperature to141

albedo increase is perhaps easier (but not necessarily easy) to understand. This argument is142

supported by the fact that changes in the roof surface temperature are always negative even143

in places where changes in T2 are positive, as shown in Figure 4c. For comparison purposes,144

an ACEs (Figure 4d) is defined based on the surface temperature and albedo changes of the145

modified surface, as follows146

ACEs = −∆Ts

∆αs
. (2)147

Again, the subscript ‘s’ refers to the modified surface. In our case, ‘s’ refers to the roof but148

the definition of ACEs is more general and not specific to the roof surface. Here it should149
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Figure 4: Similar to Figure 2 but for roof surface temperature (TR). (a) TR of the control run
(K), (b) TR of the high albedo run (K), (c) ∆TR (K), (d) ACEs (K). The inset in (d) shows
the histogram of ACEs. Only the results over urban grid cells are shown and the results are
averaged over a 5-day period from July 20 to July 24, 2022.

also be pointed out that throughout the paper Ts, even when defined generally, refers to the150

surface temperature of a facet (e.g., roof, wall, canyon floor, etc) shown in Figure 1. This is151

different from Tsurface in Figure 1(b, d), which refers to an aggregated surface temperature152

of the entire grid cell. In WRF, Tsurface is not simply an area-weighted average of the surface153

temperatures across all urban facets; instead, its calculation is based on an energy balance154

approach and hence ∆Tsurface ̸= ∆Tsfs [10, 12].155

3 Albedo Cooling Sensitivity (ACS)156

3.1 From Cooling Effectiveness to Climate Sensitivity157

In climate science, changes in global average temperature (∆T , K) are often interpreted with158

the associated climate forcing (∆F , W m−2), which is quantified at the top of the atmosphere159

and is commonly referred to as the radiative forcing. While quantifying climate forcing at the160

top of the atmosphere for the white roof problem may be challenging (and unnecessary if we161

focus on local temperature changes), we can apply a similar concept at the surface. From the162

surface perspective, the forcing in the white roof problem can be expressed as SWin(−∆α),163

namely, the change of absorbed shortwave radiation assuming that SWin remains constant164

when the surface albedo is altered. Hence, instead of linking ∆T to ∆α as in the ACE165
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Figure 5: (a) The relation between ACEs (K) and incoming shortwave radiation (SWin, W
m−2). (b) The spatial pattern of ACSs (K W−1 m2). The inset in (b) shows the histogram
of ACSs. Only the results over urban grid cells are shown and the results are averaged over
a 5-day period from July 20 to July 24, 2022.

framework, a climate science inspired approach would be linking ∆T to SWin(−∆α).166

To differentiate from ACE, this new index will be referred to as the Albedo Cooling167

Sensitivity (ACS). Given that the forcing used is a surface forcing, ACS probably will work168

better for understanding surface temperature changes. To emphasize this focus on surface169

temperature, a subscript ‘s’ is added to ∆T , ∆α and ACS, as follows:170

ACSs =
∆Ts

SWin(−∆αs)
= − ∆Ts

SWin∆αs
=

ACEs

SWin
. (3)171

The ACSs defined this way has a standard unit of K W−1 m2 and can be interpreted as a local172

surface climate sensitivity. Comparing Eq. 3 to Eq. 1, it is clear that ACSs specifically focuses173

on surface temperature while ACE focuses on near-surface air temperature. Comparing Eq.174

3 to Eq. 2 reveals that ACSs addresses the SWin dependence of ACEs, as shown in Figure 5a.175

Not surprisingly, the stronger the SWin, the larger the ACEs. However, the scatter in Figure176

5a suggests that ACSs is not a constant, whose spatial pattern is shown in Figure 5b. To177

understand the spatial variability of ACSs, a linearized surface energy balance (SEB) model178

