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Abstract

White roof is a widely-studied urban heat mitigation strategy and frequently incor-
porated into climate adaptation plans by cities. Assessing the effects of white roofs on
temperature has often been approached from the perspective of applied meteorology. Here,
the white roof problem is reframed as a climate science problem by focusing on the roof
surface temperature, incorporating concepts of climate forcing, sensitivity, and feedback,
and utilizing a linearized surface energy balance (SEB) model. Different from the Albedo
Cooling Effectiveness (ACE) index used for quantifying white roof effects, a new index
called Albedo Cooling Sensitivity (ACSs, where the subscript ‘s’ indicates surface) is pro-
posed as a stepping stone towards understanding white roof effects. The variability of
ACSs simulated by the Weather Research and Forecasting (WRF) model is found to be
strongly related to the variability of convective heat transfer efficiency. It is recommended
that climate forcing, sensitivity, and feedback be systematically integrated into the anal-
ysis of diverse urban adaptation strategies.

Keywords: Urban Heat Mitigation, White Roof, Albedo Cooling Effectiveness, Albedo Cool-
ing Sensitivity

1 Introduction

Urban meteorology and climatology are often viewed as a branch of applied meteorology and
climatology [20]. According to [2], applied climatology covers four basic areas: 1) design of
structures and planning of activities; 2) assessments of current and past conditions, including
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evaluation of extreme events; 3) study of the relationships between weather/climate condi-
tions and those in other parts of the physical and socioeconomic worlds; and 4) operation
of weather-sensitive systems that employ climatic information in making decisions. Clearly,
urban climatology fits into this scope. For example, urban meteorological and climate infor-
mation is pivotal for the design of buildings and other infrastructure in cities.

As urban populations grow and global temperatures rise, urban meteorology and climatol-
ogy are playing an increasingly crucial role in fostering more sustainable, resilient, and livable
cities. A case in point is climate adaptation, particularly in relation to heat mitigation. One
area of active research in urban meteorology and climatology is the assessment of the ef-
fectiveness of climate action plans using numerical modeling. This line of research has been
primarily approached from the perspective of applied meteorology, where the effects of various
adaptation strategies (on temperature and other environmental variables) are quantified for
studied cities and periods [e.g. 11].

The premise of this paper is that evaluating the effectiveness of climate action plans offers
not only opportunities to test and improve our simulation capabilities, but also new avenues
to enhance our understanding of urban climate processes. White roof, a widely studied heat
mitigation strategy, is used as an illustrative example.

2 Albedo Cooling Effectiveness (ACE)

2.1 Definition and Calculation

The basic physics of the white roof problem are straightforward: as the roof surface albedo
(α) is increased, more solar radiation is reflected and thus less is absorbed, leading to less
sensible heating of the near-surface air and less heat conduction into the roof deck and thus
building interior. A common theme in urban climate research over the last two decades
has been developing physically based modeling tools to simulate the urban environment,
based on which the white roof effects can be quantified. A highly successful model for such
purposes [3] is the so-called single-layer urban canopy model (SLUCM) [9], where an idealized
urban canyon consisting of roof, wall, and canyon floor (Figure 1a) is used to represent three-
dimensional, complex urban environments in coarse-resolution weather and climate models
(e.g., the Weather Research and Forecasting or WRF model [19]). Using this idealized canyon
representation of urban environment, white roofs can be readily simulated by increasing the
albedo of the roof facet (c.f., Figure 1c and 1a).

A typical study of SLUCM-enabled simulation of white roof effects is shown in Figure
2. Here the simulations are performed for the greater Boston area over a 5-day heatwave
event (July 20-24, 2022, with a spin-up day of July 19) using WRF (version 4.2.2). The
domain configurations and physical parameterizations follow a previous study [12], where
model validation can be also found. To quantify the white roof effects, two runs are performed:
a control run with the roof albedo of 0.2 (Figure 2a) and a high albedo run with the roof
albedo of 0.6 (Figure 2b). Here the simulated near-surface air temperature (represented by
the widely used 2-m air temperature T2) in the domain with a spatial resolution of 1 km is
shown. Focusing on urban grid cells, the majority of urban land experiences lower T2 in the
high albedo run (c.f., Figure 2b and 2a), as expected. However, in certain areas T2 increases
in the high albedo run (more about this later). The difference between the high albedo run
and the control run in terms of T2 (denoted as ∆T2, where ∆ indicates the difference between
the high albedo run and the control run with the high albedo run minus the control run)
ranges from -0.6 to 0.2 K (Figure 2c).

