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Abstract

Amathematical braid is a collection of crossings between n strings which flow
continuously from right to left with fixed starting and end points. These crossing
must be done in a specific manner in order to maintain structure. Specifically,
after crossing that continue horizontally to the left. These will form a group, Bn,
under concatenation. As a braid need not have a particular length, or number of
crossings, this group is infinite in size and quite difficult to analyze. By turning
our attention to the work done by William Thurston in [4], we see that the subset
of positive braids, B+

n , the problem is reduced. Specifically, using the Garside
braid to generate a unique ”factorization” of braids in order to create a structuring
of Bn.

1 Introduction
Imagine you have n parallel strings laid out on a table flowing right to left. You then

intertwine those strings by crossing one string over the one directly below it, making
sure that afterwards the strings once again flow right to left but in their reordered
positions. Once you’ve intertwined them to a desired amount, by doing as many of
these crossings as needed, you have created what is called braid on those n strings.
An example of a braid on 4 strands is shown in Figure 1 below. As seen in Figure 1,
the braid must flow in a continuous path from right to left, i.e. if you were to put it in
R2 the end points must lie in the same y-positions as the starting points, possibly in
a different order. Furthermore, we label the strings 1 to n starting from top to bottom.

This choice of direction of flow is an arbitrary decision, the strands could flow left
to right. In fact, many people these days will construct the braids such that they flow
vertically. However, once a direction is set, there must be consistency. The reason
for left to right, is that it is convenient for the operation as it behaves similarly to
function composition. From Figure 1, we can identify a convenient way to describe
the crossings making up the braid. When a crossing is done by crossing two strands
such that the top goes over the bottom, creating a positive slope in the crossing,
we call it a positive crossing. Furthermore, we can denote that crossing by which



strand crossed over another. Thus, the first crossing in Figure 1 can be denoted x1,
as strand 1 crosses over strand 2. Now, there can also be a crossing where a strand
crosses over the strand above, denoted as a negative crossing. It’s important to note
that negative crossings are the inverse of positive crossings, as they do exactly the
opposite move. So mathematically we can represent them as x−1

i . Lastly, we see in
Figure 1, as we continue to follow the strings we can read off each crossing. Thus,
giving the word representing the braid as seen below the braid.
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Figure 1: Example Braid on 4 Strands

2 Mathematical Background
Let’s quickly remind ourselves of some concepts from group theory before diving

into the specifics of Bn.

Definition: Group
Let G be a set paired with a binary operation (represented in multiplicative notation).
We say G is a group under the operation if the following properties are satisfied:

0) Closure. The operation is closed; that is, for all a, b ∈ G, (ab) ∈ G.
1) Associativity. The operation is associative; that is, (ab)c = a(bc) for all a, b, c ∈

G.
2) Identity. There is an element of G, denoted as e, called the identity, such that

ae = ea = a for all a ∈ G.
3) Inverses. For all a ∈ G, there is a b ∈ G, called the inverse of a, such that

ab = ba = e
In a later section we will discuss why Bn satisfies each one of the groups properties.

Definition: Permutation, Symmetric Group
Let A be a set. A permutation of A is a bijective mapping of A to A. The symmetric
group, Sn, is the set of all permutations of {1, .., n} under function composition.

Since a permutation is bijective, you get all elements of A using all elements of A,
effectively just reordering the elements. Sn helps to investigate many objects that are
studied in group theory, including Bn. In a later section we will discuss the relation
of Sn to Bn.

The final concept to discuss is the idea of generators, relations, and group pre-
sentations. As this a abstract mathematical concept, we wish only to give a con-
ceptual overview. See [9] and [5] for concrete mathematical definitions. Given a
set A = {a, b, c, ...} of distinct symbols and an inverse set A−1 = {a−1, b−1, c−1...}.
Define, W (A) to be the set of all finite strings of the symbols from A ∪ A−1. We call
these finite strings words. Furthermore, let’s define equivalence classes on W (A)
where words of the form xix

−1
i = e, where e is the empty word. For example, take
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abb−1baa−1b−1 ∈ W (A) and simplify it by removing all parts which are equivalent to
the empty word. So it would break down into, aebeb−1 = abb−1 = ae = a. Now, if
we define W (A) to have the operation of concatenation, we see that W (A) form a
group.

