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Abstract

The simulation of transport phenomena in porous media poses computational chal-
lenges related to the inherent heterogeneity and complexity of natural porous structures.
In this work, we introduce a numerical tool grounded on the particle tracking method
and the trajectory-based spatial Markov model (tSMM) to model pore-scale transport, as
well as adsorption and desorption processes. The tSMM is an upscaling approach that
accounts for the correlation between consecutive particle trajectory paths over a fixed
distance, which enables predicting transport across larger scales. The SMM demonstrates
accurate prediction of diffusive and adsorptive/desorptive phenomena, benchmarking the
results against the direct numerical simulation outcomes. The method is based on an
iterative procedure where each step is characterized by relying on a sample of simulated
trajectories. The analysis demonstrates that selecting consecutive trajectories based on
the outlet-inlet position provides more accuracy compared to assigning a uniform weight
to each trajectory. The optimal parameterization of tSMM exhibits variability with Péclet
numbers, underscoring a correlation between transport characteristics and the number of
trajectories required for accurate predictions. Solute breakthrough at distinct locations
reveals the impact of adsorptive Damkohler. Higher adsorptive Damkdhler numbers lead
to prolonged particle arrival times and distinctive arrival concentration patterns, that are
closely matched by our low-cost upscaled approximation.
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1 Introduction

Accurate simulation of transport processes in porous media is crucial for understanding and
managing subsurface flow and transport. Traditional numerical methods, face computational
challenges when dealing with complex porous media structures at different scales. The het-
erogeneity of natural porous media across a broad range of scales often leads to complex
and non-Fickian transport behavior, which challenges the conventional modeling approaches
based on the advection-dispersion equation (ADE) [35]. Reactive phenomena can significantly
increase the complexity of the problem. These processes can include chemical processes hap-
pening in the fluid phase or at the solid-liquid interface, as well as transformations activated
by biological activity (e.g., presence of biofilm). In this context, obtaining accurate predictions
at spatial scales significantly greater than those associated with individual pores is challeng-
ing [9]. This challenge is at the core of upscaling methods, whose aim is to embed pore-scale
properties into effective parameters, thus enabling the accurate prediction through large-scale
models.

In recent years, various upscaled models have been proposed to capture anomalous (non-
Fickian) transport features across a wide range of temporal and spatial scales, such as the
Continuous Time Random Walk (CTRW) [7, 8, 44, 45], Time-Domain Random Walk (TDRW)
models [13, 28], fractional Advection-Dispersion models (fADE) [6, 18, 26, 43], and the Multi-
rate Mass Transfer (MRMT) [16, 19, 29, 39]. In this work we focus particularly on the Spatial
Markov Model (SMM) framework [22, 23]. The SMM relies on the computation of the travel
time over a fixed distance and establishes a one-step correlation between consecutive travel
times. The inclusion of this correlation enables leveraging information available on a lim-
ited portion of the system to predict transport over greater distances. This approach proves
particularly effective in addressing advection-dominated scenarios, which pose difficulties for
upscaling using traditional Eulerian approaches. SMMs have been successfully used to model
conservative [11, 15, 17, 25, 30, 33] as well as reactive transport [37, 38, 40] in highly com-
plex flows spanning from pore scales to much larger scales relevant in geology and subsurface
hydrology. The SMM has been predominantly applied to one-dimensional transport settings,
although some recent applications to multi-dimensional transport have been proposed in the
literature [9, 12].

In this work, we introduce a numerical tool based on the particle tracking method to
address transport problems and (linear) adsorption and desorption processes at pore-scale in
a three-dimensional porous medium. The idea of using simulated trajectories to build a SMM
approach has been proposed in previous works [27]. Specifically, we build our approach upon
the trajectory-based spatial Markov model (tSMM) proposed by Sund et al. [38] and adapt it
to operate in a three-dimensional domain. The methodology involves generating numerically
simulated Lagrangian trajectories derived from a unit cell within the porous medium, which
are then used to predict transport over significantly extended distances. This approach has
mainly been employed to simulate transport and reactive surface processes on a periodic pore
with idealized geometry [34, 36]. A preliminary version of this algorithm was introduced in
[9], limited to upscaling transport in a two-dimensional pore-space. In addition, this work
also upgrades the methodology proposed in [34] to simulate sorption/desorption phenomena
coupled to transport. Numerical verification of the code is here rigorously conducted to assess
convergence and performance scaling in the new context. Sorption/desorption reactions have
a relevant influence on solute transport in environmental matrices as well as in lab-scale
chromatographic characterization [1, 41]. The formal upscaling of sorption poses specific
challenges as the surface reaction alters significantly the transport properties across multiple
spatial and temporal scales [2, 5, 34, 42]. The algorithm has been implemented so that the
extension to the third dimension does not cause performance issues, and the computational
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effort is maintained within acceptable limits. Accurate optimization is ensured, including
dynamic selection of the time step.