An index called Albedo Cooling Effectiveness (ACE) is often used to quantify the effec-
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Figure 1: (a) A schematic of the SLUCM in WRF. For each grid cell that is classified as an
urban grid cell, WRF-SLUCM treats the grid cell as a combination of an impervious part
(with a fraction of furban) and a pervious grass part (with a fraction of 1 − furban). In this
figure, T is temperature and r is the resistance for heat transfer, and the subscripts A, R,
W, C, G, GRASS represent atmosphere, roof, wall, canopy air, canyon ground, and grass,
respectively. H, R, G represent the building height, the roof width, and the canyon width,
respectively. (c) Similar to (a) but with white roof. (b) A schematic for changes (∆) in
temperatures due to white roofs. The solid line indicates the temperature profile without
white roofs and the dashed line indicates the temperature profile with white roofs. White
roofs lead to cooler surface temperature Tsurface of this entire grid cell, which further leads to
cooler 2-m air temperature T2 and atmospheric temperature TA. Here it should be emphasized
that Tsurface is an aggregated surface temperature of the entire grid cell, and is not an area-
averaged surface temperature across all facets within this grid cell. (d) Similar to (b) except
that the atmospheric temperature TA is increased when white roofs are implemented, leading
to increased 2-m air temperature T2. In (b, d), the temperature profile within the surface layer
is assumed to be logarithmic for illustration purposes, although in reality the temperature
profile is not always logarithmic. A change in the slope of the temperature profile due to
white roofs indicates a change of atmospheric stability within the surface layer.
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Figure 2: White roof effects on 2-m air temperature (T2) over the greater Boston area sim-
ulated by WRF at a spatial resolution of 1 km (roughly corresponding to the neighborhood
scale). (a) T2 of the control run (K), (b) T2 of the high albedo run (K), (c) ∆T2 (K), (d) ACE
(K). The inset in (d) shows the histogram of ACE. Only the results over urban grid cells are
shown and the results are averaged over a 5-day period from July 20 to July 24, 2022.
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tiveness of reflective materials [7, 8], defined as

ACE = −∆T

∆α
, (1)

where ∆T (K) is the change of neighbourhood scale (on the order of a few hundred meters
to a kilometer), near-surface air temperature due to the change in the neighbourhood scale
albedo (∆α). The change in the neighbourhood scale albedo (∆α) can be further expressed as
∆α = ∆αsfs, where the subscript ‘s’ refers to the modified surface. Hence, ∆αs is the change
in albedo of the modified surface and fs is the horizontal area of modified surface divided by
the horizontal area of the neighborhood. In the WRF results shown in Figure 2d, ACE is
computed as −∆T2/(∆αRfR), where the subscript ‘R’ indicates that the modified surface is
the roof with ∆αR = 0.6− 0.2 = 0.4. Note that within each grid cell, only a fraction of land
is the impervious land (i.e., furban in Figure 1a) and only a fraction of the impervious land is
roof (i.e., R/(R+G) in Figure 1a). In these WRF simulations, the impervious land fraction
varies across the domain, resulting in spatially variable fR.

The ACE values reported by different modeling studies in the literature range from 0 to
20 K, as summarized in a recent review [8]. Focusing on a sub-sample of 47 higher quality
modeling studies, the reported ACE values range from 2 to 6 K [8]. In the simulations shown
in Figure 2, the majority of ACE values ranges from -2 to 8 K, with a median ACE value of
2.2 K and a mean ACE value of 2.8 K. These median/mean ACE values are within the range
reported in previous studies [8].

2.2 Transferability and Interpretability

Intercomparing ACE values from different studies may lead to the mistaken perception that
ACE is a constant. To be clear, the ACE defined in Eq. 1 cannot be constant. At a minimum,
it must vary with incoming solar radiation (SWin). A simple thought experiment suggests
that in regions with stronger solar radiation, the same amount of increase in roof albedo should
theoretically result in a greater reduction in air temperature, assuming all other factors remain
equal. This is also why seasonally averaged or wintertime ACE values tend to be lower than
those during the summer [8].

A complete understanding of the spatio-temporal variability of ACE remains elusive, which
poses a problem since, regardless of the indices used to quantify the effects of white roofs,
their utility relies on our ability to understand (and even predict) their variability across time
and space. Without this understanding, the results reported in the literature would have
limited value for reference and, as a result, limited transferability. Under such conditions, the
problem becomes strictly an applied one, requiring recalculation of the values of these indices
whenever study locations or periods change.

