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Abstract

Numerical modeling of elastic wave propagation in the subsurface requires applicability
to heterogeneous, anisotropic and discontinuous media, as well as support of free surface
boundary conditions. Here we study the cell-centered finite volume method Multi-Point
Stress Approximation with weak symmetry (MPSA-W) for solving the elastic wave equa-
tion. Finite volume methods are geometrically flexible, locally conserving and they are
suitable for handling material discontinuities and anisotropies. For discretization in time
we have utilized the Newmark method, thereby developing an MPSA-Newmark discretiza-
tion for the elastic wave equation. An important aspect of this work is the integration of
absorbing boundary conditions into the MPSA-Newmark method to limit possible bound-
ary reflections.

We verify the MPSA-Newmark discretization numerically for model problems. Conver-
gence analysis of MPSA-Newmark is performed using a known solution in a medium with
homogeneous Dirichlet boundary conditions. The analysis demonstrates the expected con-
vergence rates of second order for primary variables (displacements) and between first and
second order for secondary variables (tractions). Further verification is conducted through
convergence analysis with the inclusion of absorbing boundary conditions. The stability
of the scheme is shown through numerical energy decay analyses for waves traveling with
various incidence angles onto the absorbing boundaries. Lastly, we present simulation ex-
amples of wave propagation in fractured, heterogeneous and transversely isotropic media
to demonstrate the versatility of the MPSA-Newmark discretization.

Keywords: Finite Volume Method, Elastic Wave Propagation, Absorbing Boundary Con-
ditions, Anisotropic Media, Heterogeneous Media

*Corresponding Author
E-mail addresses: ingrid.jacobsen@uib.no


https://orcid.org/0000-0002-2879-6691
https://orcid.org/0000-0002-0212-7959
https://orcid.org/0000-0003-1455-5704
https://orcid.org/0000-0001-6370-496X

I. K. Jacobsen, I. Berre, J. M. Nordbotten, I. Stefansson ARC Geophysical Research (2025) 1, 11

1 Introduction

Modeling of elastic waves in the subsurface is important in understanding natural and induced
earthquakes. Induced seismicity, e.g. related to geothermal energy extraction, COs-storage
and wastewater disposal, takes place in locations characterized by complex material compo-
sitions. Specifically, heterogeneous and anisotropic rock formations are highly relevant in all
the abovementioned fields of application. Solving elastic wave propagation within such com-
plex rock formations means that the numerical method must handle unstructured and general
grids and material anisotropy and heterogeneity. Moreover, simulations involving the Earth’s
surface require employment of the free surface boundary condition.

Several numerical methods have been developed and utilized to solve the elastic wave
propagation problem. Commonly studied methods within the research literature include those
within the families of spectral element (SEM) and discontinuous Galerkin (dG) methods.
Other methods such as finite difference (FD), pseudospectral (PSM), finite elements (FEM)
and finite volume (FV) methods have also been studied. All these methods have their own
advantages and drawbacks. For instance, finite difference and spectral element methods are
very efficient for elastic wave propagation problems, but they perform best in media without
strong structural complexities (e.g. fractures) and material heterogeneities Igel [12]. On the
other hand, finite volume and discontinuous Galerkin methods are naturally applicable to
discontinuous and heterogeneous media [3, 14, 37] and they are flexible in terms of arbitrary
cell shapes and unstructured grids Cardiff and Demirdzié¢ [3]. For an overview of numerical
methods for the elastic wave equation, we refer to Igel [12] and Seriani and Oliveira [28].

Finite volume and discontinuous Galerkin methods are closely related and share many
advantageous properties. As already mentioned, they support a wide range of grids, including
unstructured ones, which allow for representation of complex simulation domains. Such grid
flexibility is crucial for accurately representing fractures and heterogeneous media where the
material discontinuities do not coincide with orthogonal gridlines, as well as other geometrical
complexities such as surface topography or boreholes Igel [12]. In addition to this, finite
volume and discontinuous Galerkin methods can naturally enforce the free surface boundary
condition, which is of high relevance in simulations including the Earth’s surface. Although
finite volume methods offer some advantageous properties, they are not among the most widely
used for solving elastic wave propagation problems. This is due to finite volume methods often
being restricted to lower order, while discontinuous Galerkin methods are easily extended to
high order accuracy Igel [12]. However, the higher order accuracy comes at the expense of
additional computational cost, which may not be appropriate when geometric features reduce
the regularity of the solution.

As finite volume methods are widely used within the realm of flow in porous media,
developing and utilizing finite volume methods for mechanical deformation makes it possible
to have a unified solution approach for poroelastic solid-fluid interaction problems Nordbotten
[23]. Common solution procedures for such coupled problems often include solving each of the
subproblems with separate discretization schemes. See e.g. Kim et al. [16] for an example of a
finite element method for the mechanics and a finite volume method for the flow. Several works
have focused on utilizing a finite volume method for both flow and mechanical deformation,
providing a unified solution approach and consistent data structure for both subproblems
[24, 26, 31, 33]. All these works consider cell-centered finite volume methods for the coupled
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flow and static mechanical deformation problem. A natural extension is thus to develop finite
volume methods for dynamic mechanical deformation/elastic wave propagation which can
later, in a fully coupled manner, be used to solve poroelastic solid-fluid interaction problems
with the inclusion of seismic effects.

There are several finite volume methods for mechanical deformation, and as we will high-
light only a few, we refer to Cardiff and Demirdzi¢ [3] for an extensive review. The first
application of a cell-centered finite volume method to solid mechanics was a method for ho-
mogeneous and isotropic linear elasticity by Demirdzic et al. [7]. Early developments of finite
volume methods for elastic wave propagation include that of Dormy and Tarantola [8] which
use the velocity-displacement formulation of the elastic wave equation. Tadi [30] proposed
a second order accurate method for the second order displacement formulation with a focus
on natural application of traction boundary conditions. Higher order finite volume methods
for unstructured triangular and tetrahedral meshes include the arbitrary high order method
by Dumbser et al. [9]. A more recent development is that of Zhang et al. [38], which com-
bines techniques of high order and spectral finite volume methods for the 2D problem. Zhang
et al. [39] presented an extension of this methodology to three spatial dimensions. Lemoine
et al. [19] used a high-resolution finite volume method for wave propagation in orthotropic
poroelastic media on cartesian grids, which was later expanded to nonrectilinear mapped
grids by Lemoine and Ou [18]. Another finite volume method used for static mechanical
deformation is the work of Tukovié¢ et al. [35], which presents a detailed description of the
finite volume discretization of multiple deformable bodies with different solid material param-
eters. Cell-centered finite volume methods for anisotropic and heterogeneous media include
the multi-point stress approximation with weak symmetry (MPSA-W) by Keilegavlen and
Nordbotten [14] and the method of Terekhov and Tchelepi [32].

