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Abstract
Clean water and healthy watersheds are necessary for keeping water safe for human consumption and mini-
mizing harmful changes to habitats for animals and plants by humans. Volunteers from the Volunteer Water
Information Network collect samples from western North Carolina streams and rivers monthly. Samples
are sent to the Environmental Quality Institute and analyzed for key indicators of water quality such as
pH, total suspended solids, and Turbidity. Linear regression models are implemented to explore the effects
of flow, season and time on water quality parameters. Least squares, auto-regressive, and moving-average
models are compared and contrasted in order to assess which are best at predicting trends in the quantity
of pollutants in western North Carolina Rivers. For five of the eight parameters analyzed, a least squares
approach was best based on the criterion used. Significant trends were found for seasonality and flow where
as a smaller amount of significant trends for time were found.

1. Introduction
Maintaining healthy water and watersheds is crucial for agriculture, keeping ecosystems healthy, and ensuring
drinking water is safe for humans and animals. The Volunteer Water Information Network (VWIN) collects
water samples from various rivers, streams, and lakes in Western North Carolina which are then analyzed by
the UNC-Asheville Environmental Quality Institute (EQI). VWIN provides a database of information which
EQI analyzes in order to assess water quality, what factors influence water quality, and provide quantitative
information for environmental groups and local governments, in order to find areas that need the most work
to improve water conditions.
VWIN data and EQI analysis of VWIN data were used from the French Broad Watershed in North

Carolina. This includes Buncombe county, Haywood county, and Henderson county (Fig. 1). The French
Broad watershed is a sizeable watershed; it is used as drinking water for 1 million people and is composed of
2,830 square miles of land in N.C.1 The watershed is valuable not only for drinking water but also because
it provides water to an extensive plant and animal network.
Determining the factors that influence water quality is greatly influenced by the type of model that is being

used to predict changes for a water quality parameter. Temporal trends of water quality can be predicted
well with linear models2,3,4. In order to select the best model two tests for the goodness of fit of a linear
model were used to assess whether or not temporal trends of water quality parameters from month to month
are necessary to account for when choosing a model. What factors have significant influences on water
quality and what model best predicted changes in water quality were explored through statistical analysis.

2. Data
VWIN volunteers are trained by EQI, or partner organizations, about sample collection procedures by a
VWIN coordinator as well as a training manual6. In order to reduce meteorological variability, samples
are collected as close to noon as possible; however, samples are collected on separate days for the three
counties in this study6. Buncombe and Haywood county samples are collected every second Saturday of
each month; Henderson is sampled every third Saturday of each month6. Samples that were analyzed at
other laboratories, when EQI closed temporarily, were also removed3. EQI analyzes water samples for 8

1



Figure 1. watershed separated by county5

different parameters: acidity, alkalinity, turbidity, total suspended solids (TSS), conductivity, ammonia-
nitrogen (NH3), orthophosphate (PO4), and nitrate (NO3).
Data exists as early as 1990 but varies from site to site as well as from county to county. Sites were

included only if they have ten years or more of data and have data for the past five years. After removing
sites with less than ten years of data the total number of sites in the study was 114. Observations with a
z-score> 3, after log transformation, were removed from each site2. Average proportions of outliers removed
per site by parameter, as well as total amount of data for each parameter, are shown in table 1. When
outliers were removed from the number of observations, as well as values that do not have a full data set
for regression, i.e. missing a value for flow, then the total number of observations for each parameter in the
regression was roughly 17,000. Outliers were removed because of interest in long-term trends of water quality;
thus, removing instances where concentrations may be extremely high or low was necessary to remove their
influence on predicting long-term changes to water quality. Flow was incorporated into the regression model
and was obtained from USGS gages online7. Gages were selected for a site by similarity to stream/river
conditions as well as minimizing geographic distance from the VWIN site.