A more subtle issue is that ACE is often defined with near-surface air temperature, which
is notoriously difficult to model in urban environments. The 2-m air temperature (T2) from
numerical models is widely used to represent the near-surface air temperature. However, its
interpretation over complex and tall urban canopies remains a challenge [17]. Even if we as-
sume that T2 is the correct temperature to use in this context, changes in T2 as the roof albedo
changes can be difficult to interpret. To demonstrate this, ∆T2 in Figure 2c is decomposed
into contributions from changes in various factors including the roof surface temperature (TR),
the atmospheric temperature above the urban canopy (TA), the wall and ground surface tem-
peratures (TB, TG), the grass temperature in the same grid cell (TGRASS), and heat transfer
resistances (see Figure 1 for the definitions of these temperatures and resistances), following
the decomposition method in an earlier study [12].

Here the decomposition is performed separately for grid cells with positive and negative
∆T2 values to highlight their differences and similarities. It can be seen that for both posi-
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Figure 3: (a) The decomposition of ∆T2 over urban grid cells with negative ∆T2 values (91%),
(b) The decomposition of ∆T2 over urban grid cells with positive ∆T2 values (9%), (c) The
decomposition of ∆T2 over all urban grid cells. The different bars represent, from left to right,
computed ∆T2 directly using WRF outputs, diagnosed ∆T2 from the decomposition method,
contribution from changes in the roof surface temperature (TR), contribution from changes
in the atmospheric temperature above the urban canopy (TA), contribution from changes in
the wall and ground surface temperatures (TW , TG), contribution from changes in the grass
temperature in the same grid cell (TGRASS), and contribution from changes in heat transfer
resistances. The error bars are standard deviations that indicate spatial variability.

tive and negative ∆T2 cases, contributions from the roof surface temperature are one of the
most important contributions and are consistently negative, implying that the roof surface
temperature is always reduced when the roof albedo is increased. This is not surprising given
that the cooling signal originates from the roof surface. However, contributions from other
factors such as the atmospheric temperature above the urban canopy, the grass temperature,
and the heat transfer resistances are not negligible. For negative ∆T2 cases (Figure 3a), the
atmospheric temperature above the urban canopy is also reduced as the roof albedo increases
(see Figure 1b for a schematic). However, for positive ∆T2 cases (Figure 3b), the atmospheric
temperature above the urban canopy is increased as the roof albedo increases (see Figure 1d
for a schematic). Changes in the atmospheric temperature above the urban canopy are ex-
tremely difficult to fully understand especially at the weather time scales, as these changes are
strongly affected or even dominated by non-local atmospheric processes. In the simulations
shown in Figure 2, it can only be conjectured that in certain regions warm advection causes
the atmospheric temperature above the urban canopy (TA) to increase even though the roof
surface temperature (TR) is reduced, leading to positive ∆T2 and thus negative ACE values.

There is no reason why the effects of white roofs cannot be defined using other temperature
metrics. In fact, a good candidate is the roof surface temperature (TR), which can serve as
an intermediate stepping stone. Intuitively, changes in roof albedo first cause the roof surface
temperature to change (see Figure 4a, b), which then drive other changes such as near-surface
air temperature, humidity, and wind fields. So the response of roof surface temperature to
albedo increase is perhaps easier (but not necessarily easy) to understand. This argument is
supported by the fact that changes in the roof surface temperature are always negative even
in places where changes in T2 are positive, as shown in Figure 4c. For comparison purposes,
an ACEs (Figure 4d) is defined based on the surface temperature and albedo changes of the
modified surface, as follows

ACEs = −∆Ts

∆αs
. (2)

Again, the subscript ‘s’ refers to the modified surface. In our case, ‘s’ refers to the roof but
the definition of ACEs is more general and not specific to the roof surface. Here it should
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Figure 4: Similar to Figure 2 but for roof surface temperature (TR). (a) TR of the control run
(K), (b) TR of the high albedo run (K), (c) ∆TR (K), (d) ACEs (K). The inset in (d) shows
the histogram of ACEs. Only the results over urban grid cells are shown and the results are
averaged over a 5-day period from July 20 to July 24, 2022.

also be pointed out that throughout the paper Ts, even when defined generally, refers to the
surface temperature of a facet (e.g., roof, wall, canyon floor, etc) shown in Figure 1. This is
different from Tsurface in Figure 1(b, d), which refers to an aggregated surface temperature
of the entire grid cell. In WRF, Tsurface is not simply an area-weighted average of the surface
temperatures across all urban facets; instead, its calculation is based on an energy balance
approach and hence ∆Tsurface ̸= ∆Tsfs [10, 12].