Our work involves benchmarking model results, expressed in terms of arrival times, num-

ber of adsorptions, and breakthrough concentration, against outcomes obtained from direct
numerical simulations (DNS). A specific analysis is performed to evaluate the best approach
for selecting the trajectory assigned to each particle, examining how the weight attributed
to each trajectory impacts the numerical results. Additionally, we evaluate the influence
of physical parameters, such as Péclet and Damkohler numbers, on transport and adsorp-
tion/desorption processes within the porous domain.
The paper is structured as follows: Section 2 provides a description of the methods, including
pore-scale modeling and the upscaled SMM approach. The computational setup is detailed in
Section 3, while Section 4 presents and discusses the numerical results. Concluding remarks
from our study are summarized in Section 5.

2 Methodology

We consider solute transport and sorption/desorption processes in a periodic three-dimensional
porous medium. The main characteristics of the implemented model are described in the fol-
lowing sections.

2.1 Pore-Scale Transport Setup

Let © be a three-dimensional porous domain fully saturated by a single fluid. The spatial
domain is then divided into a solid €25 and fluid Q; phase, with X ;face defining the boundary
surface between the two phases. We consider here the following pore-scale transport problem
[34]

80((;’t) + V- [ux)C(x,t)] =V -[DVC(x,t)] ¥ x¢€Q .
1

05(x,t) B aC (x, 1)

T - _AS(X’t) + OéC(X,t) - _DT V X € Xgurface

where u is the fluid velocity, C' the concentration of the solute in the fluid, D the molecular
diffusion coefficient, assumed constant in the fluid, S the solute concentration on the surface
(i.e. concentration of the adsorbed solute), n the unit normal to the boundary, a and A
the adsorption and desorption rates, respectively. The first equation in (1) describes solute
transport governed by the advection-diffusion equation, while the second defines the boundary
condition regulating the exchange between the fluid and the fluid/solid interface. The rate of
change of surface concentration is defined by the difference between the rate at which solute
concentration adheres to the boundary (aC') and the rate at which surface concentration
desorbs into the fluid (AC). To satisfy mass balance principles, this rate of change must be
equal to the diffusive flux of solute concentration occurring at the boundary (—D‘g—g). Problem
(1) is completed by an appropriate set of initial and inlet/outlet boundary conditions. The
system described is characterized by the following dimensionless numbers
T 3 72

Pe:% aa:% Dad:% (2)
where @ is the characteristic velocity and L the representative length of the system. Pe repre-
sents the Péclet number, which describes the ratio between advection and diffusion processes.
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Da, and Day are the adsorptive and desorptive Damkohler numbers, respectively. Da, mea-
sures the ratio between adsorption reaction rate and diffusion rate, while Dag compares the
time scales associated with desorptive processes to diffusive ones.

2.1.1 Particle Tracking

The transport equation is solved through a numerical Lagrangian particle-based random walk
method [32]. In this approach, the solute plume is discretized into a finite number of particles,
each one representing a specific amount of solute mass. During each step At, the position of
the particle x,, and the time t,, are quantified as

Xpt1 = Xp + 0 (x,) At + £, V2DAL (3)

tng1 = tn + At (4)

where &, is a random vector whose components are independent and identically distributed
Gaussian variables with zero mean and unit variance and At is a time step. We assume here
the velocity field u is obtained by solving the steady state Navier-Stokes equations with an
appropriate set of boundary conditions.

2.1.2 Adsorption/Desorption Modeling

Transport processes in the presence of sorption necessitate distinct boundary conditions due
to the introduction of a substance flux from the fluid to the surface of the pores. The Robin
boundary condition serves as a governing principle for regulating the concentration of the
adsorbed chemical substance at a specific point on the pore surface. A particle crossing the
solid boundary can be adsorbed with a probability P or reflected with a probability 1 — P.
To the leading order, this probability can be computed as [10]

P = a\/? (5)

The second order approximation writes as

P
REE TP ©)

The validity of these approximations hinges on the condition that P remains significantly
smaller than one. In this work, adsorption probability is modeled by eq. (6). The value
of P* is compared to a random number U, drawn from a standard uniform distribution. If
U > P* no sorption occurs and if U < P* the particle undergoes adsorption. In the event of
adsorption, the particle spends a waiting time ¢ on the liquid/solid boundary. Subsequently,
it is released into the fluid following the standard reflection rule. This entire process can be
conceptualized as a single step with a longer time duration:

*

tpy1 = tn + At + (7)

2.1.3 Time Increment

The choice of the time increment At in the implementation of the particle-tracking method
is essential for accurately simulating the displacement of particles. We opt to impose At in a
manner that constrains the maximum displacement d,,,;, along each spatial direction. Given
that the particle displacement d encompasses both deterministic, equal to u(x,)At, and
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random, corresponding to £v/2DAt, components, we constrain d,,., relying on a probabilistic
approach, i.e.,