The finite volume MPSA-W method, which is up to second order accurate, applies to a
broad range of grids, can naturally enforce the free surface boundary condition and supports
heterogeneous and anisotropic media. In addition to this, MPSA-W is the vector problem
analogue of the finite volume Multi-Point Flux Approximation (MPFA) [1, 25|, a spatial
discretization that is shown to be a successful discretization method for solving problems
within flow in porous media Berre et al. [2]. MPSA-W is built on the same framework as
MPFA, meaning the two methods hold the same advantages of computational efficiency due
to minimal number of degrees of freedom and being able to solve problems in discontinuous,
heterogeneous and anisotropic media. Thus, the MPFA and the MPSA-W are examples of
methods that can be combined for a seamlessly coupled solution procedure for poroelastic
fluid-solid interaction problems. The MPFA-MPSA pair is available in simulation toolboxes
such as the Porous Microstructure Analysis (PuMA) Ferguson et al. [10], the MATLAB Reser-
voir Simulation Toolbox (MRST) Lie [21], as well as in PorePy Keilegavlen et al. [15] which
is used herein.

Motivated by the properties of the MPSA-W method for (quasi)static elastic and poroe-
lastic deformation problems in heterogeneous and anisotropic media, we present here for the
first time a study of the MPSA-W method for solving the elastic wave propagation prob-
lem. The spatial discretization is applied in combination with a Newmark time integration
scheme Newmark [22], which is a second order accurate implicit time integration scheme
widely used in computational solid mechanics. While explicit methods are often favorable for
solving elastic wave propagation due to the lower computational cost, they are restricted by
the CFL-condition for the time-step size. In contrast, using an implicit method avoids such
restrictions, allowing for larger time-steps in cases where the solution evolves more slowly
LeVeque [20]. Examples include solving poroelastic fluid-solid interaction problems where
long periods of quasi-static behavior may occur and small time-steps are not required. By
combining the spatial discretization, MPSA-W, and the temporal discretization, Newmark,
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we obtain the MPSA-Newmark method. The MPSA-Newmark method is up to second or-
der accurate in space and time, meaning it has balanced space/time accuracy for solving the
elastic wave equation.

Solving the elastic wave equation poses the question of how to deal with possible wave
reflections on the domain boundary. We have addressed this by employing the first order
absorbing boundary conditions first presented by Clayton and Engquist [5], which in practice
are time-dependent Robin-type boundary conditions. Therefore, this paper also provides a
presentation of how time-dependent Robin boundary conditions are discretized in MPSA.
As the structure of MPSA is like that of MPFA, the treatment of the boundary conditions
is analogous in both discretization schemes. This analogy extends the applicability of the
presented methodology for discretizing time-dependent Robin conditions to other multi-point
finite volume schemes.

The structure of the paper is as follows. In Section 2, we present the mathematical model
and the discretization. In Section 3 we present verification of the code through convergence
analyses for two different model problems: one regarding homogeneous Dirichlet boundary
conditions, and one regarding the inclusion of an absorbing boundary. Section 3 also presents a
numerical analysis of the scheme stability through energy decay investigations in an isotropic
media with all absorbing boundaries. In Section 4 we show simulation examples of wave
propagation in anisotropic, heterogeneous and fractured media. Concluding remarks are given
in Section 5.

2 Methodology

This section covers the mathematical model and the discretization of the problem. We refer
to Table 1 for an overview of the symbols used in the article.

2.1 Governing Equations

2.1.1 The Elastic Wave Equation

We consider propagation of elastic waves in a three-dimensional domain denoted €2, the reduc-
tion to two spatial dimensions being straightforward. As our interest is in elastic waves, we will
only consider infinitesimal deformations in an elastic material. The equation for conservation
of momentum then takes the form:

pii=V-0c+q inQ, (1)

Here p is the rock density, u = [ug, uy, uZ}T is the displacement, o is the stress tensor, ¢ is an
external body force and, using the dot notation for derivatives in time, i is the acceleration.
The constitutive stress-strain relationship is given for small deformations by Hooke’s law as:

o=2C:e€u), (2)
where C is the fourth order stiffness tensor and € (u) is the symmetric gradient of u:
1 T
() =5 (vu + (V) ) . (3)

For future reference, we present two examples of the stiffness tensor C. First, we present
C for an isotropic medium:

Cijki = Nijony + p (0051 + 0adjn) (4)
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Table 1: Symbols used in the text.

Symbol Symbol Description Unit
c Primary wave speed ms~!
C Stiffness tensor kgm~ls2
D,D Absorbing condition weight (continuous, discrete) kgm™2s7!
Dat, DAt D scaled with inverse time-step (continuous, discrete) kg m 252
E Energy kg m?s 2
Ey Initial energy kgm?s—?2
Eu Relative discrete L2-error of displacement -
Er Relative discrete L2-error of traction -
F Right-hand side of boundary conditions m or kgm~ g2
or kgm 2572
L Width of domain in convergence analysis m
n Unit normal vector —
n (superscript) Time-step number -
N, Number of cells -
Ny Number of time-steps -
q, q Body force, discrete body force kgm™2s72
Th Heterogeneity coefficient -
Tq Anisotropy coefficient -
R Robin weight kgm 2572
t Time S
T, T Traction, discrete traction kgm~ls2
u, U Displacement, discrete displacement m
w, W Velocity, discrete velocity ms~!
i, U Acceleration, discrete acceleration ms~2
v Symmetry axis vector for transversely isotropic media —
w Boundary traction weights kgm™2s72
I3 Time discretization parameter -
ol Time discretization parameter -
At Time-step size S
Ax Grid size m
€ Symmetric gradient of displacement mm~!
0 Wave rotation angle rad
A First Lamé parameter kgm~ls2
Al Transverse compressive stress parameter kgm~ts2
Al Perpendicular compressive stress parameter kgm~ls2
p Second Lamé parameter (shear modulus) kgm~!s72
o Transverse shear parameter kgm~1s ™2
w1 Transverse-to-perpendicular shear parameter kgm~ls2
1) Density kgm™3
o Stress tensor kgm™ls™2
T Internal traction weights kg m 2572
Q Simulation domain m? or m?
w Anisotropic region in €2 m? or m?
\Y% Nabla operator m~!
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where A is the first Lamé parameter, p is the second Lamé parameter, or the shear modulus,
and ¢;; is the Kronecker delta, taking the value 1 if i = j, and 0 otherwise. Secondly, we will
present C for a transversely isotropic medium Payton [27]. Transversely isotropic media are
represented by five independent material parameters, as opposed to only two as is the case
for isotropic media. The stiffness tensor for transversely isotropic media, where the axis of
symmetry aligns with the unit vector v = [v1, va, vg]T, is as follows:

Cijir = (A4 X)) 050k + ) (Oirdj1 + Gadjn)

— N\ (Bsjvpvr + dprvivy) 5)
+ (1L — py)) (Giwvjur + Gpvivp + Sivjog + 85030k)

+ ()‘II + AL+ 2 — Q/U_) vivjupy, for 4,5,k 1=1,2,3.