3 Albedo Cooling Sensitivity (ACS)

3.1 From Cooling Effectiveness to Climate Sensitivity

In climate science, changes in global average temperature (∆T , K) are often interpreted with
the associated climate forcing (∆F , W m−2), which is quantified at the top of the atmosphere
and is commonly referred to as the radiative forcing. While quantifying climate forcing at the
top of the atmosphere for the white roof problem may be challenging (and unnecessary if we
focus on local temperature changes), we can apply a similar concept at the surface. From the
surface perspective, the forcing in the white roof problem can be expressed as SWin(−∆α),
namely, the change of absorbed shortwave radiation assuming that SWin remains constant
when the surface albedo is altered. Hence, instead of linking ∆T to ∆α as in the ACE
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Figure 5: (a) The relation between ACEs (K) and incoming shortwave radiation (SWin, W
m−2). (b) The spatial pattern of ACSs (K W−1 m2). The inset in (b) shows the histogram
of ACSs. Only the results over urban grid cells are shown and the results are averaged over
a 5-day period from July 20 to July 24, 2022.

framework, a climate science inspired approach would be linking ∆T to SWin(−∆α).
To differentiate from ACE, this new index will be referred to as the Albedo Cooling

Sensitivity (ACS). Given that the forcing used is a surface forcing, ACS probably will work
better for understanding surface temperature changes. To emphasize this focus on surface
temperature, a subscript ‘s’ is added to ∆T , ∆α and ACS, as follows:

ACSs =
∆Ts

SWin(−∆αs)
= − ∆Ts

SWin∆αs
=

ACEs

SWin
. (3)

The ACSs defined this way has a standard unit of K W−1 m2 and can be interpreted as a local
surface climate sensitivity. Comparing Eq. 3 to Eq. 1, it is clear that ACSs specifically focuses
on surface temperature while ACE focuses on near-surface air temperature. Comparing Eq.
3 to Eq. 2 reveals that ACSs addresses the SWin dependence of ACEs, as shown in Figure 5a.
Not surprisingly, the stronger the SWin, the larger the ACEs. However, the scatter in Figure
5a suggests that ACSs is not a constant, whose spatial pattern is shown in Figure 5b. To
understand the spatial variability of ACSs, a linearized surface energy balance (SEB) model
[1, 13] is utilized, as discussed below.

3.2 A Linearized Surface Energy Balance (SEB) Model for ACSs

For a homogeneous surface (e.g., the roof surface in the SLUCM model), the SEB equation
can be written as:

SWin(1− αs) + εLWin = H + LE +G+ εσT 4
s (4)

where SWin and LWin are the incoming shortwave and longwave radiation (W m−2), re-
spectively, ε is the surface emissivity, H is the sensible heat flux (W m−2), LE is the latent
heat flux (W m−2), G is the conductive or ground heat flux (W m−2), and εσT 4

s is the emit-
ted longwave radiation by the surface (W m−2) where σ is the Stefan-Boltzmann constant
(=5.67×10−8 W m−2 K−4) and Ts is the temperature of the surface (K) to which this SEB
equation applies. The emitted longwave radiation is rearranged to the right-hand-side of the
surface energy balance equation to emphasize that each term on the right-hand-side of Eq. 4 is
a function of Ts while the terms on the left-hand-side of Eq. 4 are assumed to be atmospheric
forcing for the surface and are not directly affected by Ts.
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Each term on the right-hand-side of Eq. 4 is then linearized:

H = λHTs + CH , (5)

LE = λLETs + CLE (6)

G = λGTs + CG, (7)

εσT 4
s = λELWTs + CELW . (8)

Here λs and Cs are the slopes and intercepts of these linear relations, respectively. The
λs can be viewed as heat transfer efficiencies which have standard units of W m−2 K−1.
The Cs have standard units of W m−2. The full expressions of λs and Cs can be found
elsewhere [1, 13] and thus only the key controls of λs and Cs are briefly mentioned here.
The convective heat transfer efficiency λH depends primarily on the wind speed and thermal
stratification; the latent heat transfer efficiency λLE also depends on the wind speed and
thermal stratification, but more importantly on the moisture and vegetation characteristics of
the surface; the conductive heat transfer efficiency λG is mostly controlled by the heat capacity
and thermal conductivity of the ground (or the roof material in our case); the longwave
radiative heat transfer efficiency λELW is only a function of the current air temperature. For
the intercepts, CH depends on the air temperature. Note that in the WRF-SLUCM model,
the roof directly interacts with the atmosphere above the canyon. In other words, H is
formulated based on the difference between the roof surface temperature and the atmospheric
temperature above the canyon (TA, see Figure 1). As a result, CH depends on TA in WRF-
SLUCM. The intercept CLE depends on the air temperature and air humidity; CG depends
on the deep ground temperature (for the roof in WRF-SLUCM, CG depends on the building
interior temperature); CELW is only a function of the current air temperature. For completely
dry and non-evaporating roofs, λLE = 0 and CLE = 0.