Table 1. outliers and total number of observations

Turb. TSS NO3 NH3 PO4 Cond. pH Alk.
Outlier proportion (Mean) 1.12% 0.81% 2.65% 1.60% 0.37% 0.92% 0.10% 0.50%

Total Observations 17884 17909 17538 17761 17993 17911 17987 17905

3. Methods

The statistical program R was used to aggregate the data and perform all statistical analyses. Three different
linear models were tested in the study: least squares (LS), generalized least squares (GLS) with an auto-
regressive error term, and GLS with a moving average error term. An auto-regressive model was implemented
that was order one (AR1) which makes the assumption that the random error term in the regression, εt, was
influenced by the previous error term. Auto-correlated regression error was defined to be: εt = φεt−1 + vt,
where vt is Gaussian white noise and are NID(0,σ2

v) and φ is the AR1 parameter4. The moving average
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(MA) model was order one as well and the error was defined to be εt = vt +ψvt−1
4. Thus, the regression

error is dependent on the Gaussian white noise from the current and previous error term.
The water quality parameters were log transformed in the form Log(parameter+ .5*Detection limit),

except pH since it was already on a log scale. Detection limit was added before transforming parameters
to eliminate instances in which a value was recorded as zero and would give negative infinity after being
transformed. Statistical analysis of stream water level, temporal changes, and seasonality were explored
through regression. Each regression had the following form

Log(Parameter+ .5∗Detection Limit) = Flow+Time+Fall.Vs.Spring+Winter.Vs.Summer+ εi

Interlandi and Crockett observed strong influences on river discharge on water quality variables3. In order
to adjust for the effect of instances where a big storm or heavy rain might affect parameters like TSS, flow
was defined as follows:

Log( Flow
Mean Daily Flow)

where mean daily flow is the long-term average flow for each date. Time was defined as

12∗ (Year−1990)+Month
or months since 1990. Seasonality was measured in the Spring vs Fall and Winter vs Summer term. These

two variables set January 15th as the coldest day of the year, which is the coldest day of the year on average
for western North Carolina8. This incorporates the effect of temperature on water quality. Seasonality was
defined to be

Fall.Vs.Spring = Sin(2πx
365 ),

Winter.Vs.Summer = Cos(2πx
365 ),

where x= (Month−1∗30.5+(Day)−15.
For example, January 15th becomes: (1 − 1)30.5 + (15) − 15 = 0, and Sin(0) = 0, Cos(0) = 1. Thus

making January 15th the coldest day for the term Winter.Vs.Summer. This method was chosen for its easy
mathematical interpretation in lieu of treating season as a categorical variable.
In order to pick the best model for a parameter the Bayesian Information Criterion (BIC) and Akaike

Information Criterion (AIC) was analyzed for the three models. The AIC and BIC are both measures of the
goodness of fit for a linear model. Increasing the number of independent variables in a model will increase the
goodness of fit for a model; thus, the AIC and BIC penalize for adding unnecessary independent variables.
The AIC and BIC was computed for each site and then the median was computed for the AIC and BIC by
parameter for every site. The model with the average of the AIC and BIC which was closest to zero was
selected as the best model. Differences in the sign of the AIC and BIC for different parameters are caused
by the maximized value of the likelihood function. The differences in sign are not significant; the minimum
value for the AIC and BIC between models is the indicator for goodness of fit for the models tested. Once
the model was selected, the Shapiro-Wilk test was used to determine the normality of the residuals3. The
skewness and kurtosis of the residuals were also computed. Furthermore, the number of significant p-values
at the α = .05 level for each independent variable was calculated. The residuals and fitted values were
graphed as well as the auto-correlation function for each parameter. For parameters that are best modelled
by AR1 or MA1 an ANOVA test comparing the AR1 or MA1 to the LS model was used to compute the
number of correlated error estimates that are significant (α= .05).

4. Results
Results illustrate that there was no model that was consistently best for predicting trends for a water quality
parameter (See Table 2) based on the criterion used. For five of the eight parameters a model that does
not account for temporal correlation in the errors was best to detect trends to changes in water quality.
For Turbidity, 38/114 of the parameter estimates for the moving average correlation were significant by the
ANOVA model comparison to LS. NO3 had 72/114 significant phi estimates for the auto correlation and
PO4 had 79/114. NO3 and PO4 had an auto regressive pattern that has statistical evidence which suggests
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a necessity for its use instead of a regular LS model. Although the AIC and BIC was closest to zero for the
MA1 model for Turbidity, the low number of significant estimates of the parameter ψ, 38/114, indicates that
there was not strong evidence necessitating its use for turbidity.