Pr[mam(dz, dy, dz) > dmam] < Pa (8)

where p, is the confidence level and d = (d,,dy, d.). Here we assume that d,q, is assigned in
relation to the resolution employed to discretize the pore-scale geometry and velocity. For the
deterministic term, the maximum displacement is contingent upon the velocity and is quanti-
fied as max(||ul|)At. The random component is associated with diffusion, and it is not feasible
to establish a deterministic relationship between d,,q, and At. Given that the displacement
along each spatial direction adheres to a normal distribution N(0,0?), with o = vV2DAt, a
reasonable estimate for the maximum displacement due to diffusion is 2v/2DAt, correspond-
ing to a probability of 2.28% that the particle displacement exceeds 20. Consequently, we
impose

mazx(||ul])At + 2V2DAt < diaz 9)

and the following constraint is thus applied

(—\/ 8D + /8D + 4magzc(||uH)alm,m>2
Aty =

2mazx ||ul| (10)
where Atr provides a limiting value for the discretization of advective diffusive transport.
In addition, as discussed in Section 2.1.2, the time increment is further constrained by the
approximation of adsorptive/desorptive processes through n. Selecting an appropriate time
increment is essential to ensure that P, defined in eq. (5), remains substantially smaller than
1. The time increment derived from the first order approximation of sorption probability in

eq. (5) reads
P\'D
Atn = () )
al w

where P < 1 is a selected reference value for P, and Atp provides a reference value
for the simulation of adsorption. The application of a constant time step throughout the
simulation requires selecting the minimum value between (10)-(11), which can lead to a very
large computational burden. Therefore, we define in the following an alternative discretization
strategy employing a dynamic selection of the time step At,.

Considering transport in the fluid phase, determining the time increment according to
eq. (10) imposes a stringent constraint, corresponding to a worst-case scenario in terms
of advective displacement maz(||ul|). However, particles may explore diffusion-dominated
regions (e.g., cavities) which often are characterized by a considerable spatial dimension.
Consequently, the length of the steps within diffusion-dominated regions greatly influences
the algorithm’s performance. A potential solution entails the dynamic computation of the
time increment. In this framework, the idea behind eq. (10) is employed to compute a local
At, at each time step utilizing the velocity of the specific point where the particle is located,
as opposed to the maximum velocity across the entire domain:

2
A <—\/8D + /8D + 4 [[ul] das
- 2Ju]

(12)

Following this criterion, the time increment varies between advection and diffusion domi-
nated regions, maintaining a statistically similar length of the displacement. In this work, we
compare the results by computing the time increment following two strategies:
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1. Static: a constant time increment is imposed as the minimum value between those given
by egs. (10)- (11). Such value of At is applied to each particle regardless of its position;

2. Dynamic: we partition in this case the pore space in two sub-domains, ie. Qf =
QppUQps, where ()¢, identifies a close-to-interface region and €2¢s the rest of the fluid
domain. The time step At, is set equal to the one used in the static case close to
the interface, i.e. At, = Aty, when the particle is located in the €1y, region, in order
to simulate the particle’s behavior near the discontinuity interface more accurately.
Otherwise, when the particle is located in {2y, the time increment is computed in a
dynamic way according to eq. (12). In the example discussed below (see Section 3)
we employ a voxel-based discretization of the porous medium geometry. Therefore,
we assign voxels having at least one face or edge lying on the liquid-solid interface to
the close-to-interface region {1y,. The splitting approach employed here is commonly
adopted when considering particle transport in the presence of interface phenomena, see

e.g. [4].

2.2 Upscaled Spatial Markov Model

We present a trajectory-based Spatial Markov Model (tSMM) framework to upscale advec-
tion/diffusion transport and adsorption/desorption processes in porous media. We consider
here transport over a periodic domain, i.e. considering a collection of periodic unit cells associ-
ated with spatial dimension L, where both geometry and velocity are periodic along the three
spatial directions. The approaches described in 2.1.1-2.1.2 allow simulation of pore-scale pro-
cesses, yet their application over vast spatial domains is computationally not affordable. The
tSMM is grounded on the time-domain random walk method, whereby solute is discretized
into particles, each representing a distinct mass quantity. We assume a one-dimensional setup
where the average velocity field is aligned with the x-direction, thus the upscaled SMM model
can be expressed as

et =2+ L (13)

tik+1 _ tik + TikJrl (14)

where i refers to the particle index, z;* and z;**! represent the particle location at step k
and k + 1, respectively, t;* and t;**! are the time associated with the particle at the step k

and k + 1, L is the spatial increment assumed equal to the length of the periodic cell.

The method is based on the direct simulation of a set of trajectories S = {s1,..., SNy }s
where Npr represents the number of trajectories included in the set. For each trajectory in
S we record four pieces of information resulting from the direct particle tracking simulation
of transport across a single cell: the inlet a(s;) and outlet b(s;) locations, the travel time
related to transport 7r(s;) and the number of sorption events N4(s;). We then define a
transition matrix 7T;; indicating the probability of a particle to jump from one trajectory to
another. Given two trajectories s; and s;, the probability T;; of a particle to jump from 7 to
Jj is assigned a value of 0 if the inlet point a(s;) of the trajectory s; does not rank among
the Ny closest starting positions to the final position b(s;) of the trajectory s; according
to the Euclidean distance Dist(b(s;),a(s;)) between b(s;) and a(s;). We test two possible
strategies to populate Tj;: a) uniform probabilities assigned to Ny, ranking as the closest to
b;, b) weighting based on the inverse of the distance Dist(b(s;),a(s;)).