With this linear assumption, the SEB can be interpreted using Figure 6, where the hor-
izontal black solid line represents the left-hand-side of Eq. 4 and is independent of Ts while
the red line represents the right-hand-side Eq. 4 and is a linear function of Ts with a slope
of λH + λLE + λG + λELW . The intersection of these two lines indicates an energy balance
state. When the surface albedo is increased by ∆αs, the left-hand-side of Eq. 4 is reduced
by SWin(−∆αs), assuming that SWin and εLWin remain constant. On Figure 6, it means
that the horizontal black solid line is moved downward by SWin(−∆αs) (i.e., it becomes the
horizontal black dashed line). Further assuming that the red line stays where it is, the change
in the surface temperature can be readily obtained from simple geometry on Figure 6, as
follows:

∆Ts =
SWin(−∆αs)

λH + λLE + λG + λELW
, (9)

which gives

ACSs =
∆Ts

SWin(−∆αs)
=

1

λH + λLE + λG + λELW
. (10)

The beauty of ACSs, as now demonstrated in Eq. 10, is that it can be related to various
heat transfer efficiencies. These heat transfer efficiencies are equivalent to climate feedback
parameters widely used in the climate science literature. Therefore, one might argue that by
introducing the ACSs index and utilizing the linearized SEB model, the white roof problem,
which has long been approached from the perspective of applied meteorology, is now reframed
as a climate science problem. Eq. 10 clearly shows that ACSs cannot be a constant as the
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Figure 6: A linearized SEB model for ACSs. The black solid line (horizontal) represents
the left-hand-side of Eq. 4 and is independent of Ts while the red line represents the right-
hand-side Eq. 4 and is a linear function of Ts with a slope of λH + λLE + λG + λELW .
The intersection of these two lines indicates an energy balance state. The black dashed line
(horizontal) represents the left-hand-side of Eq. 4 when the albedo is increased by ∆αs.

heat transfer efficiencies or climate feedback parameters vary with meteorological and surface
conditions [1, 13].

Eq. 10 is the simplest case where the four feedbacks are the most fundamental, stabilizing
feedbacks in the studied system (in this case, the surface). By analogy, they are similar to
the Planck feedback (also referred to as the Planck response) in the context of global climate
change. One can incorporate additional feedback parameters. To do so, the right-hand-side
of the SEB equation (Eq. 4) is first denoted as R, namely, R = H + LE + G + εσT 4

s . The
difference caused by an increase in the roof albedo on both sides of the SEB equation still has
to be balanced, namely, ∆ [SWin(1− αs) + εLWin] = ∆R. Further assuming that SWin and
εLWin are not affected by the increase in roof albedo results in SWin(−∆αs) = ∆R. Hence,
the ACSs can be expressed as

ACSs =
∆Ts

SWin(−∆αs)
=

∆Ts

∆R
=

1
∆R
∆Ts

. (11)

Since R = H +LE +G+ εσT 4
s = (λH + λLE + λG + λELW )Ts + (CH +CLE +CG +CELW ),

we can further derive

∆R

∆Ts
=

∂R

∂Ts

+
∂R

∂λH

∆λH

∆Ts
+

∂R

∂λLE

∆λLE

∆Ts
+

∂R

∂λG

∆λG

∆Ts
+

∂R

∂λELW

∆λELW

∆Ts

+
∂R

∂CH

∆CH

∆Ts
+

∂R

∂CLE

∆CLE

∆Ts
+

∂R

∂CG

∆CG

∆Ts
+

∂R

∂CELW

∆CELW

∆Ts
, (12)

where
∂R

∂Ts
= λH + λLE + λG + λELW . (13)
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Substituting Eqs. 12 and 13 into Eq. 11 yields a full equation for ACSs, as follows:

ACSs =
1

λH + λLE + λG + λELW+
∂R
∂λH

∆λH
∆Ts

+ ∂R
∂λLE

∆λLE
∆Ts

+ ∂R
∂λG

∆λG
∆Ts

+ ∂R
∂λELW

∆λELW
∆Ts

+
∂R
∂CH

∆CH
∆Ts

+ ∂R
∂CLE

∆CLE
∆Ts

+ ∂R
∂CG

∆CG
∆Ts

+ ∂R
∂CELW

∆CELW
∆Ts

. (14)