Furthermore, we can create an algebraic group to have an isomorphism with any
group by using the correct generators and relations. Given some group of symbols
G, some subset A = {a1, a2, ...an}, and a set of relations W = {w1, w2, ...wn}. Here
is an example of a relation, a2bb−1 = e. Notice this allows you to further simplify a
given word if that combination of letters is there. This relation would commonly be
written like, a2b = b, to keep things orderly. Now, we say that G is generated by A if
when we apply the relations inW , to A we obtain G. Furthermore, we say that G has
the presentation, G ≡ ⟨a1, a2, ..., an|w1, w2, ...wn⟩. Now, we can say that any group
is isomorphic to an algebraic group with a given presentation, if it exhibits the same
properties of the algebraic group. An easy example of this is, Zn ≡ ⟨a|an⟩. Say n = 3,
so Z3 = {0, 1, 2}. Notice that the group obtained from the presentation, {e, a, a2},
behaves exactly like Z3 under concatenation. Thus, we say that Z3 ≡ ⟨a|a3⟩.

3 Group Presentation for Bn

Before algebraically defining Bn with a group presentation, let’s confirm that Bn

actually forms a group under concatenation. Firstly, is Bn closed? If we concatenate
two braids we create a longer braid on n strands, making Bn closed. Second, is
concatenation associative? If we take three braids, say x, y, z, and concatenate like
so (xy)z, where we do the parentheses first, it is exactly the same as x(yz). The
order of the crossings will remain the same no matter which two we concatenate
first. Therefore, Bn is associative. Third, is there an identity element? Yes, it’s the
braid represented by the empty word e, i.e. the braid with no crossings, as seen in
Figure 2. Yes, if we concatenate any braid with e we technically created a longer
braid in Bn by extending the strands. However, we have added no new crossings,
thus it’s as if we have done nothing at all. Furthermore, when we concatenate the
braid words, we are adding the empty word, or adding nothing at all. Therefore, e is
the identity in Bn.

Figure 2: Identity in Bn

Lastly, are there inverse elements in Bn? Yes, given any braid in Bn just replace
all positive crossings with negatives, and all negative crossings with positives, and
do them in reverse order, i.e. undo each crossing sending it to e after concatenating.
An example is given in Figure 3 below. Notice, that when we concatenate these two
braids each strand ends up back in its original position, as we are ”unwinding” the
braid.

3



∥

∥

Figure 3: (x1x2x3)
−1 = x−1

3 x−1
2 x−1

1

Now, in order to properly define Bn we will define the group presentation. First,
notice that we can take the generating set to be the set of positive crossings, {x1, x2, ..., xn−1}.
Furthermore, wewill use the set of negative crossings as inverses, {x−1

1 , x−1
2 , ..., x−1

n−1}.
From here, we will need to find the relations that will create all braids in Bn. Figure
4 below demonstrates the two relations with their algebraic representation.

xixj = xjxi if |i− j| > 1

xixi+1xi = xi+1xixi+1

Figure 4: Braid Relations

If we were to read off the words representing the braids in the top portion of Figure
4, we get x1x3 for the right, and x3x1 for the left. Furthermore, if you follow the strands
through each braid you’ll notice that in both braids strand 1 crosses over strand 2,
and strand 3 crosses over strand 4. This implies that the two braids are equal to
each other as they have exactly the same crossings, and x1x3 = x3x1. Figure 4 also
shows, two crossings will commute only when they are separated by a strand, i.e. the
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difference between the strands must be greater than 1. Otherwise, each respective
braid will behave differently. Furthermore, if we read off the words representing the
braids in the bottom portion of Figure 4, we get x2x3x2 for the right, and x3x2x3 for the
left. Once again, if we follow the strands through right braid, 1 crosses over nothing,
2 crosses over 3 then 4, 3 crosses under 2 then over 4, and 4 crosses under 2 then
3. For the left braid, 1 crosses nothing, 2 crosses over 4 then 3, 3 crosses over 4
then under 2, and 4 crosses under 3 then 2. Implying that each braid has the same
exact crossings, even though reversed, and thus are equal, i.e. x2x3x2 = x3x2x3.
From here, justifying that all relations in Bn are a consequence of this small set of
relations is difficult. This was first proved by Emil Artin in [1], where Artin showed
that the presentation is,