Here A is the first Lamé parameter, A\ and A, are the transverse and perpendicular com-
pressive stress parameters, respectively, and p) and p) are the transverse and transverse-
to-perpendicular shear parameters, respectively. Notice that by setting Ay = AL = 0 and
p| = t1, the dependence on v is eliminated from Equation 5. In that case, Equation 5
reduces to Equation 4, that is, the stiffness tensor for an isotropic solid.

To close the mathematical model, we have initial and boundary conditions. The boundary
conditions are detailed in dedicated sections below, while the initial conditions are included
in Section 2.2.3.

2.1.2 Boundary Conditions

We denote the boundary of the domain as I'; which we subdivide into four non-overlapping
parts, ' = I'y UI'p UT'gr UT'4. These are identified as the Neumann, Dirichlet, Robin and
Absorbing boundaries, respectively. We summarize these below.

Neumann boundary conditions are specified in terms of prescribed tractions, Fiy:

o-n=Fy on I'y, (6a)

where n is the outward pointing normal vector relative to the boundary. Dirichlet boundary
conditions are specified in terms of prescribed displacements, Fp:

u = FD on FD. (6b)

Robin conditions are specified as a weighted sum of traction and displacement at the boundary;,
with prescribed data Fr having units of traction:

o-n+Ru=Fp on I'g. (6¢)

The coefficient R is a 2-tensor weight for the displacement component of the Robin conditions.

It is often desirable to eliminate wave reflections at the boundaries when solving the
elastic wave equation. A natural choice is to employ boundary conditions that effectively
allow outward-going waves to pass through without reflection, often referred to as absorbing
boundary conditions. We consider here one of the simplest forms of absorbing boundary
conditions, namely the first order ones by Clayton and Engquist [5] which absorb waves at
normal incidence exactly Higdon [11]. The first order absorbing boundaries cannot perfectly
absorb waves incident at non-orthogonal angles. However, they do reduce the amplitude of
reflected waves from such angles, unlike Dirichlet and Neumann conditions, which fully reflect
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the waves. The absorbing conditions by Clayton and Engquist were originally expressed with
displacements and displacement gradients, but were later expressed in terms of displacements
and tractions by Tsogka [34]. We utilize the latter formulation

o-n+Du=Fy only, (7)

where D = <\/,0()\ +2u) nnT + \/pp (I — nnT)) The time-dependent component of the

boundary condition is the time derivative of the boundary displacement, namely the veloc-
ity, . For the sake of generality, we have included a non-zero forcing term F4 with the
understanding that the absorbing boundary condition is recovered by setting F4 = 0.

When referring to the boundary data in general, we will sometimes simply refer to F,
understanding that the subscript should be clear from context.

2.2 Discretization

In this section we will summarize the main structure of the space-time discretization, empha-
sizing the novel aspects of this work.

2.2.1 Multi-Point Stress Approximations Including Boundary Conditions

To simplify the exposition, we restrict the presentation to polyhedral domains 2. We then
consider a non-overlapping set T of k cells K; € T fori =1, 2, ..., k, such that UKZETE =
Q. A face on the boundary of a cell is denoted by f and is collected in the set of all faces, F.
The set of faces for a particular cell K is denoted Fx. In a similar manner, neighboring cells
of a face f are denoted 7. Figure 1 provides an illustration of an internal face f; (red) and
the corresponding 7y, (marked in pink). Cell K has volume m, and face f has measure my.
Boundary related grid quantities follow the same notation as mentioned above, but with a
tilde. For instance, f represents a boundary face, and the set of all boundary faces is F C F.
The set of boundary faces sharing a vertex with a face f is denoted Fy. We refer to Figure 1
for an illustration of the face fo (blue) which touches the boundary and the corresponding F o
(marked in black). Finally, sets of Dirichlet, Neumann, Robin or Absorbing boundary faces
will have subscripts D, N, R or A, analogously to their continuous counterparts. Figure 1
illustrates a two-dimensional unstructured grid with the grid-related quantities we will use
to present MPSA and boundary conditions, but the same relations hold also in three spatial
dimensions.
Integrating Equation 1 over a cell K € T and applying the divergence theorem gives

/K(m'iQ) dV:/ach-naK dA, (8)

where ngg is the outward pointing normal vector of the boundary 0K of cell K.
Dividing the surface integral into two sums of face tractions leads to the following general
expression which holds for any finite volume method:

/O‘naKdA— Z /0 ng.; dA+ Z /O’ Ny j dA. (9)
oK

FEFR\FK,N feFx.n

Here we have separated the sum into faces that lie on a Neumann boundary (where the
traction is known directly from the boundary conditions) and remaining faces. We now define
cell-averaged displacements and face-averaged tractions as:

1 1
uK:/ udV and TKVf:/J-nKJdA,
mK JK myrJy

7
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Figure 1: Illustration of grid-related quantities used to express the Multi-Point Stress Ap-
proximation and the discrete boundary conditions. The pink shaded area is the stencil for
approximating the flux over the internal face f; (marked in red). The blue shaded area and
the boundary faces F t, (marked in black) represent the stencil for approximating the flux
over the face fo (marked in blue) that has an edge touching the boundary I'.

where the bold font indicates that w and T are finite-dimensional vectors. Moreover, we note
that for any two cells K and K’ sharing a face f, the definition of the face traction only
differs by the orientation of ng . Therefore, due to the continuity of traction, it is clear
that Tk y = —T g r. Defining the cell-averaged source term analogously to the cell-averaged
displacements, and considering that density is piece-wise constant, Equation 8 becomes the
space-discrete (but still continuous in time) system of ordinary differential equations:

mg (piiK—qK) = Z~ meKJ-i- ~Z m]; Ff’ (10)
JEFK\FK,N fEFK,N
where i and gy are, respectively, the discrete acceleration and source for cell K, and F 7 is

the face-averaged Neumann boundary data for face f C T'y.