Table 1. model results

Parameter AIC BIC Average
Turbidity

AR1 301.493 323.097 312.295
MA1 300.354 321.958 311.156
GLS 304.413 323.404 313.909
TSS
AR1 357.798 379.937 368.8670
MA1 357.803 379.879 368.841
GLS 356.074 375.167 365.620
NH3
AR1 -154.9 -132.16 -143.53
MA1 -145.42 -123.232 -134.326
GLS -140.61 -122.935 -131.773
NO3
AR1 90.287 109.876 100.082
MA1 90.52 110.059 100.290
GLS 97.755 116.258 107.006

Parameter AIC BIC Average
PO4
AR1 305.689 326.52 316.105
MA1 308.37 329.205 318.789
GLS 317.69 335.75 326.72

Conductivity
AR1 -116.195 -96.6 -106.395
MA1 -112.48 -92.537 -102.509
GLS -100.871 -85.406 -93.138
pH
AR1 -37.84 -16.364 -27.103
MA1 -36.56 -14.872 -25.716
GLS -34.318 -13.841 -24.08

Alkalinity
AR1 11.742 32.92 22.333
MA1 11.07 33.429 22.24
GLS 12.868 29.55 21.209

After computing the best model, the number of significant p-values for the four independent variables was
also computed (See Table 3). The regressions had very high numbers of significant p-values, indicating that
there is strong evidence that water quality parameters are affected by the variables for season, time, and
year.

Table 2. p-values for parameters for 114 sites

Parameter Pos. Slope Neg. Slope
Turb. (MA1)

Flow 67 1
Time 11 15

Spring.Vs.Fall 61 2
Winter.Vs.Summer 4 68

TSS (LS)
Flow 72 1
Time 10 14

Spring.Vs.Fall 86 1
Winter.Vs.Summer 1 85

NH3 (LS)
Flow 20 11
Time 41 18

Spring.Vs.Fall 27 9
Winter.Vs.Summer 6 56

NO3 (AR1)
Flow 26 9
Time 6 25

Spring.Vs.Fall 48 3
Winter.Vs.Summer 54 8

Parameter Pos. Slope Neg. Slope
PO4 (AR1)

Flow 2 31
Time 26 14

Spring.Vs.Fall 1 8
Winter.Vs.Summer 1 47

Cond. (LS)
Flow 4 62
Time 41 20

Spring.Vs.Fall 4 89
Winter.Vs.Summer 10 37

pH (LS)
Flow 0 53
Time 24 9

Spring.Vs.Fall 1 51
Winter.Vs.Summer 3 95

Alk. (LS)
Flow 2 56
Time 24 23

Spring.Vs.Fall 2 77
Winter.Vs.Summer 1 80
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The lowest number of significant p-values for each parameter was often time. This indicates that, generally,
since VWIN began sampling sites the month and year sampled was not a significant influence on water quality.
For NH3 and Conductivity, time has 41 positive slopes suggesting that for a little less than half of all sites
sampled, NH3 and Conductivity has increased over time. Alkalinity and NO3 have negative slopes for time
for roughly 20% of sites, which shows that these two parameters have decreased for only a couple of sites
since samples were first collected. Robinson et al. recorded decreases in nitrate over time as well2.
Flow has significant p-values for over 50% of sites for 5/8 of the parameters. Flow was positive for most

sites for Turbidity and TSS, which is to be expected since increased flow would cause more suspended solids
and particulate matter to be present in the water. Alkalinity, pH, and Conductivity have strong statistical
evidence suggesting they decrease with flow, for over 50% of sites, and have very few sites that increase with
flow. NO3, NH3, and PO4 have a low number of sites with significant evidence for a positive or negative
trend with flow.
Seasonality, as it was defined, does appear to be a good predictor on water quality; many sites have

significant evidence for over 50% of sites. A positive slope for Spring.Vs.Fall would translate to a higher
presence during Fall. Similarly, a positive slope for Winter.Vs.Summer indicates a higher presence of a
parameter during winter. Turbidity and TSS both have statistical evidence that they are high in Fall and
Winter which is also expected due to precipitation not varying drastically in western North Carolina which
results in flow typically being higher in winter, thus increasing turbidity and TSS 4,7. NH3 exhibits a similar
pattern to turbidity and TSS, although there was a smaller number of sites that had strong statistical evidence
that supports NH3 increasing in Fall. PO4, Conductivity, pH, and Alkalinity all exhibit a similar pattern:
statistical evidence suggests that they all are higher in Fall and Summer. NO3 was the only parameter with
a unique pattern for seasonality; results show that there is significant evidence that NO3 is highest in Spring
and Winter.
Plots of residuals, on the y-axis, versus fitted values, on the x-axis, for all sites, separated by parameter,

are shown in Figure 2. The residuals and fitted values are for the best model for each parameter. The graphs
illustrate that no violations of homoscedasicity occur. Diagonal bands are present in the graphs for turbidity,
TSS, NH3, NO3, PO4, and pH. These bands occur in the residuals when lower values of the parameter are
rounded off to the same amount but have different predicted values.
Independence of errors are not expected to appear in graphs for AR1 and MA1 models since they were

already assumed to exist and corrected for. Graphs for the AR1 and MA1 models verify that the models
accounted for serial correlation. The GLS models also show that there was independence of the error terms.
The auto-correlation function for every site (ACF) was graphed, again separated by parameter, in figure