In summary, the implemented tSMM algorithm comprises the following steps:
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1. An initial position x! reflecting a prescribed inlet condition (e.g., as described in Section
3.3) is attributed to each particle;

2. For each particle, an initial trajectory is designated, chosen from the set of all possible
trajectories. The selection process is based on finding the trajectory whose inlet location
a; is closest to the initial position of the particle x!. Consequently, the initial trajectory

s;1 is selected according to:

j' = argmin [Dist (x', a;)] (15)
i
3. For k > 1 a trajectory s;x is selected based on the transition matrix T. The probability

of choosing the trajectory j* for a given particle at step k is determined by the element

1_"7'19—1 ¥ of the transition matrix.

4. The location xf, the travel time tf and total number of adsorption events N ﬁ ; of particle
i are iteratively updated according to the property of trajectory s;x, as follows

et =g+ L (16)

Na = Ny b+ Na(sjr) (17)

tFH =k 4 (1) (18)

T(sjr) = mr(spe) + Zi* (19)
Nas;5)

Zik: Z Cn (20)
n=1

where ¢,, are sampled from the density distribution ¢(¢) = Xe™*¢ [34]. Recording N
allows repeating the same simulation for different values of the desorption rate A, without
the need of repeat the parameterization step.

Note that medium periodicity is assumed, since the transition probability T;x-1 ;x is assigned
based on inlet/outlet locations.

2.3 Quantities of Interest

We focus on the assessment of different quantities that define the advective/diffusive transport
as well as the dynamics of adsorption/desorption processes. The performance of the tSMM to
predict such phenomena is evaluated by comparing the tSMM results with the DNS outcomes.
The appraised quantities are listed and described in the following.
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2.3.1 Arrival Time Distribution

We evaluate the time ¢ required for each particle to traverse a specified number of periodic
units N, along the x-direction. With reference to the dimensionless coordinates as defined
in eq. (22), the distribution of the t; is given by the conditional density p;, = p(t|X = N,),
the latter being derived from the arrival time simulated by the model for each particle. The
distribution is built by employing a binning algorithm histcounts provided by MATLAB,
which optimizes the choice of the bin length in order to reveal the shape of the underlying
probability density.

2.3.2 Adsorption Events and Time Delay

The number of adsorption events N4 constitutes a crucial outcome of our implemented model.
Accurate estimation of N4 is essential, as each adsorption event induces a time delay in the
particle’s arrival time, as indicated in eq. (7). In our evaluation, we consider the overall
number of adsorption events

NP Nu

Nagor =Y > NajiF (21)

i=1 k=1

where N A,ik is the number of adsorption during the step k for the particle i and N, is the
considered number of steps. We consider the total delay Z for each individual particle by
aggregating the delays experienced across each step k as expressed in eq. (20). The delay
distribution pz can be estimated from the simulated particles’ sample, relying on the same
binning algorithm employed for the arrival times density.

3 Test Case

We consider advective/diffusive transport and adsorption/desorption processes of a solute in
a three-dimensional porous medium. We posit {2 as a collection of identical periodic units,
perpetually replicated throughout the spatial domain. Each periodic cell is a cube of size
L, x Ly x L,. The cell is discretized by N, N,, N, cubic voxels of side A equal to 2 x 106
m in z,y, z direction, respectively. Computationally, void voxels are ascribed a value of 1,
whereas solid voxels are assigned a value of 0.

Given the periodicity of the domain, we define dimensionless coordinates, which measure
distances in terms of periodic units [9]

z

== (22)

- T - y
xr = — = —_—
L. 1, L.

3.1 Pore-Scale Setting

The computational porous domain is obtained by relying upon the pore structure generator
algorithm presented in [31], the latter being a modified version of the algorithm in [21].
The algorithm here proposed enables generating a sample mimicking the topological and
geometrical properties and the spatial statistics of a porous medium with physical properties
indicated in Table 1. We define a set 2o, considering the discretization of the domain 2
in identical cubic cells (voxels) of size A. The algorithm comprises three main steps: (a)
generate upon the set QA a realization r(x) of an uncorrelated random field that follows a
uniform distribution ¢(0,1); (b) compute a topography ©(x) representing the convolution
between r(x) and a deterministic kernel; (¢) construct the set Qa by defining an indicator
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function through the application of a threshold to the topography ©(x), such thresholding
defines pore and solid voxels. Further postprocessing is performed to eliminate disconnected
pores. Details on the functioning of the pore structure algorithm are provided in [9, 31].

Table 1: Geometrical Characteristics of the Unit Cell

parameter SI units
P 0.30 Porosity
A 2x1076 Spatial discretization along z,y, z m
l. 1.51x107° Representative pore length scale m

The characteristic pore length scale [, is determined by computing the empirical variogram
of the topography ©, the latter being defined as

1
[N (h)|

where N(h) = {(i,j) | ||xi — x;|| = h}, and 4, j denote the indices of two observations and h
is a lag distance. The representative pore length scale is identified as the variogram range,
also referred as correlation length, here termed I..