Equation 10 represents conservation of momentum in each finite volume K, and holds for
all (spatial) finite volume approximations to the elastic wave equations. What distinguishes
the various methods is how Hooke’s law is approximated, in the sense of expressing Tk in
terms of cell displacements u. Most finite volume methods for elasticity, including the MPSA
methods, are designed to be both linear as well as “local”. The methods are local in the sense
that, in the interior of the domain, the approximation of T'i s only depends on the set Ty C T
of cells that share a vertex with the face f (see the pink shaded region in Figure 1). For faces
touching the boundary, like fo (the face colored in blue in Figure 1), the approximation of
Tk includes the set Fy C F NI of boundary faces sharing a vertex with f. The set Fy is
empty for faces that do not share a node with the boundary. We limit the exposition to this
class of linear and local methods, which implies that each traction can be written as:

Tk,f= Z TK,f,LUL + Z wg, f,gF. (11)
LE'Tf gEj':f

The precise definition of the internal weights 7x ¢ 1 is not essential to the current pre-
sentation, and we refer to Keilegavlen and Nordbotten [14] for details. We emphasize that
the definition of the boundary weights wg f, 4 depends on the type of boundary. Again, the
previously mentioned reference is sufficient for defining the coefficients associated with the
time-independent boundary conditions (i.e. Neumann, Dirichlet and Robin). However, that
work did not consider absorbing boundary conditions, and we will detail the inclusion of such
boundary conditions below.



I. K. Jacobsen, I. Berre, J. M. Nordbotten, I. Stefansson ARC Geophysical Research (2025) 1, 11

The finite volume methods considered herein do not deal with the time-dependent aspect
of boundary conditions, as they are exclusively defined as spatial discretizations. Therefore,
the time derivative in Equation 7 must be discretized in time. Anticipating that we will use a
second order accurate implicit scheme to discretize the acceleration term, we choose to consider
a two-step implicit second order scheme for the boundary conditions, providing enhanced
accuracy over a first-order method. This provides the following time-discrete representation
of the absorbing boundary conditions:

o -n+Dau"™ = Das <§un_1 — ;un_2> + Fla, (12)
where Doy = ﬁp and At denotes the time-step size. The symbol n is used for both
the normal vector and the time-step number, where the distinction lies in whether n is a
superscript. When used in a superscript, n denotes the time-step number. Quantities with
superscript (n — k) correspond to the quantity at & time-steps back in time.

We recognize that the implicit problem to be solved, Equation 12, is on the form of a Robin
boundary condition (see Equation 6¢) where the Robin weight Da; scales as the inverse of the
time-step. As such, we note that the implementation of the absorbing boundary conditions
is from a spatial perspective equivalent to implementing Robin boundary conditions with a
non-zero data term obtained from the previous two time-steps. The fully discrete equation
for the tractions on non-Neumann boundaries is thus:

mn n
K. f = § , TK,f,LU[,
LET;

+ Z w1 Fy
gEFFN(I\L4)

4 1
+ Z WK, f.g (DAt (3“2 1_ gug 2) -+ FZ) .
géffﬂFA

We emphasize that the coefficients wg r 4, for the absorbing boundary conditions are
calculated as for Robin boundaries with Robin weights D a;.

2.2.2 The Newmark Method

For discretization in time on the internal part of the domain we use the second order accurate
Newmark method, which is widely used for solid mechanics. The original formulation of the
Newmark method reads Newmark [22]:

" = 4"l (1 — ) AT+ AL, (14)
n n—1 -n—1 At2 e —1 -1
u" =u" At + 5 [(1—2B)a" " +2pi"]. (15)

where 8 and  are the Newmark discretization parameters.

The primary variable of the MPSA discretization is displacement, meaning that we solve
the linear system with displacements as the unknowns. The Newmark method can be adapted
to suit the formulation of displacements as the only unknowns by rearranging Equation 14
and Equation 15 Chopra [4]. This provides us with the following expressions for the current
time-step velocity and acceleration:
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1 At?
'&/n = W Un — Un_l — At’l:tn_l — (1 — 2/8) Tﬂn_l . (17)

2.2.3 The Fully Discretized Model

The fully discretized model is obtained by combining the spatial and temporal discretiza-
tions presented in Sections 2.2.1 and 2.2.2. Substituting the discrete numerical tractions
(Equation 13) and the Newmark acceleration (Equation 17) into the space-discrete system of
ordinary differential equations represented by Equation 10 provides the fully discrete elastic
wave equation and boundary conditions with displacements as the unknowns. To close the
system of discretized equations, we assign initial boundary displacement values for the two
previous time-steps (see Equation 13), and initial values of displacement, velocity and accel-
eration on the internal part of the domain on the previous time-step. After initialization,
the fully discretized model equations are solved for the displacements. After the displace-
ments are obtained, the velocity and acceleration are updated according to Equation 16 and
Equation 17, respectively.

3 Analysis of the MPSA-Newmark Method

This section presents analysis of the MPSA-Newmark method with different types of boundary
conditions. The first subsection is dedicated to convergence analysis of the MPSA-Newmark
method with Dirichlet boundary conditions, including both theoretical considerations and
a numerical convergence study. The second subsection contains a numerical convergence
analysis and a numerical stability analysis of the MPSA-Newmark method with absorbing
boundary conditions.

We now define the following L?-norms for the cell quantity w and the face quantity T

[ullr = (Z mg (uk - UK)) ; (18)

KeT

N

1
ITllz= | > 5 (de —dr)ng(Tp-Tp)* | (19)
feF

where L, R € Ty in such a way that F, N Fgr # 0. The symbol d;, denotes the vector pointing
from the face-center z; of f to the cell-center x; of L. Similarly, dg is the vector pointing
from xf to xg. The symbol ny denotes the face normal vector pointing from cell R to cell L,
and the symbol D represents the dimension of the simulation domain. In the case of f € F ,
one of dy, dg is the zero vector.

The numerical errors of cell- and face-centered quantities are computed relative to the exact
solutions projected onto cell-centers and face-centers. Hence, we introduce the projection
II7 which returns a cell-centered quantity ((Il7u), = u(2k)) and the projection IIx which
returns a face-centered quantity ((ILF1); = T'(zy)). Then, considering plain type symbols
to denote exact analytical solutions and boldface symbols to denote discrete solutions, the
relative L2-errors £ are computed according to:

_ w7l

Eu = 20
Irall, (20)

10
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_ T -TIFT| £

Er = 21
= LT, )

Subscript u and T on the error symbol denote displacement and traction errors, respectively.
All errors are computed at the final time.

The linear systems in this section that arise from the 2D simulations are solved by a direct
solver. The linear systems from the 3D simulations are solved by GMRES with the Geometric
Algebraic Multigrid (GAMG) preconditioner in petsc4py Dalcin et al. [6]. Runscripts for
generating the numerical results presented in the following sections are accessible in the Docker
image found in Jacobsen et al. [13].