Bn ≡ ⟨x1, x2, ...xn−1|xixi+1xi = xi+1xixi+1 , xixj = xjxi if |i− j| > 1⟩

4 Positive Braids in Bn

After understanding the presentation of Bn it is clear that Bn is infinite in size.
There is no limit as to how many combinations of crossing you can put into a braid.
This makes it rather difficult to dig further into Bn. However, if we turn our attention
to special subsets of Bn that behave nicely, we can narrow in our focus by seeing
how these subsets interact with the entire group. One of the more important subsets
for our study is the set of positive braids, B+

n . A positive braid is an element of Bn

consisting of only positive crossings. Figure 1 is an example of a positive braid.
Quickly note, this subset does not form a subgroup, as it does not contain negative
crossings, or inverse elements. In fact, this set forms amonoid under concatenation.
For further information on monoids, see [2], and [11].

This subset has a number of useful properties, primarily in how it lies in Bn. That
is, two positive words in Bn represent the same braid if and only if they represented
the same braid in B+

n . This was first proved by Garside in [6], but later shown by
Thurston in [4]. What makes this useful is that the options for a braid which is repre-
sented by a given positive word has a finite number of choices in B+

n , unlike Bn. This
is because in Bn we can leverage inverse crossings to simplify words into a word
representing a positive braid. Furthermore, B+

n contains what is called the Garside
braid, Gn. This is a half twist of the strands, as seen in Figure 5. This is called a half
twist as each strand only makes it halfway through the braid, i.e. it doesn’t make it
back to it’s ”original” position. Notice, if you follow each strand, 1 → 4, 4 → 1, 3 → 2,
and 3 → 2.

Figure 5: G4 = (x3x2x1)(x3x2)(x3)

This half twist has a number of important properties. First, given a positive crossing,
xi, there exists positive braids, Li and Ri, where Gn = xiRi = Lixi. We call Li the
left tail, and Ri the right tail of Gn. Rearranging the equations yields, x−1

i = G−1
n Ri =

LiG−1
n . Therefore, each negative crossing can be written as a product of G−1

n Ri,
or LiG−1

n . This means that every braid in Bn can be rewritten using only positive
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generators by figuring out what power, denoted t, of G−1
n is needed for each x−1

i in
the braid. In fact, you can take any braid, including positive braids, and break them
down into these ”factors” of Gn. We call this factorization the Garside normal form
for the braid groups. This is a similar idea to factorization in the integers. We wish
to break down a ”larger” braid into ”factors” of Gn in order to understand the overall
structure of Bn. As without a form of factorization, the braids are too complex to
study, as there are infinitely many braid words which can represent any given braid.
Below we will dive into an example of performing this factoring on a positive braid.
The following example can also be found in [3], although our presentation will include
more detailed comments and pictures. For those interested in further mathematical
details on this factorization, see the following section.

Our goal is to find the Garside normal form of the following positive braid,

P = x1x3x
2
2x1x

2
3x2x3x2

First lets draw out this braid.

Figure 6: Example Positive Braid

Now, you want to algebraically break the braid up wherever you see a repeated
crossing. This makes it easier to view any braid moves which can be done. Further-
more, in the following braid pictures, there will be separating lines at each place the
braid is algebraically split.

P = (x1x3x2)(x2x1x3)(x3x2x3)(x2)

As we work from right to left in the braid word, notice that we can preform a braid
move on x3x2x3.

P = (x1x3x2)(x2x1x3)(x2x3x2)(x2)

Figure 7: x3x2x3 = x2x3x2

Notice, that we can now push x2x3 from the third piece into the second, as these
strands will no longer cross twice there.

P = (x1x3x2)(x2x1x3x2x3)(x2)(x2)

Back to the braids moves.

P = (x1x3x2)(x2x1x2x3x2)(x2)(x2)
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Figure 8: Moving x2x3

Figure 9: x3x2x3 = x2x3x2

One more time on that piece.

P = (x1x3x2)(x1x2x1x3x2)(x2)(x2)

Figure 10: x1x2x1 = x2x1x2

Now we can push x1 from the second into the first. We cannot push the x2 as strands
3 and 2 would now cross twice.