[1, 13] is utilized, as discussed below.179

3.2 A Linearized Surface Energy Balance (SEB) Model for ACSs180

For a homogeneous surface (e.g., the roof surface in the SLUCM model), the SEB equation181

can be written as:182

SWin(1− αs) + εLWin = H + LE +G+ εσT 4
s (4)183

where SWin and LWin are the incoming shortwave and longwave radiation (W m−2), re-184

spectively, ε is the surface emissivity, H is the sensible heat flux (W m−2), LE is the latent185

heat flux (W m−2), G is the conductive or ground heat flux (W m−2), and εσT 4
s is the emit-186

ted longwave radiation by the surface (W m−2) where σ is the Stefan-Boltzmann constant187

(=5.67×10−8 W m−2 K−4) and Ts is the temperature of the surface (K) to which this SEB188

equation applies. The emitted longwave radiation is rearranged to the right-hand-side of the189

surface energy balance equation to emphasize that each term on the right-hand-side of Eq. 4 is190

a function of Ts while the terms on the left-hand-side of Eq. 4 are assumed to be atmospheric191

forcing for the surface and are not directly affected by Ts.192
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Each term on the right-hand-side of Eq. 4 is then linearized:193

H = λHTs + CH , (5)194

195

LE = λLETs + CLE (6)196

197

G = λGTs + CG, (7)198

199

εσT 4
s = λELWTs + CELW . (8)200

Here λs and Cs are the slopes and intercepts of these linear relations, respectively. The201

λs can be viewed as heat transfer efficiencies which have standard units of W m−2 K−1.202

The Cs have standard units of W m−2. The full expressions of λs and Cs can be found203

elsewhere [1, 13] and thus only the key controls of λs and Cs are briefly mentioned here.204

The convective heat transfer efficiency λH depends primarily on the wind speed and thermal205

stratification; the latent heat transfer efficiency λLE also depends on the wind speed and206

thermal stratification, but more importantly on the moisture and vegetation characteristics of207

the surface; the conductive heat transfer efficiency λG is mostly controlled by the heat capacity208

and thermal conductivity of the ground (or the roof material in our case); the longwave209

radiative heat transfer efficiency λELW is only a function of the current air temperature. For210

the intercepts, CH depends on the air temperature. Note that in the WRF-SLUCM model,211

the roof directly interacts with the atmosphere above the canyon. In other words, H is212

formulated based on the difference between the roof surface temperature and the atmospheric213

temperature above the canyon (TA, see Figure 1). As a result, CH depends on TA in WRF-214

SLUCM. The intercept CLE depends on the air temperature and air humidity; CG depends215

on the deep ground temperature (for the roof in WRF-SLUCM, CG depends on the building216

interior temperature); CELW is only a function of the current air temperature. For completely217

dry and non-evaporating roofs, λLE = 0 and CLE = 0.218

With this linear assumption, the SEB can be interpreted using Figure 6, where the hor-219

izontal black solid line represents the left-hand-side of Eq. 4 and is independent of Ts while220

the red line represents the right-hand-side Eq. 4 and is a linear function of Ts with a slope221

of λH + λLE + λG + λELW . The intersection of these two lines indicates an energy balance222

state. When the surface albedo is increased by ∆αs, the left-hand-side of Eq. 4 is reduced223

by SWin(−∆αs), assuming that SWin and εLWin remain constant. On Figure 6, it means224

that the horizontal black solid line is moved downward by SWin(−∆αs) (i.e., it becomes the225

horizontal black dashed line). Further assuming that the red line stays where it is, the change226

in the surface temperature can be readily obtained from simple geometry on Figure 6, as227

follows:228

∆Ts =
SWin(−∆αs)

λH + λLE + λG + λELW
, (9)229

which gives230

ACSs =
∆Ts

SWin(−∆αs)
=

1

λH + λLE + λG + λELW
. (10)231

The beauty of ACSs, as now demonstrated in Eq. 10, is that it can be related to various232

heat transfer efficiencies. These heat transfer efficiencies are equivalent to climate feedback233

parameters widely used in the climate science literature. Therefore, one might argue that by234

introducing the ACSs index and utilizing the linearized SEB model, the white roof problem,235

which has long been approached from the perspective of applied meteorology, is now reframed236

as a climate science problem. Eq. 10 clearly shows that ACSs cannot be a constant as the237

heat transfer efficiencies or climate feedback parameters vary with meteorological and surface238

conditions [1, 13].239
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Figure 6: A linearized SEB model for ACSs. The black solid line (horizontal) represents
the left-hand-side of Eq. 4 and is independent of Ts while the red line represents the right-
hand-side Eq. 4 and is a linear function of Ts with a slope of λH + λLE + λG + λELW .
The intersection of these two lines indicates an energy balance state. The black dashed line
(horizontal) represents the left-hand-side of Eq. 4 when the albedo is increased by ∆αs.