The fluid velocity u(x) is obtained by numerically solving the Navier-Stokes equations
with Openfoam [24]. The numerical scheme provides a velocity value only on the voxels cell
faces, consequently, the velocity field inside the voxels is obtained by interpolating the inlet
and outlet velocity at the point location within the cell. No slip is applied on the liquid-solid
boundary. The flow is computed assigning a one-dimensional pressure gradient aligned with
the z-direction thus obtaining a one-dimensional upscaled transport process.

2y(h) =

Y (Ox)-0(x)) (23)

1,JEN(h)

3.2 Initial Conditions: Flux Weighted Pulse
In this work we assume an initial scenario where a solute pulse is assigned at the inlet surface
Yin of the first periodic cell

Yin=x€Plz=00<y<L,,0<z<L, (24)

The initial concentration on ¥;, is determined according to the flux-weighted condition

C(x,0) x uz(x,0) Vx € X, (25)

The choice of this specific initial condition is motivated by the fact that it is expected
to reproduce experimental conditions. Moreover, flux-weighted velocity are asymptotically
attained by a set of Lagrangian particles [14]. In our particle tracking framework, the flux-
weighted initial condition is obtained through the following steps:

1. For each cell index (1, j, k), a weight proportional to the z-component of the velocity at
the inlet of the cell u,™ (1,4, k) is assigned. If u,™(1, 4, k) is negative, the weight is set
to 0

2. For each particle an initial cell index is randomly selected based on the weight assigned
to each cell index as defined in Step 1;

3. The initial particle’s position x' with the chosen cell index (1, 5!, k') is determined as
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x! = (1Az, ' Az, k' Az) — Axtd3(0, 1) (26)

where U3(0, 1) is a three-dimensional vector of uniformly distributed random numbers.
This approach ensures that a distinct initial location is achieved, in the case two particles
are assigned the same voxel.

3.3 Imitial Conditions: SMM Training

Parameterization of the SMM also requires simulation of a set of particles across a single
unit cell. To simulate the trajectories that are employed to parameterize the SMM model,
we modify this inlet condition. In this case the flux intensity is balanced with the need
to populate the inlet boundary locations: because diffusion is present, particles may visit
diffusion-dominated regions. The particles are then distributed along the inlet face as:

e 20% uniformly distributed on the fluid portion of the inlet boundary of the domain;

e 80% distributed according to the flux-weighted initial condition discussed above (see
Section 3.3).

4 Results

The presentation of the results is here split into two parts. First Section 4.1 is devoted
to numerically assessing convergence of the pore-scale particle tracking modeling approach.
Then, Sections 4.2-4.3 provide a discussion of the tSMM performance.

4.1 Pore-Scale Model Assessment

The particle’s arrival time ¢ (see Section 2.3.1) is employed as a fundamental metric to
characterize transport, while the total number of absorptions N4 (see Section 2.3.2) is
utilized for evaluating adsorptive processes. The analysis is performed on a three-dimensional
domain as described in Section 3 and with the physical parameters reported in Table 2. We
focus on advection-dominated transport in the presence of moderate sorption. The geometry
of the porous domain and the corresponding velocity field are shown in Figure 1.

The simulation is conducted by assuming both a static and dynamic time increment as
explained in Section 2.1.3.

Table 2: Size and Physical Properties of the Computational Domain for DNS Analysis

Parameter SI units

Ly 512 x 107*  Length of the domain region m
Pe 100 Péclet number

D 7.52 x 10~ Molecular diffusion coefficient m? /s

! 2x 1077 Adsorption rate m/s
Da, 0.0372 Adsorptive Damkohler number

At 8.37 x 1076  Static increment time S
[[al| 5.3909 x 10~* Mean velocity m/s

We assess first the impact of the number of particles N, employed on the arrival time
distribution. As depicted in Figure 2 (a), the distribution of particle arrival times exhibits
disparities primarily at the tails when varying N, between 103 and 5 x 10°. Notably, for

10
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Figure 1: 3D visualization of the porous domain (left) and the velocity field (right) in [m/s]

smaller ¢y values, the distributions closely overlap. The third quartile g75 of p:, is selected as
a metric for comparing the model outcomes. From Figure 2 (b), we can observe that gzs(pt,)
converges to approximately 1.13 for N, greater than 1 x 10°, regardless of whether the static
or dynamic time increment approach is employed. The two approaches offer comparable
accuracy, but the dynamic approach presents the advantage of reducing computational time.
Figure 3 compares the total computational time ¢, required for the simulation in the two
cases and allows appreciating that the computing time is approximately halved when using
the dynamic time increment method compared to the static approach. In light of these
findings, the subsequent analyses in Sections 4.2-4.3 are performed using the dynamic time
increment approach.

The total number of adsorption events N4 4o is computed according to eq. (21). Results
refer here to both the total number of sorption events and to the third quartile of the arrival
time distribution g75(ps f), taken as an indicator of the convergence of transport. Note that
the time increment displayed in Figure 4 refers to the one applied in the region close to
the solid-liquid interface. Both N4 ;¢ and q75(p: f) converge when the time increment At is
smaller than 5 x 107° s. Generally, the total number of adsorption events displays greater
dependence on Aty,. This is in line with the observation that the At value displayed in figure
directly affects the simulation only close to the interface and therefore has a minor effect on
arrival times (less than 5% variation is observed when At varies by more than two orders of
magnitude).