It is now clear that Eq. 10 is a simplified version of Eq. 14 by assuming ∆R/∆Ts ≈ ∂R/∂Ts

(or equivalently, by assuming the red line on Figure 6 remains unchanged when the surface
albedo is altered). This assumption is not always valid. For example, λH might change when
the surface albedo is altered, as atmospheric stability increases and convective heat transfer
becomes less efficient with a higher surface albedo due to reduced sensible heat flux. This
change of λH alters the slope of the red line on Figure 6. The significance of such feedback
can be quantified by the term ∂R

∂λH

∆λH
∆Ts

, which can be viewed as a new feedback parameter.
However, fully understanding the importance of these new feedback parameters is outside the
scope of this study.

Before applying Eq. 10 to analyzing the WRF simulation results, it is important to
comment on the relevant time scales. Eq. 10 relies on the linear relations between four
fluxes and surface temperature (Eqs. 5-8) and ignores many feedbacks such as the change of
λH . These assumptions tend to work better at long-term time scales (e.g., averages over all
summer months within a 30-year period). At long-term time scales, Eq. 10 can be used to
interpret the spatial variability [22] and other variability (e.g., introduced by varying model
parameterizations) of white roof effects. At short time scales, Eq. 10 has to be used carefully
or should not be used. For example, Eq. 10 cannot be used to interpret the nighttime
effects of white roofs, since treating SWin(−∆α) as the forcing is problematic at night when
the incoming shortwave radiation is zero. This is partly why the WRF results presented
earlier have been averaged over the entire simulation period, without separating daytime
from nighttime. However, the time scale remains short since the WRF simulations only span
five days. Whether Eq. 10 can be used to interpret the spatial variability of white roof effects
at multi-day time scales remains unclear, which frames the scope of the following section.
Here it’s noted that multi-day simulations are commonly used to assess white roof effects in
the urban climate literature [e.g. 11, 14, 18, 26] and thus addressing the applicability of Eq.
10 at multi-day time scales has practical value.

3.3 The Variability of ACSs and the Role of Convective Heat Transfer Ef-
ficiency

As alluded to earlier, in this section Eq. 10 is used to interpret the spatial variability of
ACSs simulated by WRF, as shown in Figure 5b. This spatial variability represents the
neighborhood-to-neighborhood variability, not the city-to-city variability. Moreover, two sen-
sitivity cases are conducted where different planetary boundary layer (including surface layer)
parameterizations are used. The planetary boundary layer (including surface layer) param-
eterizations represent the effects of turbulence and turbulent transport in the atmosphere,
which can strongly modulate the dynamics of surface temperature and near-surface air tem-
perature. Specifically, the default case (results already presented earlier) uses the YSU scheme
[4, 5], and the two sensitivity cases use the MYNN [15, 16] and MYJ [6, 15] schemes, respec-
tively. These sensitivity tests are not meant to be exhaustive, but rather to demonstrate the
utility of Eq. 10.

Figure 7(a, b, c) show the probability density functions (PDFs) of ACE (defined again
based on T2), ACEs, and ACSs, respectively. The PDFs are estimated using Kernel density
estimation, a non-parametric method that smooths discrete data points into a continuous
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distribution. It is clear that all three indices vary spatially within each case and vary across
cases. The ACE values range from -5 to 10 K, the ACEs values vary between 8 and 14 K,
while the ACSs values range between 0.03 and 0.045 K W−1 m2. Interestingly, when the YSU
scheme is replaced by the MYNN and MYJ schemes, the negative ACE values become much
less. These results indicate that the simulated white roof effects are sensitive to turbulence
parameterizations.

While the values of ACSs cannot be directly compared to those of ACEs and ACE due
to differences in their dimensions, we can use the coefficients of variation, which are dimen-
sionless, to characterize their variability. For each case where the variability is due to spatial
variations, the coefficients of variation for ACSs and ACEs are of the same order of magni-
tude, but are an order of magnitude smaller than those for ACE. Comparing ACSs to ACEs,
the coefficients of variation are always smaller for ACSs; namely, the variability of ACSs is
more constrained than that of ACEs. This result implies that part of the spatial variability
associated with ACEs is caused by the spatial variability of SWin, as can be inferred from
Figure 5a.

