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Abstract

The capture zone envelope of a pumping well consists of the streamlines that bound
the area of the aquifer that is eventually captured by the well. An approach is outlined
to delineate the capture zone envelopes of pumping wells in aquifers with uniform areal
recharge. Three types of uniform areal recharge are considered: recharge resulting in
straight head contours, circular head contours, and elliptical head contours. Two types
of stagnation points are present for wells in uniform areal recharge: saddle points and
high points. Each capture zone envelope passes through a saddle point. A new complex
polynomial expression is derived of which the stagnation points are among the roots.
The streamlines that form the capture zone envelope are traced from saddle stagnation
points by numerically integrating the analytic flow field against the direction of flow.
The approach may be applied to steady Dupuit-Forchheimer flow (both confined and
unconfined) in homogeneous aquifers with a horizontal base. Short Python scripts have
been developed and are made available to find all stagnation points, delineate the capture
zone envelopes, and visualize the results. Examples are presented for flow fields with
multiple wells in a variety of background flows created by uniform areal recharge.

Keywords: Groundwater, Capture Zone Delineation, Analytic Solution, Complex Potential

1 Introduction

The delineation of capture zones is a basic step in the design and protection of water supply
wells, and in the design of pump-and-treat systems. A capture zone is commonly delineated
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for a certain time. For example, all the water in a 5-year capture zone reaches the well within
5 years. The capture zone envelope encompasses all the capture zones. As such, the capture
zone envelope is the boundary between the water that is (eventually) captured by the well
and the water that is not captured by the well.

Every well in a steady, two-dimensional flow field without areal recharge has a stagnation
point associated with it [e.g., 3]. The capture zone envelope passes through this stagnation
point. The procedure to delineate the capture zone envelopes of a well field commonly consists
of two steps: First, find the stagnation points in the flow field, and second determine the
streamlines that pass through the stagnation points. Several alternative methods have been
developed for these two steps, depending on the complexity of the flow field.

Analytic equations for the stagnation point for one well in a uniform background flow
can be found in many standard texts [e.g., 2, 7]. Javandel and Tsang [11] derived equations
for the stagnation points of up to three wells with the same discharge, equally spaced on
a line perpendicular to a uniform background flow. Shan [21] presented equations for the
stagnation points of two arbitrarily located wells in a uniform background flow. Christ and
Goltz [4] expanded on the work of [21] and provided equations for the stagnation points of up
to four arbitrarily located wells in uniform background flow and gave polynomial equations
of which the roots (the stagnation points) can be obtained numerically for systems with more
wells. Fienen et al. [6] considered an arbitrary number of wells in uniform background flow
and allowed for an anisotropic conductivity field. They determined the stagnation points by
finding the roots of the same polynomial equations as [4] by computing the eigenvalues of the
companion matrix [e.g., 18]. Similar procedures were applied for wells near a vertical barrier
wall [1], a single well between two parallel rivers [10], and multiple wells in wedge-shaped
aquifers [20], peninsula-shaped aquifers [27], rectangular domains [27], strip-shaped aquifers
[16], and aquifers bounded by open or closed polygons [17]. All these cited references use
a complex potential and are formulated such that the stagnation points are the roots of a
complex polynomial.

Areal recharge was considered in only a few studies. Finding the stagnation points for flow
fields with areal recharge is more challenging, because it cannot be formulated in terms of a
complex potential. Lerner [13] derived an equation for the stagnation point for a single well in
a strip aquifer with uniform areal recharge. Bakker and Strack [3] developed a numerical pro-
cedure to find stagnation points of an arbitrary number of wells in a fairly general background
flow field simulated with analytic elements including uniform areal recharge; this approach
was implemented in the computer program CZAEM [24]. Mesa and Anderson [15] used stag-
nation points to trace capture zone envelopes for wells with uniform (radial) recharge and a
vertical barrier wall in the shape of a circular arc. Lu et al. [14] presented exact equations
for the stagnation point(s) for a single well plus a finite circular recharge area in an otherwise
uniform background flow. In this paper, equations are derived for the stagnation points for
multiple wells with a background flow consisting of uniform areal recharge and/or uniform
flow.