3.1 Convergence of MPSA-Newmark with Dirichlet Boundary Conditions

The combination of MPSA and Newmark can be understood in the context of the so-called
“Method of Lines” (MoL). Thus, we consider the problem after spatial discretization as a semi-
discrete problem (discrete in space and continuous in time), to which we thereafter apply the
temporal discretization to resolve the time evolution. This perspective is advantageous, as the
MoL is known to converge to the full solution of the time-space problem under quite weak con-
ditions for the spatial and temporal discretization (see e.g. [17, 36]). Relevant for the current
study is that for the space-time discretization to be convergent, the temporal discretization
needs to be C-stable (see Definition 4.1 in Verwer and Sanz-Serna [36]) independent of the
stiffness of the problem arising from the spatial discretization Verwer and Sanz-Serna [36]. A
common choice for stable discretization of second-order derivatives in time is the Newmark
method, and in particular with the parameter choices § = 1/4 and v = 1/2. This parameter
choice provides a stable and energy conserving scheme (see e.g. Subbaraj and Dokainish [29]),
and is also the choice we employ in the current work. Due to the linearity of our model prob-
lem, the convergence rate will be limited by the convergence rate of the spatial and temporal
discretization schemes. In particular, let ¢/ denote convergence rate of the temporal method.
The spatial convergence of the primary variable, namely the displacement u, is denoted by ¢,,,
while that of the secondary variable, namely the traction 7', is denoted by ¢p. We then expect
the space-time approximation, where all errors are computed at the final time, to satisfy:

lu—Tzuly = O ((Ax)™ +(A1)"),

(22)
T - TI#T|| = O ((Am)¢T + (At)w) ,
where Ax denotes the grid size. For the MPSA method, the convergence rates are established
numerically to be ¢, = 2 and 1 < ¢ < 2 for a broad class of grids [14, 25]. For the Newmark
method with the abovementioned parameter choice, the convergence rate is ¢ = 2 (Subbaraj
and Dokainish [29]). The temporal convergence rate of 1) = 2 is expected to hold for both
displacements and tractions. We note that the spatial traction error will dominate in the case
of refining with equal rates in both space and time, resulting in a lower convergence of the
tractions than that of the displacements in a combined space-time convergence analysis.
Numerical convergence analysis of the MPSA-Newmark with Dirichlet boundary condi-
tions is performed in three dimensions for unstructured simplex grids based on a known
analytical reference solution. We performed the analysis on a unit cube domain, and all
material parameters, including the density, hold unitary values corresponding to an isotropic
solid. The body force term, ¢, in Equation 1 as well as initial values for displacement, velocity
and acceleration are chosen in accordance with the analytical solution. The analytical solution
holds zero Dirichlet boundary conditions. The analytical solution of the displacement for the
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.. T . .
convergence analysis is u = [uz, uy, u.]" , where each component of the solution u is chosen
as follows:

I (52”15) sin(mz) sin(ry) sin(72),
wy = sin (52”:5) sy2(1 — 2)(1 = y)(1 = 2), (23)

ws = sin (527%) 2y(1 — 2)(1 — y) sin(m2)

An illustration of the discrete solution at the final time (¢ = 1.0 s) is presented in Figure 2.

3.5e-01
0.3
0.2
0.1

0.0e+00

u [m]

Z

Xy

Figure 2: Illustration of the displacement magnitude at time ¢ = 1.0 s for the finest grid in
the convergence analysis. The domain is cut along y = 0.5 m to visualize a cross-section of
the displacement profile.

The convergence analysis is performed with successive refinement by a factor of 2 in both
space and time. The results of the analysis are displayed in Table 2 and Figure 3 with respect
to number of cells N, and number of time-steps N;. We see that the displacement error
converges with 2" order while the traction error converges with between 1% and 2" order,
which are the expected rates. We observe the same convergence rates also for Cartesian grids,
but for the sake of brevity, the error values and plot are omitted from the text. The runscript
which can reproduces results for Cartesian grids, as well as the results for the simplex grid,
is found in the Docker Image in Jacobsen et al. [13].

Table 2: Table for refinement parameters and error values for the combined space-time
convergence analysis. The table presents the number of cells, number of time-steps and error
of displacement and traction for all refinement stages.

Refinement N, N;  Displacement error Traction error
Initial 387 150 3.01e-01 2.79e-01
First 2570 300 4.57e-02 6.55e-02
Second 19071 600 1.06e-02 1.99e-02
Final 148129 1200 2.66e-03 7.16e-03

12
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Convergence analysis: Setup with Dirichlet boundaries
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Figure 3: Error plot for the space-time convergence analysis of MPSA-Newmark with Dirichlet
boundaries. The z-axis is a combined space-time parameter consisting of the number of cells
N, and the number of time-steps NV;.

3.2 MPSA-Newmark with Absorbing Boundary Conditions

The absorbing boundary conditions introduce a first-order derivative in time which we dis-
cretize by a second-order implicit method. Thus, the temporal discretization of the problem
becomes a combination of Newmark and the second-order implicit method. Therefore, the
convergence rates for Dirichlet boundary conditions cannot necessarily be expected to carry
over to a model with absorbing boundary conditions. In this section we therefore present
numerical convergence analyses of the MPSA-Newmark scheme for a setup with absorbing
boundary conditions. Additionally, to demonstrate the stability of the scheme with the inclu-
sion of absorbing boundaries, we present an energy decay analysis.

3.2.1 Convergence Analysis

As outlined in the introduction, numerical methods which can accurately solve problems in
heterogeneous and anisotropic media are highly relevant for applications such as extraction of
geothermal energy, COs-storage and wastewater disposal. Therefore, we present a numerical
convergence analysis of the MPSA-Newmark in homogeneous, heterogeneous, isotropic and
anisotropic media, as well as combinations thereof.

The analysis is performed on 2D unit squares with a known solution w (z,t) which repre-
sents a wave that travels with normal incidence angle towards the right. For all the setups
we have a time-dependent Dirichlet condition on the left side, an absorbing condition on the
right side and rolling conditions on the top and bottom. We refer to Figure 4a for a schematic
of the domain and its boundary conditions.

We refer to Figure 4b for a schematic of how € is partitioned into two regions A and B,
as well as an illustration of how the domain is discretized using an unstructured simplex grid
which conforms to the boundary between A and B. The different configurations of A and B is
what determines whether the setup is homogeneous, heterogeneous, isotropic or anisotropic.

The 2D stiffness tensors used in this section can be derived from Equation 5. This is done
by choosing v to align with the y-axis, as we are only considering anisotropy in the direction
orthogonal to the wave. Additionally, we set A\ =0 and p = pj| = p. The stiffness tensors
are consequently determined by three independent material parameters in the following way:

Cijkl = N0ijOns + 1 (0ir0j1 + 0udjn) + A1 0i20;20k2012, for i,j,k,1=1,2. (24)

13



1. K. Jacobsen, I. Berre, J. M. Nordbotten, 1. Stefansson ARC Geophysical Research (2025) 1, 11

(c-n),=0
uy—O
u, = U, (0, 1) =
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Figure 4: (a) Schematic of the boundary conditions for the convergence analyses of MPSA-
Newmark with inclusion of absorbing boundary conditions. Subscript = and y on quantities
denote the x and y component of the quantity. (b) Schematic of the domain used in the conver-
gence analyses. The domain is split vertically at x = L. Domain A is homogeneous isotropic,
while domain B is either homogeneous and isotropic, or homogeneous and anisotropic in the
y-direction.