3. The graphs are the calculated auto-correlation function for every site after the best model to use for each
parameter was chosen. The lags between residuals was graphed on the x-axis and the calculated ACF value
on the y-axis. The dotted line is the confidence interval (at a confidence level of 0.95) for all sites which
was computed after calculating the confidence interval for every site and taking the mean of all confidence
intervals for every site, by parameter. The graphs illustrate that a significant portion of the ACF for each
parameter was within the confidence interval.
Finally, the skewness, kurtosis, and normality of the residuals were computed and are shown in table 4.

The Shapiro-Wilk test tests if the data came from a normally distributed population. The p-values for every
parameter was extremely small thus giving sufficient statistical evidence to fail to reject the null hypothesis
that the data came from a normal population. The data sets are extremely large, so it is no surprise that
the Shapiro-Wilk test indicates that none of the parameters have residuals that are normally distributed.
Skewness and kurtosis of residuals are generally acceptable; ideally a skewness level between −1/2 and 1/2
is needed for a distribution to be approximately symmetric and a kurtosis level around 3 for a peak that is
close to a normal distribution. Kurtosis levels are typically close to 3, except for Conductivity which has
an extremely high kurtosis of 20. Skewness was in the ideal range for most parameters except NH3, which
suggests that the residuals are highly positively or negatively skewed.

5. Conclusion

Detecting trends in water quality, as the evidence illustrates, was very dependent on the parameter being
measured. Temporal influences may have much greater influences on water quality but does not always need
to be accounted for. Monthly sampling at each site may explain the lack of temporal influence when regression
was performed on the parameters, although results in 3 indicate there is little difference in varying sample
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Figure 2. residuals for Turb., TSS, NH3, NO3, PO4, Cond., pH, Alk.

strategies. Regardless of the model used, significant trends were detected for all parameters. Evaluating
trends site by site was the best approach to improve water quality in order by selecting what areas have
significant changes over time or in certain seasons.
Both NO3 and Conductivity are increasing over time for a significant portion of sites, indicating that since

samples were first collected in 1990 there is evidence that supports the quality of water is worsening for these
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Figure 3. ACF for Turb., TSS, NH3, NO3, PO4, Cond., pH, Alk.

sites. Checking the relative geographic areas for sites would be essential in order to investigate if clusters of
sites are worsening or if these are isolated VWIN sites. Flow was a strong factor for influencing both positive
and negative trends in the water quality parameters analyzed. Results by Interlandi and Crockett show
similar strong influences on flow for water quality 3. Seasonality was also a strong factor that has positive

7



Table 3. Shapiro-Wilk, skewness, and kurtosis

Parameter Shapiro-Wilk Skewness Kurtosis
Turb. W = 0.969, p-val < 2.2e−16 0.6079 4.755
TSS W = 0.9661, p-val < 2.2e−16 0.776 4.899
NH3 W = 0.9392, p-val < 2.2e−16 1.067 6.11
NO3 W = 0.9716, p-val < 2.2e−16 −0.17 6.124
PO4 W = 0.9939, p-val < 2.2e−16 0.063 3.703

Cond. W = 0.8756, p-val < 2.2e−16 0.042 20.73
pH W = 0.957, p-val < 2.2e−16 −0.256 7.54

Alk. W = 0.9467, p-val < 2.2e−16 0.057 7.122

and negative trends for all eight water quality parameters in the study. Interlandi and Crockett also report
similar influences of seasonality on water quality parameters 3.
Further work could be done by applying a stronger transform on variables with a high kurtosis or a

negative skewness and high kurtosis (i.e. Conductivity or NO3 and pH). A Box-Cox transformation might
significantly change the residuals from the GLS fit. Non-linear terms could be used in the regression that
might capture the effect of time more accurately on certain parameters because time had low significant
p-values for all parameters. Accounting for spatial correlation between parameters is another method that
would improve the ability to detect trends for water quality data. Using geographic information systems
would enable trends to be detected that accounts for spatial effects on parameters.
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