P = (x1x3x2x1)(x2x1x3x2)(x2)(x2)

Figure 11: Moving x1

Notice that in each piece, any two strands will cross at most once. Furthermore, the
only braid moves which can be perform are x1x3 = x3x1 in both the first and second
sections of the braid. However, either one of these moves would result in crossings
getting entangled in each section. Therefore, we can conclude that this braid is now
in Garside normal form.
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5 The Mathematics Behind the Garside Normal Form
The following discussion elaborates on an example first examined by Thurston

in [4], and later by Birman in [3]. Starting with the implied automorphism, f : Bn →
Bn where f(X) = G−t

n XGt
n. We can rearrange the equation, Gt

nf(X) = XGt
n, by

multiplying by Gt
n on the left. This demonstrates that Gt

n can be factored to either
side of a braid. Furthermore, this implies that given an arbitrary braid X, it can be
represented by a word of the form, Gt

nZ, where Z is a positive word. On the surface,
we accomplished the goal, an arbitrary braid is factored! However, the power t is
arbitrary. Therefore, the representation Gt

nZ is not unique. In order to correct this,
we’ll have discover if there exists a word, Gi

nZ, such that i is maximal. Simply put,
higher powers would begin to represent the wrong braids. Now, we still do not know
what factoring into Z looks like, as Z is non unique. However, notice that if we take all
words which representZ to be, Z0, Z1, ..., we can chooseZ0 such that it’s composition
of crossings is minimal. Resulting in factorization, Gi

nZ0. So we are clearly interested
in the composition of Z0.

This can be rather difficult as there are a great number of words which can rep-
resent braids of this form. However, notice that Z0 can contain arbitrary powers of
sub words of Gn. So we’ll start by factoring, Gn = lr, where we call l the left divisor,
and r the right divisor. Notice that there are many words which can represent either
l or r. So we’ll put all left divisors into a set called P , and all right divisors into a
set P ′. As Gn is a half twist, the factors will have a 1 − 1 correspondence with the
permutations of the end points. So, there will be n! elements, and in fact this set
is usually referred to as the set of permutation braids. This connection comes with
a very important property for factoring Gn. Each element in P , and P ′ consists of
braids such that any two strands can only cross once! This is a crucial property as
it significantly narrows down how many words can represent our factoring. Below is
a figure of all of the permutation braids in B4. Where each step along the lattice, we
are removing a crossing systematically such that the resulting braid will follow the
above requirement. Quickly note, the figure below was constructed with the braids
flowing slightly differently. They are numbered the same, but they flow left to right.

Figure 12: Permutation Braids in B4
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Going back to the factorization from above, we can say that Gi
nZ0 = Gi

nL, where
L ∈ B+

n . Furthermore, if L consists of crossing where any two strands cross only
once, then L ∈ P , and we can take a positive braid word, l1, which has the same
permutations as L to be it’s representative. If not, set L = l1l

∗
1 where l1 is a maximal

braid in L where any two strands cross at most once, and l∗1 is the rest of the braid. If
any two strands cross at most once in l∗1, then we say l∗1 = l2 and stop. If not, we let
l∗1 = l2l

∗
2 where l2 is maximal in l∗1, and l∗2 is the rest of l∗1. If any two braids in l∗2 cross

at most once, we say l∗2 = l3 and stop. If not we say, l∗2 = l3l
∗
3, where l3 is maximal

in l∗2. We repeat this process until we successfully factor L = l1l2l3...lt, where t is
the number of times this process is done. So we have now successfully factored
an arbitrary braid into Gi

nl1l2l3...lt. This factoring is referred to as the Garside normal
form, or even the ”left greedy normal form”, as we are pulling Gi

n towards the left of
the word. Further details about this normal form can be found in [10].

6 Concluding Thoughts
The next logical step to take in this project is creating an algorithm which takes

in any braid and outputs the normal form. Further reading on this algorithm can be
found in [4]. The basic premise is to create a finite state machine which uses set
theoretical logic to walk through the process as shown in Example 1. This machine
not only holds importance in solving group theoretic problems, but also allows us to
use Bn to solve other problems. For example, we can use the machine to encrypt
information. Instead of forcing computers to run through simpler algorithms to factor
primes, we force them to run through the more complicated algorithm demonstrated
in Example 1. This idea can be seen in [8] and in [3].

Braids can also model certain physical situations in an interesting manner. As the
braids have high levels of symmetries, they can model the symmetries of elementary
particles. See [7] for further exploration of this application.
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