11
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Figure 2: Comparison of the particle arrival times obtained with varying number of particles
Np: (a) arrival time distribution py,, (b) third quantile g75 of p;, for the static (red dots) and
dynamic (black squares) time increment approach

12
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Figure 3: Computational time required to simulate particle transport across a single unit cells
upon employing static (red dots) and dynamic (black squares) time step. Results are shown
as a function of the number of particles IV,
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Figure 4: Total number of adsorption events N4 1or (a) and the third quantile g75(p; ;) of the
distribution of py, (b) as a function of the time step Aty, imposed in the close-to-interface
fluid domain ;. Results are obtained employing a dynamic time stepping in the far-from-
interface fluid domain Q.

4.2 SMM Upscaled Model

We analyze here results obtained through an upscaled SMM when simulating longitudinal
transport across a collection of periodic unit cells, and we consider the impact of the parameter
Ny, i.e. the number of trajectories selected to assign the particle step, which ultimately leads
to the definition of our transition matrix T; ;. We compare two scenarios: (a) the weighted
case where w; o< Dist(bi,a;) "', and (b) unweighted case where the same weight is attributed
to each of the possible Ny (see Section 2.2). The analysis is performed for three Péclet
numbers, Pe; = 50, Pes = 100, Pes = 200, and varying N between 10 and 500. The
physical and computational parameters are reported in Table 3.
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Table 3: Physical and Computational Parameters for Assessing the Impact of the Number of
Selected Trajectories

Parameter SI system

L, 2.56 x 1072 Length of the domain m

N, 50 Number of unit cells

P61 Peg P€3

At 3.69x107° 3.95x 107> 4.156 x 107> Time increment 8

D 1.50x 10710 752 x 107!t 3.76 x 101!  Diffusion coefficient m? /s

e 4 %1077 2 x 1077 1x 1077 Adsorption rate m/s
Da, 3.72 x 1072 Damokhler number

The accuracy of the SMM is assessed by comparing the probability distribution of ¢ values
estimated by the SMM with those obtained through DNS. The Hellinger distance (HD) is
employed [20]

Ny
HDIg",q] = \2 > (Vo - Vi) (27)
i=1

where ¢ and ¢* are the discrete probability distribution of the arrival time obtained by the
SMM and the DNS, respectively, both discretized using Ny bins. HD is bounded between
0 and 1, where O indicates that the two distributions are indiscernible and 1 that they are
maximally distant. From Figure 5 we observe that the HD values for the weighted scenario
are consistently lower than those obtained in the unweighted case for all the analyzed numbers
of selected trajectories. Specifically, for all the considered Péclet numbers, HD spans from
0.025 to 0.06 for the unweighted case and from 0.02 to 0.05 for the weighted case. These
values are indicative of satisfactory accuracy. Note that considering two samples of size 10°
drawn from an identical Gaussian distribution yields HD = 0.015 (the value is indicated by
a continuous red line Figure 5). This reference value quantifies the effect of finite sample
size on the employed metric. Note that considering two samples of size 10° drawn from an
identical Gaussian distribution yields HD ~ 0.015 (the value is indicated by a continuous red
line Figure 5). This reference value quantifies the effect of finite sample size on the employed
metric.

For each number of selected trajectories, HD tends to increase in the z-direction, with
best-performing simulations displaying a stable HD value after 30 unit cells. On average,
for a higher number of selected trajectories, the increase in HD in the x-direction is more
pronounced for higher Péclet numbers. For lower N, values and under the same weighted
approach, the tSMM provides similar accuracy in predicting the particle arrival time distri-
bution for different Péclet numbers.The results obtained are compared in Figure 5 with the
HD value (red thick line) between samples drawn from identical normal distributions for a
sample size of 10°.

In Figure 6, the Hellinger distance is presented for both the weighted and unweighted ap-
proaches, considering various N, values and two different positions within the computational
domain: (a) at x = 5L and (b) at x = 50L. Lower HD values are consistently observed in the
weighted scenario compared to those found in the unweighted case for a given domain location
and across all considered Péclet numbers. This observation supports the findings in Figure
5 and suggests that weighting the trajectories based on the distance between the subsequent
trajectory inlet and outlet locations provides similar accuracy regardless of the number of
selected trajectories, especially close to the inlet (i.e. at distance 5L). Each HD-trajectory
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Figure 5: Comparison of the HD values between the probability distribution of the particles’
arrival times obtained by the SMM (q) and the DNS (¢*) in the weighted case (red dashed
line) and unweighted case (black solid line) along the z-direction for a different number of
selected trajectories for (a) Pe = 50, (b) Pe = 100, (¢) Pe = 200: (o) 10, (O) 30, (¢) 50, (A)
80, (x) 100, (v7) 500 trajectories. The red solid line corresponds to the HD value between
two normal probability distributions for a sample size of 10° elements.
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number curve exhibits an increase in HD with the number of trajectories (/Vy.), with minor
fluctuations as the Péclet number increases due to reduced diffusive effects. The minimum
point of each curve represents the number of selected trajectories that offers the highest
accuracy in estimating the distribution of particle arrival times. For location x = 50L, the
minimum is observed at N, = 50 for both Péclet numbers equal to 50 and 100. For Pe = 200,
the highest accuracy is found for a number of trajectories equal to 30. However, there is no
clear correlation between the optimal number of trajectories and the Péclet number based
on these results. In the tested conditions, results reveal that the weighted and unweighted
cases display similar accuracy when considering the best case results. Yet, the weighted case
is capable of maintaining a similar performance for a wider interval in terms of Ny.. Hence,
for the weighted case the accuracy exhibits low sensitivity to this particular parameter. In
conclusion, the weighted method appears to be a more precautionary approach, ensuring good
accuracy regardless of the number of selected trajectories. Therefore, the results presented in
the following are obtained relying upon the weighted method.