Here A is what determines whether Equation 24 represents an isotropic or an anisotropic
medium. In domain A, which is always isotropic, we set A\ = 0. In domain B, which is
isotropic or anisotropic, we set A; > 0.

Table 3: Parameter values for domain A and B.

Symbol Values for domain A Values for domain B Unit

A 0.01 0.017p kg m~ts™2
I 0.01 0.017p kg m~'s™?
AL 0.0 0.017, kg m~1s7?
) 1.0 1.0 kg m~3

Common for all the setups is that we have the following analytical solution for the wave
in the medium:

. z— L cA—cCp . r— L T
sin | t — - —i—c e sin | t + . , 0| , forz<L,
u(z,t) = 0 A . —AL B T A (25)
[—Asin <t— >, O] , for x > L.
cg+ca CB

Here L denotes the width of domain A, and thus the location (on the z-axis) of the boundary
between A and B. ¢4 and cp represent the primary wave speed in A and B, respectively,
where the expression for the primary wave speed is given by ¢ = 1/“%. For all the simu-
lation setups we set initial displacement values according to Equation 25, and initial velocity
and acceleration values according to the first and second time derivative of Equation 25,
respectively.

The different configurations of domains A and B are determined by the value of the
material parameters in Equation 24, as well as the heterogeneity coefficient, ry, and the
anisotropy coefficient, r,. The heterogeneity and anisotropy coefficients determine whether

14



1. K. Jacobsen, I. Berre, J. M. Nordbotten, 1. Stefansson ARC Geophysical Research (2025) 1, 11

Convergence analysis results
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Figure 5: Displacement and traction errors from the combined temporal and spatial conver-
gence analysis of MPSA-Newmark with absorbing boundaries. The errors obtained for the
setups with vertical anisotropy have quadrilateral markers and are colored in black and grey.
The errors obtained for the isotropic setups have circular markers and are given colors. The
x-axis of the plot is represented by a combined space-time parameter consisting of the number
of cells N, and the number of time-steps IV;.

Table 4: Time and space related parameters for the temporal and spatial convergence anal-
ysis of MPSA-Newmark in isotropic, heterogeneous and anisotropic media with absorbing
boundary conditions.

Symbol /Quantity Value  Unit

ttinal 15.0 S
L 0.5 m
Q 0, 1.0)> m?
Number of cells, N,
Initial 2442 —
First refinement 9568 —

Second refinement 38014 —
Third refinement 151802 —

Final 606672 —
Time-step size, At

Initial 0.25 S

First refinement 0.125 S

Second refinement  0.0625 s

Third refinement 0.03125 s

Final 0.015625 s
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domain B is like A, if it is isotropic with different parameter values than A or if it is anisotropic.
We refer to Table 3 for an overview of the parameter values we have used. Values of the
heterogeneity and anisotropy coefficients are presented alongside the convergence results for
the respective convergence runs in Figure 5, and values for space and time related quantities
are found in Table 4.

In Figure 5 we present convergence analysis results of MPSA-Newmark with absorbing
boundary conditions for 6 different configurations of A and B. The method converges as
expected for isotropic, homogeneous and heterogeneous media, as well as media where there
is anisotropy in the direction orthogonal to the propagating wave. The figure shows that the
method converges for both low and high heterogeneity coefficients, but that higher heterogene-
ity coefficients result in larger errors. The figure also shows that errors from the anisotropic
setups (r, = 10) mostly overlap with those from the isotropic setups (r, = 0) for all three
different heterogeneity ratios. This indicates that the numerical error in the wave propagation
is not influenced by the anisotropy, even for large parameter contrasts (:—Z ~ 2500), showing
the method’s robustness in handling anisotropy.

3.2.2 Enmergy Decay Analysis

We here demonstrate the stability of the scheme by considering propagation of waves with
non-orthogonal incidence angles onto absorbing boundaries in an isotropic domain. See Ta-
ble 5 for material and domain parameters. All the boundaries in the domain are absorb-
ing, and as there are no driving forces present in the system, the energy within the domain
is expected to decrease towards zero as time passes. The discrete energy is described by
E=3 ker fK p (U - wr)dV, where @ is the numerical velocity in cell K.

The wave is imposed by initial values for displacement, velocity and acceleration, where
the expression for the initial displacement wave is as follows:

__cos(0)z+sin(0)y
c

cos () sin (
sin () sin <_M )

u(z,y, t=0)= (26)

[

We refer to Figure 6 for an illustration of the initial displacement profile for both an orthogonal
wave and a rotation of the orthogonal wave.

u [m]
4.5e-03 0.2 0.4 0.6 0.8 1.0e+00
[

(a)

Figure 6: Displacement magnitude for (a) an orthogonal wave; (b) a rotation of the orthogonal
wave. Contour lines for the displacement magnitude are included for illustration purposes.
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Energy evolution with respect to time Energy evolution with respect to time
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Figure 7: (a) Energy evolution as time passes for different grid sizes, Az. The wave rotation
angle is held constant at 7/4. (b) Energy evolution as time passes for different rotation
angles #. The left dashed line corresponds to the time when an orthogonal wave has exited
the domain, while the right one corresponds to when a 7/4 rad rotated wave has exited the
domain.

The energy decay analysis is first performed for waves rotated by 6§ = 7 rad for various
grid sizes. The simulation is run until ¢ = 15.0 s with a time-step At = 1/20 s. Grid sizes
and corresponding number of cells are listed in Table 6.

In Figure 7a we show the temporal evolution of the ratio between the energy E and the
initial energy FEjy for successive grid refinement. The figure shows that the energy decay
can be divided into three phases: Decreasing, then plateauing and finally decreasing again.
Looking to Figure 8a we see the initial energy distribution for a rotated wave. As the wave
propagates towards the upper right corner, no new wave is introduced to the domain, which
in turn causes a discontinuity in the solution along the bottom and left boundary. This leads
to the emergence of a spurious wave in the lower left corner, which is common when using
higher order time-discretization schemes in the presence of discontinuities (see Figures 8a
and 8b). Referring to Figure 8c, which is a snapshot from after the initialized wave has
exited the domain, we can see that the spurious wave is still present due to its significantly
lower propagation speed. The energy of the spurious wave is represented in the energy plateau
between 8.0s and 10.0s in Figure 7. When the slow wave finally exits the domain after around
10.0 seconds, we see a rapid energy decrease.

Table 5: Material parameters for the energy decay analysis.