When compared across different cases, the MYNN case has very different ACEs values
compared to the YSU case, but their ACSs values are similar. This is due to the fact that
SWin are different between these two cases (Figure 8a). Therefore, normalizing −∆Ts/∆αs

by SWin (i.e., moving from ACEs to ACSs) helps reduce the variability caused by SWin across
cases. Note that the variability of SWin caused by changing turbulence parameterizations is
quite small (on the order of 20-40 W m−2, as can be seen from Figure 8a). Even for such small
variability of SWin, it is still better to approach the roof surface temperature change from
the perspective of ACSs rather than ACEs. For large variability of SWin (e.g., when studying
city-to-city variability or seasonal variability of white roof effects), normalizing −∆Ts/∆αs

by SWin will be more important as shall be seen later.
MYJ and YSU cases have similar SWin (Figure 8a), yet their ACSs values differ strongly

(Figure 7c), suggesting that other factors must influence the results. Close inspection reveals
that the MYJ case has a smaller near-surface wind speed than the YSU case (Figure 8b).
The linearized SEB model provides the necessary tools to understand why ACSs is increased
with reduced near-surface wind speed. As shown in Figure 7d, ACSs is a strong function of
λH , the convective heat transfer efficiency. In neighborhoods with weaker convective heat
transfer efficiency caused by reduced near-surface wind speed, the ACSs values are larger
(c.f. MYJ to YSU in Figure 7c, d). Physically, this occurs because with weaker convective
heat transfer efficiency, the roof surface temperature tends to be much higher, as less heat is
transferred into the atmosphere. Under such conditions, increasing the roof albedo results in
a more pronounced reduction in roof surface temperature. Conversely, when heat is efficiently
convected into the atmosphere and the roof surface temperature is already low, increasing the
roof albedo has a smaller impact.

However, the objective here is not to determine why different planetary boundary layer
parameterizations yield varying SWin and wind speed. Instead, the focus is on interpreting the
simulated ACSs using the linearized SEB model (Eq. 10). For each case, the spatial variability
of λH is found to be a key control of the spatial variability of ACSs, as shown in Figure 7d. To
fully grasp this point, we need to take a closer look at the four climate feedback parameters in
these WRF simulations. As discussed, λH is the convective heat transfer efficiency and thus
depends on the wind speed and thermal stratification. Hence, λH is expected to vary spatially
(and with turbulence parameterizations). In these simulations, λH varies between 12 to 22
W m−2 K−1, as shown in Figure 7d. On the other hand, λLE , λG, and λELW have limited
spatial variability in these simulations. During the simulation period, there is no rainfall and
the roof is completely dry, leading to λLE = 0. The λG is largely determined by roof thermal
properties (especially heat capacity and thermal conductivity)[13], which are prescribed inputs
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Figure 7: PDFs of (a) ACE, (b) ACEs, (c) ACSs; (d) the relation between ACSs and λH

where the black line is a fitted curve based on Eq. 10, given by ACSs = 1/(λH +10.73). Only
the results over urban grid cells are included and the results are averaged over a 5-day period
from July 20 to July 24, 2022.

Figure 8: PDFs of (a) SWin and (b) 10-m wind speed (WS) in the control runs (i.e., the roof
albedo of 0.2). Only the results over urban grid cells are included and the results are averaged
over a 5-day period from July 20 to July 24, 2022.

13



Li, D. ARC Geophysical Research (2025) 1, 5

and do not vary across the domain [12]. The λELW scales with T 3
A and thus does not vary

strongly in space given that TA is generally on the order of 300 K, yielding λELW ≈ 6 W m−2

K−1. The function ACSs = 1/(λH + C) (the black line in Figure 7d) provides a good fit to
the simulation results, where C is determined via nonlinear least squares regression as 10.73
± 0.02. The fitted C value (unit: W m−2 K−1) and that λELW ≈ 6 W m−2 K−1 suggest
that λG ≈ 4.7 W m−2 K−1. This is consistent with previous work suggesting that λG has
similar magnitude as λELW but is much smaller than λH [1]. In summary, only λH exhibits
strong spatial variability in these simulations, while the spatial variability of the other three
feedback parameters is limited, explaining why the spatial variability of λH is a key control of
the spatial variability of ACSs. This does not mean that the spatial variability of these other
feedback parameters is always not important. Since they are dependent on meteorological
conditions and urban hygrothermal properties, their spatial variability may become relevant
under certain circumstances [22].