Next, we investigated the impact of the number of particles employed in the simulation N,
on the accuracy of the particles’ arrival time predictions from the tSMM. Based on the lower
Hellinger distance values observed in Figure 7, the tSMM simulations are conducted under
the weighted scenario. Here, HD is computed for the probability distribution of particle
arrival times, as defined in eq. (27), by fixing Ny = 10 and Npr = 10°, while progressively
incrementing N, in the SMM. A reference DNS simulation run with 10° particles is used for
estimating HD. As shown in Figure 7, the Hellinger distance values are consistently low
and decrease with increasing N, indicating good agreement between the SMM and DNS.
The convergence appears to stagnate when H D approaches 0.02, i.e. close to the minimum
reference value obtained above.

The impact of the number of selected trajectories on the estimation of the total number
of adsorption events N4 t0¢, computed according to eq. (21), is further evaluated. For each
Péclet number, the N4 ;o values obtained in the SMM are compared with those derived from
the DNS. The percentage error Ey,, quantified as in eq. (28), is employed as metric to assess
the accuracy of the results.

Eo — Nz,tot - NA,tot(Nt)
%

(O *
NA,tot

100 (28)

where N} ;. and Ny yo1(n,) are the number of adsorption events obtained in the DNS and
tSMM (using Ny, selected trajectories), respectively. As displayed in Figure 8, the percent-
age error for Pe = 50 ranges from 0.3% to 2% when Ny, is assumed equal to 50 and 100,
respectively. Higher |Ey| values are observed for a Péclet number of 100 and 200, with |Eqy|
varying between 0.9 and 2.7 for Pe = 100 and between 0.1% and 6.2% for Pe = 200. These
results indicate that the mean percentage error increases as the Péclet number increases.
The optimal value of Ny, is consistent with the findings related to the particle arrival times
for Pe = 50, while for Pe equal to 100 and 200 N, different results are obtained for the
two outputs. This suggests that the optimal number of trajectories may vary depending on
the specific transport and adsorption characteristics of the system, particularly as the Péclet
number increases. We observe, however, that all results display relatively small deviations,
thus supporting the general robustness of the tSMM approach in reproducing the DNS results
with acceptable accuracy.
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Figure 6: Comparison of the HD values between the probability distribution of the particles
arrival times obtained by the SMM (gq) and the DNS (¢*) in the weighted case (dashed line)
and unweighted case (solid line) for a varying number of selected trajectories at location
x = 5L (red lines) and x = 50L (black lines). Different Péclet numbers are assessed: (a)
Pe = 50; (b) Pe = 100; (¢) Pe = 200. The red solid line corresponds to the HD value between
two samples of size 10° drawn from the same normal probability distribution. Results refer
to single realizations.
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Figure 8: Comparison of the percentage error Fy, between the total number of the adsorption
events computed by the SMM Ny 4o and the DNS le’tot. Results are shown as a function of
Ny and Pe equal to 50 (blue diamonds), 100 (red dots) and 200 (black squares)

18



G.M. Porta et al. ARC Geophysical Research (2025) 1, 12

4.3 Adsorption/Desorption Analysis

We discuss here the application of tSMM in predictive mode. The analysis is conducted using
the same computational domain introduced earlier (Table 2) and composed of 50 periodic unit
cells. The tSMM simulations are conducted by using the weighted approach with a number
of selected trajectories equal to 50, based on results in Section 4.2. We compare tSMM with
DNS results in terms of particle arrival time ¢ (see Section 2.3.1), delay ¢ due to the particle
adsorption (see Section 2.3.2) and total arrival time t;,, the latter being calculated as

tiot = tf +Z (29)

First, the delay resulting from adsorptive events is computed according to eq. (20) with an
assumed value of Day = 0.013. The distribution of ¢f, ¢ and #;,; for the domain location x =
1L, z = 30L and x = 50L are presented in Figure 9. The tSMM approximates the DNS results
well, particularly with respect to the delay and total time distribution. Minor differences
emerge in the particle arrival time distribution at = 30L and = 50L for the tail of the delay
and total arrival time. For these time intervals, the tSMM slightly overestimates the arrival
time in comparison to the predictions made by DNS. This observed behavior is primarily
attributable to sampling errors, particularly for those trajectories affected by long travel times
due to diffusion processes in low velocity regions. This result does not significantly impact the
overall alignment between the DNS and SMM outcomes. This analysis provides evidence of the
SMM'’s capability to accurately predict both transport and adsorptive/desorptive phenomena.