As mentioned, the capture zone envelopes may be delineated once the locations of the
stagnation points are known. In the absence of areal recharge, stagnation points are saddle
points. Water flows away from a saddle point in two directions and towards a saddle point
from two other directions; the three-dimensional potential surface mimics the shape of a saddle
around a stagnation point [e.g., 6, Fig. 1] . The two streamlines that form the capture zone
envelope end at a stagnation point. One of the streamlines that emanates from a stagnation
point ends at the well. The four streamlines that all meet at a stagnation point may be
delineated by contouring the stream function [e.g., 2, 4]. This is not done here, however,
because that approach only works for the case without areal recharge (i.e., flow governed by
Laplace’s equation). Another downside of contouring the stream function is that a branch
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cut, a jump in the stream function, extends from each well, which complicates the delineation
of the streamlines. Alternatively, the streamlines that form the capture zone envelope may be
computed through numerical integration of the analytic discharge vector against the direction
of flow, for example using a standard Runge-Kutta method [e.g., 2, 3, 6]. Two starting points
are needed, on opposite sides of each stagnation point, to start these streamlines. These
starting points may be chosen somewhat arbitrarily, because the velocity around a stagnation
point is very small [3] or more formally using the Hessian matrix of the discharge potential
[6].

The objective of this paper is to outline a procedure to delineate the capture zone envelopes
of multiple wells in a background flow that is the result of uniform areal recharge. The aquifer
is approximated as homogeneous, which is a common approximation in wellhead protection
studies [e.g., 12]; the effect of heterogeneous aquifer properties on capture delineation has
been investigated by, e.g., [5, 19, 25]. This paper is structured as follows. First, the solution
of stagnation points for multiple wells in a uniform background flow without areal recharge
is briefly reviewed and it is demonstrated that the stagnation points can be found and the
capture zones delineated with only a few lines of Python code using standard packages for
scientific computing. Next, new polynomial equations are derived to determine the stagnation
points for multiple wells in a variety of flow fields with uniform areal recharge. The delineation
of the capture zone envelopes from the stagnation points uses the same procedure as for the
case without areal recharge. Several examples are presented to demonstrate the veracity of
the presented approach.

2 Wells in Uniform Background Flow

The derivation of equations for the stagnation points of multiple wells in a uniform background
flow is reviewed here briefly and it is described how they can be computed using the numpy
package of Python [8]. Consider steady Dupuit-Forchheimer flow in a single homogeneous
aquifer with a horizontal base; use is made of a Cartesian x, y coordinate system. The
discharge vector is defined as the vertically integrated flux in the aquifer and is written as
minus the gradient of a discharge potential [e.g., 2, 22]

Qx = −∂Φ

∂x
, Qy = −∂Φ

∂y
, (1)

where Φ [L3/T] is the discharge potential, and Qx and Qy [L2/T] are the x and y components
of the discharge vector. For confined flow, or aquifers with a constant saturated thickness H
[L], the discharge potential is related to the head h [L] as

Φ = kHh, (2)

where k [L/T] is the hydraulic conductivity. For unconfined flow, the relationship is

Φ = 1
2k(h− zb)

2, (3)

where zb [L] is the elevation of the bottom of the aquifer.
In the absence of areal recharge, the discharge potential fulfills Laplace’s equation

∇2Φ = 0, (4)

and the problem may be formulated in terms of a complex potential [e.g., 2, 22]

Ω = Φ + iΨ, (5)
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where Ψ is the stream function, and i is the imaginary unit. The complex discharge function
W = Qx − iQy, the complex conjugate of the hodograph, may be obtained from the complex
potential as

W = Qx − iQy = −dΩ

dz
, (6)

where z = x+ iy is the complex coordinate.
The complex potential for N wells in an otherwise uniform background flow W = Wu is

Ω = −Wuz +

N∑
n=1

Qn

2π
ln(z − zn), (7)

where zn and Qn [L3/T] are the complex location and the discharge (positive for pumping
water out of the aquifer) of well n, respectively. The corresponding discharge vector is

W = Wu −
N∑

n=1

Qn

2π

1

z − zn
. (8)

The contributions of all wells may be combined into one fraction

N∑
n=1

Qn

2π

1

z − zn
=

F

P
, (9)

where F is a polynomial in z of order N − 1

F =
N∑

n=1

Qn

2π

N∏
m=1
m̸=n

(z − zm), (10)

and P is a polynomial in z of order N

P =

N∏
n=1

(z − zn). (11)

The discharge vector may now be written as

W = Wu − F

P
. (12)

The stagnation points are found by setting W (12) equal to zero, which gives

WuP − F = 0. (13)

This is a polynomial in z of order N . The N roots of (13) respresent the N stagnation points
in the aquifer.