To corroborate these findings, similar simulations are conducted for a wintertime period
(Feb 10-14, 2022, with a spin-up day of Feb 9) when the average incoming solar radiation is
about 100 W m−2 (i.e., about 1/3 of the average incoming solar radiation during the summer-
time period). The analysis is repeated and results are shown in Figure 9. Comparing Figure 9
to Figure 7 reveals that the ACE and ACEs values differ strongly between summer and winter
periods. In contrast, the ACSs values are more consistent between the two periods. Among
the three indices, the coefficients of variation are the smallest for ACSs, again highlighting the
importance of normalization by SWin. Moreover, the variability of ACSs is largely explained
by λH (e.g., the MYJ case again has the largest ACSs values because of the smallest near-
surface wind speeds). However, the fitted line in Figure 9d becomes ACSs = 1/(λH + 7.31).
The value of 7.31 ± 0.01 (unit: W m−2 K−1) is reduced compared to its summer counterpart,
partly due to the reduction of λELW to about 4.5 W m−2 K−1 at 270 K.

These results demonstrate the utility of the linearized SEB framework. While not all
feedback parameters are readily available or can be easily computed such as λG at short time
scales, the physical insights offered by the linearized SEB framework underscore its value as
a diagnostic tool for understanding the variability of ACSs.

4 Final Remarks

By focusing on the roof surface temperature and utilizing concepts like climate forcing, sen-
sitivity, and feedback, the white roof problem is reframed as a climate science problem. A
new index called Albedo Cooling Sensitivity (ACSs) is proposed and a linearized SEB model
is utlized to understand the variability of ACSs. The spatial variability of ACSs simulated
by WRF and the influence of turbulence parameterizations on ACSs are examined, where the
convective heat transfer efficiency is found to play an important role.

The purpose of this paper is not to discredit the concept of ACE, but rather to provide
a stepping stone towards understanding the white roof effects. The ACSs concept could
and perhaps should be used jointly with ACE. More broadly, approaching urban adaptation
challenges from the perspective of climate science can generate new insights that could not
be obtained if these problems were only treated in the realm of applied meteorology. The use
of concepts of forcing, sensitivity, and feedback should be embraced. A few more research
examples are briefly discussed to emphasize the value of these concepts. First, [23] examined
the cooling benefits of irrigation on green roofs and treated the change of latent heat flux due
to irrigation as the forcing (unlike in the model presented here where the change of latent
heat flux is viewed as a response). Their model successfully explained the spatial variability
of cooling benefits of green roof irrigation. Second, previous studies found that urban trees’
cooling efficiency, defined as the magnitude of land surface temperature reduction per 1%
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Figure 9: PDFs of (a) ACE, (b) ACEs, (c) ACSs; (d) the relation between ACSs and λH

where the black line is a fitted curve based on Eq. 10, given by ACSs = 1/(λH + 7.31). Only
the results over urban grid cells are included and the results are averaged over a 5-day period
from Feb 10 to Feb 14, 2022.

increase in fractional tree cover, tends to be stronger in hot and dry cities [25]. This can be
understood again from the perspective of changes in the latent heat flux (the forcing): a 1%
increase in fractional tree cover tends to result in a stronger increase in latent heat flux in
hot and dry regions than in cool and humid regions where latent heat flux is more controlled
by energy availability. Third, [24] reviewed previous modeling studies on the warming effects
of anthropogenic heat flux (QAH) and found large discrepancies in terms of changes of urban
air temperature (∆T ) due to anthropogenic heat fluxes. However, the sensitivity of urban air
temperature to anthropogenic heat flux (∆T/∆QAH) showed consistency across studies. They
further found that feedbacks introduced by convective heat transfer efficiency and its variation
were key to explaining the seasonal variations of ∆T/∆QAH . These research examples further
demonstrate the power of concepts of climate forcing, sensitivity, and feedback in urban
adaptation research.

Lastly, can concepts of climate forcing, sensitivity, and feedback still offer insights if the
focus was near-surface air temperature? This remains an open question. First, even for the
white roof problem it is unclear whether SWin(−∆α) represents a forcing for the near-surface
air, as it does not enter the energy budget of near-surface air. Perhaps a better candidate is
∆H, which is still related to SWin(−∆α) especially at long-term time scales. Second, unlike
the one-dimensional SEB equation which provides a framework for understanding surface
temperature dynamics, the energy budget of near-surface air is three-dimensional (unless
some idealization is applied to the near-surface air such as the urban canopy air in SLUCMs
[24] or the constant flux layer [21]) and thus much more complicated. It is unclear whether
the near-surface air budget can provide the same general framework like the SEB equation
based on which sensitivities and feedback parameters can be connected. Addressing these
challenges are left for future work.
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