Eq. 10 is the simplest case where the four feedbacks are the most fundamental, stabilizing240

feedbacks in the studied system (in this case, the surface). By analogy, they are similar to241

the Planck feedback (also referred to as the Planck response) in the context of global climate242

change. One can incorporate additional feedback parameters. To do so, the right-hand-side243

of the SEB equation (Eq. 4) is first denoted as R, namely, R = H + LE + G + εσT 4
s . The244

difference caused by an increase in the roof albedo on both sides of the SEB equation still has245

to be balanced, namely, ∆ [SWin(1− αs) + εLWin] = ∆R. Further assuming that SWin and246

εLWin are not affected by the increase in roof albedo results in SWin(−∆αs) = ∆R. Hence,247

the ACSs can be expressed as248

ACSs =
∆Ts

SWin(−∆αs)
=

∆Ts

∆R
=

1
∆R
∆Ts

. (11)249

Since R = H +LE +G+ εσT 4
s = (λH + λLE + λG + λELW )Ts + (CH +CLE +CG +CELW ),250

we can further derive251

∆R

∆Ts
=

∂R

∂Ts
252

+
∂R

∂λH

∆λH

∆Ts
+

∂R

∂λLE

∆λLE

∆Ts
+

∂R

∂λG

∆λG

∆Ts
+

∂R

∂λELW

∆λELW

∆Ts
253

+
∂R

∂CH

∆CH

∆Ts
+

∂R

∂CLE

∆CLE

∆Ts
+

∂R

∂CG

∆CG

∆Ts
+

∂R

∂CELW

∆CELW

∆Ts
, (12)254

where255

∂R

∂Ts
= λH + λLE + λG + λELW . (13)256

Substituting Eqs. 12 and 13 into Eq. 11 yields a full equation for ACSs, as follows:257

ACSs =
1

λH + λLE + λG + λELW+
∂R
∂λH

∆λH
∆Ts

+ ∂R
∂λLE

∆λLE
∆Ts

+ ∂R
∂λG

∆λG
∆Ts

+ ∂R
∂λELW

∆λELW
∆Ts

+
∂R
∂CH

∆CH
∆Ts

+ ∂R
∂CLE

∆CLE
∆Ts

+ ∂R
∂CG

∆CG
∆Ts

+ ∂R
∂CELW

∆CELW
∆Ts

. (14)
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It is now clear that Eq. 10 is a simplified version of Eq. 14 by assuming ∆R/∆Ts ≈ ∂R/∂Ts258

(or equivalently, by assuming the red line on Figure 6 remains unchanged when the surface259

albedo is altered). This assumption is not always valid. For example, λH might change when260

the surface albedo is altered, as atmospheric stability increases and convective heat transfer261

becomes less efficient with a higher surface albedo due to reduced sensible heat flux. This262

change of λH alters the slope of the red line on Figure 6. The significance of such feedback263

can be quantified by the term ∂R
∂λH

∆λH
∆Ts

, which can be viewed as a new feedback parameter.264

However, fully understanding the importance of these new feedback parameters is outside the265

scope of this study.266

Before applying Eq. 10 to analyzing the WRF simulation results, it is important to267

comment on the relevant time scales. Eq. 10 relies on the linear relations between four268

fluxes and surface temperature (Eqs. 5-8) and ignores many feedbacks such as the change of269