Symbol  Value  Unit

A 0.01 kg m~1s—?2

W 0.01 kg m~ts~?2

p 1.0 kg m~3
final 15.0 S

Q [0, 1.0> m

Looking to Figure 7b, we present the energy evolution of waves rotated by different angles
6. The right dashed line corresponds to when a wave rotated by 7 rad has exited the domain,
and the left dashed line corresponds to when an orthogonal wave has exited domain. The
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Figure 8: Discrete energy distribution in a domain with N, = 606496 cells. (a) At initialization
(t =0.0s), (b) At t = 1.0s. (c) At ¢t = 8.5s, which is when the initial wave has exited and
only the initialization artifact remains.

region between the two dashed lines is thus the time interval where waves rotated at angles
between 0 and 7 rad are expected to have exited the domain. Values for the time-step size
and number of cells for the simulations with different rotation angles correspond to the values
labeled as “First refinement” in Table 5. The figure shows that the system energy decreases
for all the values of 6 that we tested.

The difference in energy decay for the different wave rotation angles is small, even though
the waves should exit the domain at different times. This is in part due to the emergence of
the spurious wave at the bottom left corner, but it is also likely due to the imperfectness of
the absorbing boundary conditions we have employed.

Table 6: Grid size, number of cells and time-step size for the energy decay analysis with
successive grid refinement.

Grid size, Az [m] N, At [s]

Initial refinement 1/32 2400 0.05
First refinement 1/64 9520 0.05
Second refinement 1/128 37976 0.05
Third refinement 1/256 151724  0.05
Final refinement 1/512 606 496  0.05

4 Wave Propagation: Simulation Examples

In this section we present simulation examples of wave propagation in anisotropic, hetero-
geneous and fractured media. The goal is to demonstrate that the methodology produces
expected wave propagation behavior in different kinds of media. Expected behavior includes
different wave propagation patterns in different directions in anisotropic media and reflections
from boundaries between media with different stiffness. In the case of inclusion of a fracture,
which in this section is modelled as open and not filled with any fluid, the expectation is that
the waves are fully reflected.

All the linear systems for the simulation examples in this section are solved by GMRES
with the GAMG preconditioner from petsc4py Dalcin et al. [6].
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4.1 Example 1: Simulations with Different Seismic Source Locations

In this section we present wave propagation in anisotropic and heterogeneous media where the
simulation domain {2 is a unit cube. The domain is heterogeneous in the sense that it contains
both isotropic and anisotropic regions. The anisotropic region is located fully inside 2 and
is denoted by w. We consider the anisotropic domain to be transversely isotropic with the
z-axis as the axis of symmetry. The stiffness tensor for the anisotropic region is determined
by five independent material parameters as presented in Equation 5 while the isotropic part
of the domain has a stiffness tensor according to Equation 4.

Figure 9: Ilustration of a 3D cubic domain with an inner domain. The lighter part of the
domain is isotropic, while the darker, inner part is transversely isotropic. The location of the
inner domain is different in the two simulation examples.

Table 7: Simulation parameters for the heterogeneous and anisotropic simulation examples
1.1 and 1.2.

Symbol Value Unit
Common parameters
0 0, 1.0 m?
N, 512 000 =
Ny 90 —
At 1/600 S
tfinal 0.15
Isotropic domain
A 1.0 kg m~! 572
7 1.0 kg m~! 572
Anisotropic domain
)\H, AL 5.0 kg m~! 572
A 1.0 kg m~! s72
M| 1.0 kg m~t s
i 2.0 kg m~! s72
v [0, 0, 1]* -
Location parameters:
Example 1.1
w (0.25, 0.75]° m?
(TRy YRy 2R) (0.5, 0.5, 0.5) (m, m, m)
Example 1.2
w (0.25, 0.75]% x [0.05, 0.55] m?
(TR, YR, 2R) (0.5, 0.5, 0.7) (m, m, m)
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The dimensions and location of the anisotropic region w are specified for each simulation
example. We refer to Figure 9 for an illustration of an example domain where the anisotropic
region is located at the domain center and has side lengths of 0.5 m.

Waves are introduced to the domain by a Ricker wavelet, which is commonly employed
for modeling seismic sources. The simulation is initialized by zero initial displacement, zero
initial acceleration and a velocity determined by the expression

_m((a=wr)*+(v=vr)*+(>=2r)") T
u(z,y,2) =e 0.1252 [* — 2R,y — YR, 2 — 2R]". (27)

The velocity in Equation 27 corresponds to a Ricker wavelet, where (-)  denotes the coordinate
values for the center of the wavelet.

The dimensions of the outer and inner domain, as well as the material parameters for
each of the domains, are held the same for both the simulation examples. The only difference
between the two simulations is the location of the internal domain and the location of the wave
source. An overview of all parameters for the simulation examples is presented in Table 7.

4.1.1 Example 1.1: Ricker Source Located Within the Anisotropic Domain

We expect different wave propagation behaviors in isotropic and anisotropic domains. In
isotropic materials we expect the waves to propagate uniformly in all directions, just like an
expanding sphere. In anisotropic media the waves are expected to deviate from the radial
symmetry that occurs in isotropic media, meaning that the wave can for instance have an
ellipsoidal shape instead of a spherical one.

Using a transversely isotropic medium for the domain should allow us to observe both
expected behaviors described above. The transversely isotropic medium considered herein
has the z-axis as the axis of symmetry, meaning that the zy-plane is the plane of isotropy.
The waves are thus expected to behave in an isotropic manner in the xy-plane, while all other
planes are expected to hold distorted wave patterns.

6.0e-05

4e-5

2e-5
(b)

— 0.0e+00

u [m]

() (d)

Figure 10: Magnitude of the displacement vector for the simulation case where the propagating
wave is initiated inside the anisotropic domain. The first row contains snapshots from time
t = 0.05s. The second row contains snapshots from time ¢t = 0.125s.
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Looking to Figure 10 we see the wave propagation at two different times and in two
different planes. The black outline within €2 represents the anisotropic region w. Figure 10b
illustrates radial symmetry of the displacement wave, which is as expected as the figure depicts
the displacement profile in the plane of isotropy at a point in time where the wave has not
yet exited from the anisotropic region. On the other hand, 10a and 10c show only axial
symmetry due to the anisotropies in the domain, while 10d shows axial symmetry because
the displacement wave now has propagated into the isotropic region. Additionally, 10c and
10d show that some reflections occur at the internal material discontinuity boundaries.

4.1.2 Example 1.2: Ricker Source Located Outside the Anisotropic Domain

We will demonstrate elastic wave propagation in heterogeneous media further by locating the
wave source outside the anisotropic region. As we saw in Section 4.1.1, there are wave reflec-
tions caused by intersections of material layers with different properties. When a wave travels
towards and through heterogeneities, we also expect that both the shape and the propagation
speed of the wave are altered. Depending on the values of the material parameters, the wave
can move either faster or slower. In the case of the simulation presented in this section, we
expect a higher propagation speed through the anisotropic domain due to higher values of
Ay Ay AL, ) and iy (see Table 7).