t,[s] Z[s|
(a) (b)

1070
O
(0)
Figure 9: Comparison of the distribution of (a) the particles’ arrival time, (b) delay (c) total
particles’ arrival time between the DSN (red solid line) and the SMM (black dots) at distances

1L, 30L and 50L
Our investigation extends to the evaluation of the arrival time distribution (p,,,) at dis-

tinct locations within the computational domain, specifically at = 1L, 10L, and = = 50L
encompassing various combinations of adsorptive and desorptive Damkohler numbers and
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Péclet numbers of 100. The analysis presented in Figure 10 clearly illustrates that an increase
in the adsorptive Damkohler number results in prolonged particle arrival times at a given
position. Particles are more likely to be absorbed as Da, increases, leading to a delay in their
arrival at the outlet of the periodic unit. When Da, = 1.1, a distinctive pattern emerges
in py,,, at © = 1L. A prominent peak is observed at lower arrival times followed by a near
constant trend up to tio; ~ 10°. At the same location with Da, = 0.005 the arrival time
distribution is characterized by a single peak occurring at lower t;,;. Similar concentration
patterns are evident at locations z = 30L and x = 50L. At these locations, unique peaks are
observed in py,,, particularly noticeable when Da, = 1.1, for both the adsorptive Damkohler
numbers considered. For a given Da,, increasing Dag results in a reduction of the arrival
time, with a more significant effect observed for Da, = 1.1.

Da,=0.005 Da,=0.013 Da =0.005 Da,=0.065

10° ( 10°F
102
1072
o 104} 1 D‘:E
1074
10'6 F 1
-6
10-8 I0 I2 4 " 1 0 1 2 3
10 10 10 107 10 10 10 10
tmr, [S] ttol [S]
Da=1.1 Da,=0.013 Da =1.1 Da,=0.065
10° " " . 10° . .
102f 102
1074F 107
I =
o, Y
10} Iy 10°®
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Figure 10: Distribution of the total particles’ arrival time py,, at * = 1L (black line), x = 30L
(blue line) and & = 50L (red line) for different combinations of the adsorptive Damkd&hler
number Da, and desorptive Damkohler number Day

5 Discussion and Conclusions

The work proposes a numerical tool based on the Spatial Markov model (SMM) to predict
transport and adsorption/desorption processes in a three-dimensional porous media. The
framework is constructed using the trajectory-based spatial Markov model (tSMM) proposed
in [38] where high-resolution trajectories generated through an advective-diffusive random
walk across a singular periodic flow element are stitched together subsequently to upscale
transport and surface reactive processes to significantly larger scales. The algorithm is an
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extension of that presented in [9], the latter being limited only to a two-dimensional domain.
Optimization strategies, including the dynamic selection of the time increment, result in a
computational time that is tenfold lower than the original code.

The dynamic time increment speeds up the computation in the presence of large areas
dominated by diffusion. The results from the tSMM are benchmarked against the outcomes
derived from the direct numerical simulation performed on the same porous domain. Addi-
tional optimization strategies can be applied to improve the performance of the implemented
algorithm.

Trajectory selection is rigorously evaluated to upscale the simulation effectively to larger
scales. We assess the impact of the weighting approach in the selection of the trajectories
to be assigned to each particle on the modeling results, especially in terms of particle arrival
time. The ‘weighted scenario’ , where weights are determined proportionally to the distance
between the final position and the inlet point of the trajectory, proves more accurate than the
‘unweighted case’ where a uniform weight of 1 is assigned to each trajectory. The ‘optimal
number’ of trajectories varied with Péclet numbers. Overall the weighted approach displayed
low sensitivity to the number of trajectories employed to simulate transitions across different
transport steps, thus showing robustness with respect to this particular numerical parameter.

The tSMM’s predictive performance for adsorption and desorption phenomena is evaluated
and compared against DNS results. Strong alignment between SMM and DNS outcomes was
observed in terms of particle arrival times, delay due to adsorption, and total arrival times, in-
dicating the SMM’s capability to accurately predict both transport and adsorptive/desorptive
phenomena. Arrival time distributions are analyzed at different locations within the compu-
tational domain for various combinations of adsorptive and desorptive Damkoéhler numbers.
Higher adsorptive Damkohler numbers led to prolonged particle arrival times. The desorptive
Damkohler number’s impact is more pronounced at higher adsorptive Damkohler numbers,
emphasizing the interplay between adsorption and desorption processes.

In conclusion, our approach provides a low-cost approximation of solute transport coupled
with sorption processes that can be employed to test sorption/desorption in column settings
for a variety of reaction rates and transport setups at lower computational cost, as compared to
a pore-scale simulation. In this sense, our model could be employed to facilitate experimental
design or optimization where multiple realizations and parametric analyses may be necessary.
The presented approach assumes linear sorption and desorption processes, and thus cannot be
directly used to model the effects of competitive sorption and sorption site availability. Yet,
recent studies have discussed methods to incorporate nonlinear reaction rates into Lagrangian
solvers [3], thus opening a pathway towards extending tSMM to model these phenomena.
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