λH . These assumptions tend to work better at long-term time scales (e.g., averages over all270

summer months within a 30-year period). At long-term time scales, Eq. 10 can be used to271

interpret the spatial variability [22] and other variability (e.g., introduced by varying model272

parameterizations) of white roof effects. At short time scales, Eq. 10 has to be used carefully273

or should not be used. For example, Eq. 10 cannot be used to interpret the nighttime274

effects of white roofs, since treating SWin(−∆α) as the forcing is problematic at night when275

the incoming shortwave radiation is zero. This is partly why the WRF results presented276

earlier have been averaged over the entire simulation period, without separating daytime277

from nighttime. However, the time scale remains short since the WRF simulations only span278

five days. Whether Eq. 10 can be used to interpret the spatial variability of white roof effects279

at multi-day time scales remains unclear, which frames the scope of the following section.280

Here it’s noted that multi-day simulations are commonly used to assess white roof effects in281

the urban climate literature [e.g. 11, 14, 18, 26] and thus addressing the applicability of Eq.282

10 at multi-day time scales has practical value.283

3.3 The Variability of ACSs and the Role of Convective Heat Transfer Ef-284

ficiency285

As alluded to earlier, in this section Eq. 10 is used to interpret the spatial variability of286

ACSs simulated by WRF, as shown in Figure 5b. This spatial variability represents the287

neighborhood-to-neighborhood variability, not the city-to-city variability. Moreover, two sen-288

sitivity cases are conducted where different planetary boundary layer (including surface layer)289

parameterizations are used. The planetary boundary layer (including surface layer) param-290

eterizations represent the effects of turbulence and turbulent transport in the atmosphere,291

which can strongly modulate the dynamics of surface temperature and near-surface air tem-292

perature. Specifically, the default case (results already presented earlier) uses the YSU scheme293

[4, 5], and the two sensitivity cases use the MYNN [15, 16] and MYJ [6, 15] schemes, respec-294

tively. These sensitivity tests are not meant to be exhaustive, but rather to demonstrate the295

utility of Eq. 10.296

Figure 7(a, b, c) show the probability density functions (PDFs) of ACE (defined again297

based on T2), ACEs, and ACSs, respectively. The PDFs are estimated using Kernel density298

estimation, a non-parametric method that smooths discrete data points into a continuous299

distribution. It is clear that all three indices vary spatially within each case and vary across300

cases. The ACE values range from -5 to 10 K, the ACEs values vary between 8 and 14 K,301

while the ACSs values range between 0.03 and 0.045 K W−1 m2. Interestingly, when the YSU302

scheme is replaced by the MYNN and MYJ schemes, the negative ACE values become much303

less. These results indicate that the simulated white roof effects are sensitive to turbulence304

parameterizations.305
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Figure 7: PDFs of (a) ACE, (b) ACEs, (c) ACSs; (d) the relation between ACSs and λH

where the black line is a fitted curve based on Eq. 10, given by ACSs = 1/(λH +10.73). Only
the results over urban grid cells are included and the results are averaged over a 5-day period
from July 20 to July 24, 2022.

While the values of ACSs cannot be directly compared to those of ACEs and ACE due306

to differences in their dimensions, we can use the coefficients of variation, which are dimen-307

sionless, to characterize their variability. For each case where the variability is due to spatial308

variations, the coefficients of variation for ACSs and ACEs are of the same order of magni-309

tude, but are an order of magnitude smaller than those for ACE. Comparing ACSs to ACEs,310

the coefficients of variation are always smaller for ACSs; namely, the variability of ACSs is311

more constrained than that of ACEs. This result implies that part of the spatial variability312

associated with ACEs is caused by the spatial variability of SWin, as can be inferred from313

Figure 5a.314

When compared across different cases, the MYNN case has very different ACEs values315

compared to the YSU case, but their ACSs values are similar. This is due to the fact that316

SWin are different between these two cases (Figure 8a). Therefore, normalizing −∆Ts/∆αs317

by SWin (i.e., moving from ACEs to ACSs) helps reduce the variability caused by SWin across318

cases. Note that the variability of SWin caused by changing turbulence parameterizations is319

quite small (on the order of 20-40 W m−2, as can be seen from Figure 8a). Even for such small320

variability of SWin, it is still better to approach the roof surface temperature change from321

the perspective of ACSs rather than ACEs. For large variability of SWin (e.g., when studying322

city-to-city variability or seasonal variability of white roof effects), normalizing −∆Ts/∆αs323

by SWin will be more important as shall be seen later.324

MYJ and YSU cases have similar SWin (Figure 8a), yet their ACSs values differ strongly325