The polynomial package of the Python package numpy [8] is used to define and manipulate
polynomials and to find their roots. It includes the functionality to define a polynomial
by specifying the roots, adding and multiplying polynomials, and computing the roots of
polynomials. The latter is done by computing the eigenvalues of the companion matrix, as was
already applied for groundwater flow by [6]. These functionalities are enough to assemble the
polynomial (13) and compute its complex roots (the stagnation points) as shown in Appendix
A.

The second step in the delineation of the capture zone envelopes is tracing streamlines
from the stagnation points against the direction of flow. The discharge vector field is known
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analytically (8). There are several Python packages to delineate streamlines from analytic
vector fields (e.g., the integration package of scipy [26]). The simplest method is probably the
method implemented in the streamplot function of the matplotlib package [9]. The input of
this function requires the discharge vector evaluated on a regular grid plus starting locations of
the streamlines. The streamplot function then computes the streamlines using a second-order
Runge-Kutta method and linear interpolation of the discharge vector between grid points. The
streamlines representing the capture zone envelope are obtained by specifying the integration
direction as backward, i.e., against the flow. The streamlines cannot start exactly at the
stagnation point, of course, as the discharge vector equals zero there. Two starting points are
chosen a small distance ε from a stagnation point and on opposite sides. The distance ε is
chosen so small that it is indiscernible that the streamlines don’t start from the same point.
For visual interpretation of the results, two additional streamlines are computed, starting
from the same two starting locations but integrated forward, i.e, with the flow. One of these
streamlines ends at the pumping well (provided the well is extracting water) and the other
flows away from the stagnation point.

3 Example: Capture Zone Envelopes for Five Wells in Uni-
form Flow

As an example, consider five pumping wells in an otherwise uniform background flow Qx = 0.4
m2/d and Qy = 0.3 m2/d. The locations and pumping rates of the wells (Case 1) are listed
in Table 1. The hydraulic conductivity and aquifer thickness (confined) or aquifer bottom
elevation (unconfined) are not needed as the capture zones depend on the discharge function
only. The capture zones are delineated using the approach outlined in the previous. The
results are shown in Figure 1a. Note that the capture zone of well 2 consists of four parts:
one part North of well 3, one part between wells 3 and 1, one part between wells 1 and 5, and
one part to the East of well 5.

For the second case, wells 3 and 5 are injecting water rather than extracting water (see
Table 1). The corresponding capture zone envelopes are shown in Figure 1b. Part of the
water injected by well 3 now flows to well 2, while part of the water injected by well 5 flows
to well 1 and another part flows to well 2.

Case 1 Case 2
well xw (m) yw (m) Q (m3/d) Q (m3/d)

1 -75 0 100 100
2 50 50 100 100
3 -50 100 50 −50
4 -150 -25 150 150
5 0 -100 100 −100

Table 1: Well data used in examples.

4 Flow Solutions for Uniform Areal Recharge

For the case of uniform areal recharge at a rate Nr [L/T] (positive for infiltration), the
discharge potential fulfills Poisson’s equation

∇2Φ = −Nr. (14)
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Figure 1: Example of five wells in uniform background flow. Equipotentials (filled grey
contours, darker grey is higher potential), capture zone envelopes (colored), and stagnation
points (light colored dots) for (a) Case 1 with five extraction wells, and (b) Case 2 with three
extraction and two injection wells.

Uniform areal recharge may result in many different flow fields depending on the boundary
conditions. Here, the boundary conditions are considered to be far away and result locally
in straight head contours, circular head contours, or elliptical head contours. These three
flow fields are referred to here as linear recharge, circular recharge, and elliptical recharge,
respectively.