As the Ricker wavelet is allowed to propagate through the isotropic medium, it eventually
hits the anisotropic region which is indicated by the black outline within 2. In Figure 11
we see that the circular shape of the Ricker wavelet becomes distorted within the anisotropic
region. Specifically, the wave travels quicker through the anisotropic region, just as expected
from the choice of material parameters. In addition to this we see in Figures 1l1c and 11d
that a wave is reflected at the internal boundary.

(a) (b) (c) (d) ’

D
u [m]

o

N

Figure 11: Magnitude of the displacement vector for the simulation case where the propagating
wave is initiated outside the anisotropic domain. The figures illustrate the Ricker wavelet’s
encounter with an internal domain boundary. Time (a) t = 0.05s, (b) ¢t = 0.075s, (c)
t=0.125s, (d) t =0.15s.

4.2 Example 2: Simulation in Heterogeneous and Fractured Media

As outlined in the introduction, we are interested in applications related to the subsurface
where the rock formations may be heterogeneous and fractured. Therefore, we present this
example as a demonstration that we can use the present methodology, namely the MPSA-
Newmark with absorbing boundary conditions, to investigate problems in such media.

The domain is divided into three isotropic layers with different material parameter values.
We enforce absorbing boundary conditions on all the outer domain boundaries, and inside the
domain we have an internal Neumann boundary with zero traction (¢ - n = 0) which models
an open, empty fracture. The open fracture, which is a rectangular plane with corners in the
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points (0.2, 0.2, 0.8), (0.2, 0.8, 0.8), (0.8, 0.8, 0.2) and (0.8, 0.2, 0.2), is indicated in blue
in the schematic of the domain in Figure 12.

Upper layer, 0.3 m

Middle layer, 0.4 m

Lower layer, 0.3 m

N

Figure 12: Schematic of fractured and layered heterogeneous medium used in Example 2.
The red sphere indicates where the seismic source is located, and the blue plane represents
an open fracture. The domain is cut at ¥ = 0.5 m such that we get a cross-section view of the
inside of the medium. Partial transparency is applied to show the fracture plane within the
rock matrix.

Like in Section 4.1 we stimulate the domain by a Ricker wavelet. That is, zero initial
displacement and acceleration, and a velocity corresponding to the Ricker wavelet expression
shown below.

71'2((170.75)2+(y70.5)2+(zf().65)2)

u(x,y,z) =e" 0.32 [z —0.75,5 — 0.5,z — 0.65] . (28)

The expression in Equation 28 corresponds to a Ricker wavelet centered at the point
(x, y,2) = (0.75, 0.5, 0.65). The location of the Ricker wavelet center is indicated by a red
sphere in Figure 12. All the simulation parameters used in this example are presented in
Table 8 at the end of this section.

We expect that the wave is fully reflected when it hits the open fracture, meaning that
we expect seeing a sudden drop in displacement magnitude just beyond where the fracture is
located. As the medium consists of layers of different parameter values, we also expect some
reflections from the internal layer boundaries as well as different wave propagation speeds in
the different layers, like that in Figure 11.

u [m]
6.4e-04

0.0004
0.0002

0.0e+00
&z

«X &y

Figure 13: Displacement vector magnitude for wave propagation in layered heterogeneous and
fractured medium at four different times: (a) ¢t = 0.05s, (b) ¢t = 0.125s, (c) t = 0.175s and
(d) t =0.225s.

Figure 13 illustrates how the wave propagates in the heterogeneous and fractured domain.
Specifically, the figure shows that the wave is reflected as it hits the open fracture. Addi-
tionally, the outer domain boundaries allow for the wave to propagate outwards, leaving no
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Figure 14: Displacement magnitude for wave propagation in a fractured domain. The solution
is shown at t = 0.175s, after the wave has reflected from the fracture. (a) The displacement
magnitude along the black diagonal line shown in subfigure (b). (b) Simulation domain cut
at y = 0.5 m to visualize the wave propagation inside the domain. Partial transparency of the
domain is applied to better visualize the dark grey fracture plane and the black diagonal line.

Table 8: Simulation parameters for Example 2.

Symbol Value Unit

Upper layer

A 1.0 kg m~! g2

o 1.0 kg m~! s72
Middle layer

A 2.0 kg m~! s72

u 2.0 kg m~! s72
Lower layer

A 3.0 kg m~! 572

U 3.0 kg m~! 72

Other parameters
(xRayR;zR) (0757 0.5, 065) (mv m, m)

Q 0, 1.0 m?
tﬁnal 0.25 S
At 5.0-1074 S
N, 500 —
N, 877 945 —
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visible artificial boundary reflections. Figure 13 also shows, especially in the yz-plane in 13c,
wider waves in the lower layer. This is expected from the higher material parameters in this
region than those found in the two other domain layers.

To illustrate the sudden drop in displacement magnitude across the fracture, we have
plotted the displacement along the diagonal black line that is shown in Figure 14b. The
displacement along the line is presented in Figure 14a, and it is shown that the displacement
magnitude suddenly drops to zero at a distance of 1/4/2m along the diagonal line. This
is where the fracture is located, and the displacement drop indicates that the wave is fully
reflected by the fracture.

5 Conclusions

We have presented the MPSA-Newmark method with absorbing boundary conditions for the
elastic wave equation. The presentation includes verification and analysis of the MPSA-
Newmark method, as well as a demonstration of the method’s capabilities through simulation
examples.

Convergence analysis of the MPSA-Newmark method was first performed and presented
for the case with Dirichlet conditions, where the convergence analysis provided the expected
rates of 2 for displacements and between 1 and 2 for tractions. For the case with absorbing
boundaries, we presented both convergence and stability analyses of the method. The con-
vergence analyses show that the solution converges with up to order 2 for both displacements
and tractions in homogeneous, isotropic, heterogeneous and anisotropic media. The analysis
of the stability of the scheme was presented for setups with absorbing boundary conditions on
all domain boundaries. We initialized the system with waves that were to propagate out of the
domain, and the results showed that energy consistently decreased during time-stepping for
all the different waves tested. This indicates that the boundary conditions absorb a significant
amount of the waves that hit the boundaries.

Finally, we presented a demonstration of the method’s capabilities through simulation
examples of wave propagation in the vicinity of a fracture, heterogeneity and anisotropy. The
simulation examples show wave reflection in heterogeneous and fractured media, as well as
different wave propagation patterns in different directions in anisotropic media. We have thus
shown that the present finite volume method exhibits the expected behavior when solving
elastic wave propagation problems in anisotropic, heterogeneous and fractured porous media.
This indicates that there is potential for a unified finite volume method in poromechanical
modelling with the inclusion of seismic effects.
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