(Figure 7c), suggesting that other factors must influence the results. Close inspection reveals326

that the MYJ case has a smaller near-surface wind speed than the YSU case (Figure 8b).327

The linearized SEB model provides the necessary tools to understand why ACSs is increased328

with reduced near-surface wind speed. As shown in Figure 7d, ACSs is a strong function of329
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Figure 8: PDFs of (a) SWin and (b) 10-m wind speed (WS) in the control runs (i.e., the roof
albedo of 0.2). Only the results over urban grid cells are included and the results are averaged
over a 5-day period from July 20 to July 24, 2022.

λH , the convective heat transfer efficiency. In neighborhoods with weaker convective heat330

transfer efficiency caused by reduced near-surface wind speed, the ACSs values are larger331

(c.f. MYJ to YSU in Figure 7c, d). Physically, this occurs because with weaker convective332

heat transfer efficiency, the roof surface temperature tends to be much higher, as less heat is333

transferred into the atmosphere. Under such conditions, increasing the roof albedo results in334

a more pronounced reduction in roof surface temperature. Conversely, when heat is efficiently335

convected into the atmosphere and the roof surface temperature is already low, increasing the336

roof albedo has a smaller impact.337

However, the objective here is not to determine why different planetary boundary layer338

parameterizations yield varying SWin and wind speed. Instead, the focus is on interpreting the339

simulated ACSs using the linearized SEB model (Eq. 10). For each case, the spatial variability340

of λH is found to be a key control of the spatial variability of ACSs, as shown in Figure 7d. To341

fully grasp this point, we need to take a closer look at the four climate feedback parameters in342

these WRF simulations. As discussed, λH is the convective heat transfer efficiency and thus343

depends on the wind speed and thermal stratification. Hence, λH is expected to vary spatially344

(and with turbulence parameterizations). In these simulations, λH varies between 12 to 22345

W m−2 K−1, as shown in Figure 7d. On the other hand, λLE , λG, and λELW have limited346

spatial variability in these simulations. During the simulation period, there is no rainfall and347

the roof is completely dry, leading to λLE = 0. The λG is largely determined by roof thermal348

properties (especially heat capacity and thermal conductivity)[13], which are prescribed inputs349

and do not vary across the domain [12]. The λELW scales with T 3
A and thus does not vary350

strongly in space given that TA is generally on the order of 300 K, yielding λELW ≈ 6 W m−2
351

K−1. The function ACSs = 1/(λH + C) (the black line in Figure 7d) provides a good fit to352

the simulation results, where C is determined via nonlinear least squares regression as 10.73353

± 0.02. The fitted C value (unit: W m−2 K−1) and that λELW ≈ 6 W m−2 K−1 suggest354

that λG ≈ 4.7 W m−2 K−1. This is consistent with previous work suggesting that λG has355

similar magnitude as λELW but is much smaller than λH [1]. In summary, only λH exhibits356

strong spatial variability in these simulations, while the spatial variability of the other three357

feedback parameters is limited, explaining why the spatial variability of λH is a key control of358

the spatial variability of ACSs. This does not mean that the spatial variability of these other359

feedback parameters is always not important. Since they are dependent on meteorological360

conditions and urban hygrothermal properties, their spatial variability may become relevant361
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Figure 9: PDFs of (a) ACE, (b) ACEs, (c) ACSs; (d) the relation between ACSs and λH

where the black line is a fitted curve based on Eq. 10, given by ACSs = 1/(λH + 7.31). Only
the results over urban grid cells are included and the results are averaged over a 5-day period
from Feb 10 to Feb 14, 2022.

under certain circumstances [22].362

To corroborate these findings, similar simulations are conducted for a wintertime period363