First, consider linear recharge that results in flow in the x direction only with a ground-
water divide along the y-axis. The potential may be obtained from integration of (14) as

Φ = −Nr

2
x2 +Φ0, (15)

where Φ0 is the potential along x = 0. The corresponding components of the discharge vector
are

Qx = Nrx, Qy = 0. (16)

For flow fields with areal recharge, the discharge potential fulfills Poisson’s equation, which
means that it may not be represented as the real part of a complex potential. The components
of the discharge vector may, however, be combined into a complex discharge vector. For
example, for linear recharge (16), the complex discharge vector may be written as

W = Qx − iQy =
Nr

2
(z + z̄). (17)

The discharge vector is now written as a function of z and its complex conjugate z̄ = x− iy
(note that (z + z̄)/2 = x). The formulation of a vector field in terms of z and z̄, rather
than x and y, and the associated mathematical theory, is known as Writinger calculus. An
introduction on the use of Wirtinger calculus in the field of groundwater flow is given by
[22, 23]. The formulation of the discharge vector for a field of uniform areal recharge in terms
of z and z̄ facilitates the identification of stagnation points for multiple wells in a field of
uniform areal recharge, as will be shown in the following. No advanced concepts of Wirtinger
calculus are used in this paper.

6



M. Bakker ARC Geophysical Research (2025) 1, 7

(a) (b) (c)

Figure 2: Examples of uniform areal recharge. Equipotentials (grey), discharge vectors (ar-
rows), and high points (cross) for (a) straight equipotentials (linear recharge) for flow in
direction α = π/4, (b) circular equipotentials (circular recharge), and (c) elliptical equipoten-
tials (elliptical recharge).

Equation (17) represents flow in the x-direction only. The discharge vector for linear
recharge that results in flow in a direction that makes an angle α with the positive x-axis is

W =
Nr

2

(
e−2αiz + z̄

)
. (18)

For (18), the groundwater divide is a straight line that passes through the origin and makes
an angle α with the positive y-axis. The flow field for the case that α = π/4 is shown in Figure
2a. The location of the groundwater divide may be shifted by superimposing an appropriate
solution for uniform flow (W = Wu).

The discharge potential corresponding to (18) may be obtained with Wirtinger calculus
as (see Appendix B)

Φ = −Nr

8
(e−2αiz2 + e2iαz̄2 + 2zz̄) + Φ0. (19)

Note that Φ is a real function of both z and z̄. The expression for the discharge potential is
not needed for the analysis in this paper and is only presented for completeness. The potential
is contoured in the coming figures to aid in the understanding of the flow field.

Uniform areal recharge that results in circular or elliptical head contours may be obtained
through superposition of two solutions (18) with different angles α1 and α2 and potentially
different recharge rates N1 and N2

W =
N1

2

(
e−2α1iz + z̄

)
+

N2

2

(
e−2α2iz + z̄

)
. (20)

Note that the total areal recharge is Nr = N1 + N2. For example, the discharge vector for
circular recharge is obtained by substituting N1 = N2 = Nr/2 and α1 = 0, α2 = π/2 into
(20), which gives

W =
Nr

4
(z + z̄) +

Nr

4
(−z + z̄) =

Nr

2
z̄. (21)

The flow field has one stagnation point (Figure 2b), but it is not a saddle point. Groundwater
flows away from this stagnation point in all directions and is referred to as a high point. The
high point is located at (x, y) = (0, 0) and indicated with a black cross. The high point may
be shifted to an arbitrary location (x0, y0) by subtracting a uniform flow Wu = Nr(x0 − iy0)
from the solution, which gives

W =
Nr

2
(z̄ − z̄0), (22)
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where z̄0 = x0 − iy0.
As a second example, consider elliptical recharge at a rate Nr where the major principle

axis of the ellipse makes an angle π/4 with the positive y-axis. The aspect ratio of the ellipse is
governed by the ratio of N1 and N2 in (20). For example, consider the case that N1 = 4Nr/5,
α1 = π/4, and N2 = Nr/5, α2 = −π/4. Substitution of these values in (20) and gathering
terms gives

W = −3Nr

10
iz +

5Nr

10
z̄. (23)

The flow field has a high stagnation point at the origin and is shown in Figure 2c. More
elongated ellipses can be obtained by increasing N1 and decreasing N2.

In summary, the general form of the discharge vector for uniform areal recharge (20) and
a uniform flow term may be written as

W = az + bz̄ + c, (24)

where a, b, and c are parameters defined as (note that a and c may be complex):

a =
N1

2
e−2α1i +

N2

2
e2α2i, (25)

b =
N1 +N1

2
, (26)

c = Wu. (27)

5 Stagnation Points for Wells in a Field of Uniform Areal
Recharge

The discharge vector for N wells in a background flow of uniform areal recharge is obtained
by superimposing (24) and the discharge vector for N wells (the last term of (8))

W = az + bz̄ + c−
N∑

n=1

Qn

2π

1

z − zn
. (28)

Setting W = 0, using (9) for the last term of (28), and multiplication with P gives

aPz + bP z̄ + cP − F = 0, (29)

where P and F are given by (11) and (10), respectively. Recall that P and F are polynomials
in z of order N and N − 1, respectively, so that the first, third and fourth term of (29) are
polynomials in z of order N+1, N , and N−1, respectively. Unfortunately, the second term is
a polynomial in z of order N multiplied by z̄, the complex conjugate of z, which complicates
finding the roots of (29).

The roots (the stagnation points) of (29) may be found by first recognizing that when (29)
equals zero, then so must its complex conjugate

āP̄ z̄ + b̄P̄ z + c̄P̄ − F̄ = 0. (30)

Elimination of z̄ between the two polynomials (29) and (30) results in a polynomial equation
in z of degree (N +1)2. The roots of the original polynomial (29) are among the roots of this
polynomial.

Solving (29) for z̄ gives

z̄ =
F − aPz − cP

bP
. (31)
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F̄ is obtained as the complex conjugate of (10)

F̄ =

N∑
n=1

Qn

2π

N∏
m=1
m̸=n

(z̄ − z̄m). (32)

Substitution of (31) for z̄ in (32) gives

F̄ =

N∑
n=1

Qn

2π

N∏
m=1
m ̸=n

F − aPz − cP − z̄mbP

bP
. (33)

This equation is simplified to

F̄ =
F ∗

bN−1PN−1
, (34)

where

F ∗ =

N∑
n=1

Qn

2π

N∏
m=1
m̸=n

(F − aPz − bP z̄m − cP ). (35)

Similarly, P̄ is obtained as the complex conjugate of (11), which may be written as

P̄ =
P ∗

bNPN
, (36)

where

P ∗ =

N∏
n=1

(F − (az + bz̄n + c)P ). (37)

Substitution of (31), (34), and (36) for z̄, F̄ , and P̄ , respectively, in (30) gives

ā(F − aPz − cP )

bP

P ∗

bNPN
+

b̄P ∗z

bNPN
+

c̄P ∗

bNPN
− F ∗

bN−1PN−1
= 0. (38)

Finally, multiplication with bN+1PN+1 and gathering terms results in a polynomial in z of
order (N + 1)2

(āF − āaPz − ācP + b̄bPz + c̄bP )P ∗ − b2P 2F ∗ = 0. (39)

The roots of this polynomial may be found again by using the polynomial package of numpy.
The stagnation points are among these roots and are found by evaluating the discharge vector
(28) at these roots and selecting the ones where the discharge vector equals zero. High points
may be differentiated from saddle points by evaluating the discharge potential around the
stagnation point (the potential at a high point is a local maximum). Only saddle points are
used to delineate the capture zone envelope. The outlined procedure is again implemented in
a short Python program and several examples are presented in the remainder of this paper.

6 Example: OneWell in Three Types of Uniform Areal Recharge

As a first example, the capture zone envelope is delineated for a single well in the three types of
uniform areal recharge shown in Figure 2. The results are shown in Figure 3; saddle points are
indicated with a light colored dot and high points with a black cross. For all three examples,
the area inside the capture zone envelope is the same: the total infiltration inside the capture
zone envelope is equal to the discharge of the well. In Figure 3a, the background flow is
linear recharge and there are two saddle points. In Figure 3b, the background flow is circular
recharge and there is one saddle point and one high point. In Figure 3c, the background flow
is elliptical recharge. For this case, there are two saddle points and two high points.

9
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(a) (b) (c)

Figure 3: Examples of a single well in uniform areal recharge. The head contours for the
background flow are shown in Figure 2. Equipotentials (filled grey contours, darker grey is
higher potential), capture zone envelopes (colored), stagnation points (light colored dots),
and high points (crosses) for a well in background flow that is (a) linear recharge for flow in
direction α = π/4, (b) circular recharge, and (c) elliptical recharge.