(Feb 10-14, 2022, with a spin-up day of Feb 9) when the average incoming solar radiation is364

about 100 W m−2 (i.e., about 1/3 of the average incoming solar radiation during the summer-365

time period). The analysis is repeated and results are shown in Figure 9. Comparing Figure 9366

to Figure 7 reveals that the ACE and ACEs values differ strongly between summer and winter367

periods. In contrast, the ACSs values are more consistent between the two periods. Among368

the three indices, the coefficients of variation are the smallest for ACSs, again highlighting the369

importance of normalization by SWin. Moreover, the variability of ACSs is largely explained370

by λH (e.g., the MYJ case again has the largest ACSs values because of the smallest near-371

surface wind speeds). However, the fitted line in Figure 9d becomes ACSs = 1/(λH + 7.31).372

The value of 7.31 ± 0.01 (unit: W m−2 K−1) is reduced compared to its summer counterpart,373

partly due to the reduction of λELW to about 4.5 W m−2 K−1 at 270 K.374

These results demonstrate the utility of the linearized SEB framework. While not all375

feedback parameters are readily available or can be easily computed such as λG at short time376

scales, the physical insights offered by the linearized SEB framework underscore its value as377

a diagnostic tool for understanding the variability of ACSs.378

4 Final Remarks379

By focusing on the roof surface temperature and utilizing concepts like climate forcing, sen-380

sitivity, and feedback, the white roof problem is reframed as a climate science problem. A381

new index called Albedo Cooling Sensitivity (ACSs) is proposed and a linearized SEB model382

is utlized to understand the variability of ACSs. The spatial variability of ACSs simulated383
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by WRF and the influence of turbulence parameterizations on ACSs are examined, where the384

convective heat transfer efficiency is found to play an important role.385

The purpose of this paper is not to discredit the concept of ACE, but rather to provide386

a stepping stone towards understanding the white roof effects. The ACSs concept could387

and perhaps should be used jointly with ACE. More broadly, approaching urban adaptation388

challenges from the perspective of climate science can generate new insights that could not389

be obtained if these problems were only treated in the realm of applied meteorology. The use390

of concepts of forcing, sensitivity, and feedback should be embraced. A few more research391

examples are briefly discussed to emphasize the value of these concepts. First, [23] examined392

the cooling benefits of irrigation on green roofs and treated the change of latent heat flux due393

to irrigation as the forcing (unlike in the model presented here where the change of latent394

heat flux is viewed as a response). Their model successfully explained the spatial variability395

of cooling benefits of green roof irrigation. Second, previous studies found that urban trees’396

cooling efficiency, defined as the magnitude of land surface temperature reduction per 1%397

increase in fractional tree cover, tends to be stronger in hot and dry cities [25]. This can be398

understood again from the perspective of changes in the latent heat flux (the forcing): a 1%399

increase in fractional tree cover tends to result in a stronger increase in latent heat flux in400

hot and dry regions than in cool and humid regions where latent heat flux is more controlled401

by energy availability. Third, [24] reviewed previous modeling studies on the warming effects402

of anthropogenic heat flux (QAH) and found large discrepancies in terms of changes of urban403

air temperature (∆T ) due to anthropogenic heat fluxes. However, the sensitivity of urban air404

temperature to anthropogenic heat flux (∆T/∆QAH) showed consistency across studies. They405

further found that feedbacks introduced by convective heat transfer efficiency and its variation406

were key to explaining the seasonal variations of ∆T/∆QAH . These research examples further407

demonstrate the power of concepts of climate forcing, sensitivity, and feedback in urban408

adaptation research.409

Lastly, can concepts of climate forcing, sensitivity, and feedback still offer insights if the410

focus was near-surface air temperature? This remains an open question. First, even for the411

white roof problem it is unclear whether SWin(−∆α) represents a forcing for the near-surface412

air, as it does not enter the energy budget of near-surface air. Perhaps a better candidate is413

∆H, which is still related to SWin(−∆α) especially at long-term time scales. Second, unlike414

the one-dimensional SEB equation which provides a framework for understanding surface415

temperature dynamics, the energy budget of near-surface air is three-dimensional (unless416

some idealization is applied to the near-surface air such as the urban canopy air in SLUCMs417

[24] or the constant flux layer [21]) and thus much more complicated. It is unclear whether418

the near-surface air budget can provide the same general framework like the SEB equation419

based on which sensitivities and feedback parameters can be connected. Addressing these420

challenges are left for future work.421
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