7 Example: Multiple Wells in Uniform Areal Recharge

For the last examples, consider the five pumping wells of Case 1 in Table 1. Capture zones are
delineated for these five wells in two different types of uniform areal recharge. First, consider
circular recharge at a rate Nr = 2 mm/d centered at the origin. The capture zone envelopes
are shown in Figure 4. There are five saddle points and one high point.

Second, consider elliptical recharge with N1 = 0.5 mm/d, α1 = 0, N2 = 1.5 mm/d,
and α2 = π/2. The elliptical recharge is centered at (x, y) = (0,−200) by specifying Wu =
−200N2 = −0.3i m2/d. The capture zone envelopes for this case are shown in Figure 5. For
this case there are also five saddle points and one high point.

The five combined capture zones cover an area equal to 250,000 m2 for both cases. The
total infiltration on this area is equal to the combined discharge of the five wells (Qtot = 500
m3/d). The capture zones are quite different for the two cases. For example, in Figure 4, the
capture zone of well 1 consists of four sections, between the capture zones of the other four
wells. In Figure 5, the capture zones of well 1 and well 3 both consist of three sections.

8 Conclusions

A new procedure was outlined to delineate the capture zone envelopes of multiple wells in a
background flow of uniform areal recharge. Three types of uniform areal recharge were con-
sidered: fields that have straight head contours (referred to as linear recharge), circular head
contours (circular recharge), and elliptical head contours (elliptical recharge). The streamlines
that form a capture zone envelope pass through a saddle stagnation point. The stagnation
points for multiple wells in an otherwise uniform flow field can be determined as the roots of
a simple complex polynomial (13) with just a few lines of Python code (Figure A1). It was
shown that for the case with uniform areal recharge, the stagnation points can be found among
the roots of a more complicated complex polynomial (39), but the implementation in Python
is still straightforward (all Python code is available on github.com/mbakker7/capzones).
The capture zone envelope for an extraction well in uniform areal recharge has a finite area
such that the total amount of recharge inside the capture zone envelope is equal to the dis-
charge of the well. The presented approach can be applied to delineate detailed capture zone
envelopes for complicated well fields in uniform areal recharge. The method of images may

10
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Figure 4: Examples of five wells (Case 1 in Table 1) in circular recharge background flow
centered at the origin. Equipotentials (filled grey contours, darker grey is higher potential),
capture zone envelopes (colored), five saddle points (light colored dots), and one high point
(cross).
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Figure 5: Examples of five wells (Case 1 in Table 1) in elliptical recharge background flow
centered at (x, y) = (0,−200). Equipotentials (filled grey contours, darker grey is higher
potential), capture zone envelopes (colored), five saddle points (light colored dots), and one
high point (cross).
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be applied to include boundaries provided that the areal recharge also complies with these
boundary conditions.
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A Python Implementation

A Python function is presented to compute the stagnation points of an arbitrary number of
wells in uniform background flow (Figure A1). The function builds the complex polynomial
(13), and computes and returns the roots of the polynomial, which represent the complex
locations of the stagnation points. In Equation (13), P is a polynomial defined by its roots
(the locations zn of the wells), and F is a polynomial that is the sum of polynomials defined by
their roots. Polynomial (13) is obtained by multiplying polynomial P by Wu and subtracting
polynomial F .

Figure A1: Python function to compute the stagnation points of an arbitrary number of wells
in uniform background flow. The function returns an array of the complex locations of the
stagnation points.

B Discharge Potential

The discharge potential (19) corresponding to the discharge vector (18) is derived. It is known
from Wirtinger calculus that the discharge potential is related to the discharge vector as [e.g.,
23]

W = −2
∂Φ

∂z
. (40)
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Recall that z and z̄ are independent variables in Wirtinger calculus. Integration of (18) gives

Φ = −
∫

1
2Wdz = −Nr

4

(
e−2αi z

2

2
+ z̄z + f(z̄)

)
. (41)

The function f(z̄) is chosen such that Φ = 0 along the water divide, i.e., along the line
y = −x/ tan(α), which may be written in terms of z and z̄ as

z = −e2αiz̄, (42)

where it is used that x = (z+ z̄)/2 and y = (z− z̄)/(2i) Substitution of (42) for z in (41) and
setting the result to zero gives

f(z̄) = 1
2e

2αiz̄2. (43)

Finally, substitution of (43) for f(z̄) in (41) gives (19).
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