Computational Study of Substituent Effect on the Threshold Energy for the 1,2-Interchange of Halogens, Pseudohalogens, and Various R Groups

Ju-Sung Kim
Department of Chemistry
The University of North Carolina Asheville
One University Heights
Asheville, North Carolina 28804 USA

Faculty Advisors: Dr. Bert E. Holmes & Dr. George L. Heard

Abstract

The possibility of gaseous halocarbons undergoing a 1,2-interchange reaction in competition with typical 1,2-HF or HCl eliminations offers an interesting explanation for their reactivity in the atmosphere. In order to determine the most energetically feasible interchanges, the threshold energies for the interchange of various halogens (F, Cl, Br), pseudohalogens (SH, CH₃, NH₂, CN, OH, OCH₃), and other groups (OCF₃, OCH₃, CH=CH₂, CH₂CH₃, CH₃, CH₂OH, C=CH, CH₂CF₃, CCl₃, CF₃) were calculated using computational methods. Ground state and transition state geometries were optimized with the B3PW91 level of theory and 6-311+G(2d,p) basis set. The Br-Br interchange had the lowest E₀ (33.8 kcal/mol), and CH₃-CH₃ had the highest (134.8 kcal/mol). In general, larger atoms/groups with lone pairs of electrons such as halogens, SH, OH, OCH₃, and NH₂ tend to lower the E₀ barrier for interchange, making them the most likely to undergo rearrangement, as their E₀ barriers were under 70 kcal/mol. Those groups can be considered for further experimental observation, but CH₃ is unlikely to interchange due to its high E₀ barriers. C-C=N bond lengths were considered too long to represent accurate transition states for CN interchange.

1. Introduction

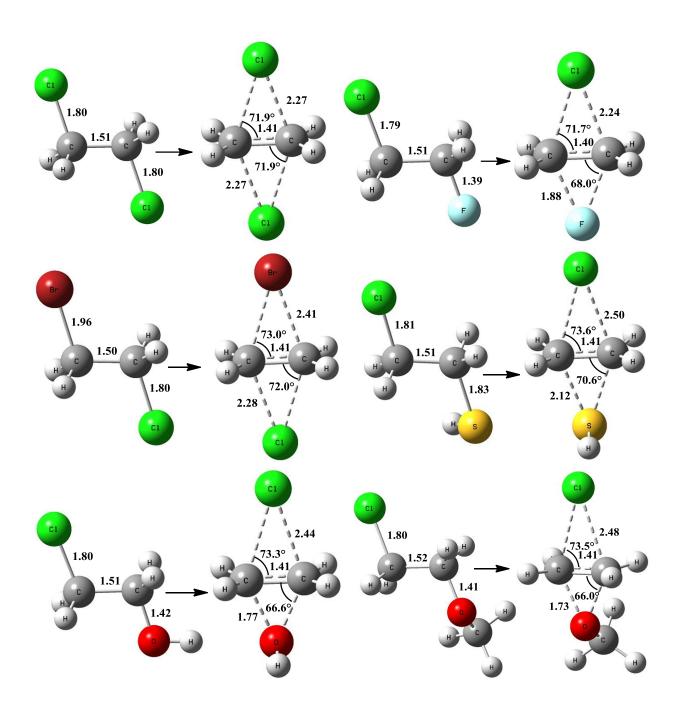
In previous studies we have demonstrated the existence of a series of unimolecular reactions involving the interchange of two halogen atoms on adjacent carbons. This interchange mechanism has been supported by experimental and computational evidence for $CF_2CICF_2CH_3$ ($CF_2CICF_2CD_3$), CH_2CH_2CI , CH_2CH_2CI , CH_2CICH_2CI , and CH_2CICH_2CI , and CH_2CICH_2CI , and CH_2CICH_2CI , CH_2CICH_2CI , CH_2CICH_2CI , CH_2CICH_2CI , CH_2CICH_2CI , CH_2CICH_2CI , and $CICH_2CICH_2CI$, and $CICH_2CICH_2CI$, and $CICH_2CICH_2CI$, $CICH_2CICH_2CI$, $CICH_2CICH_2CI$, and $CICH_2C$

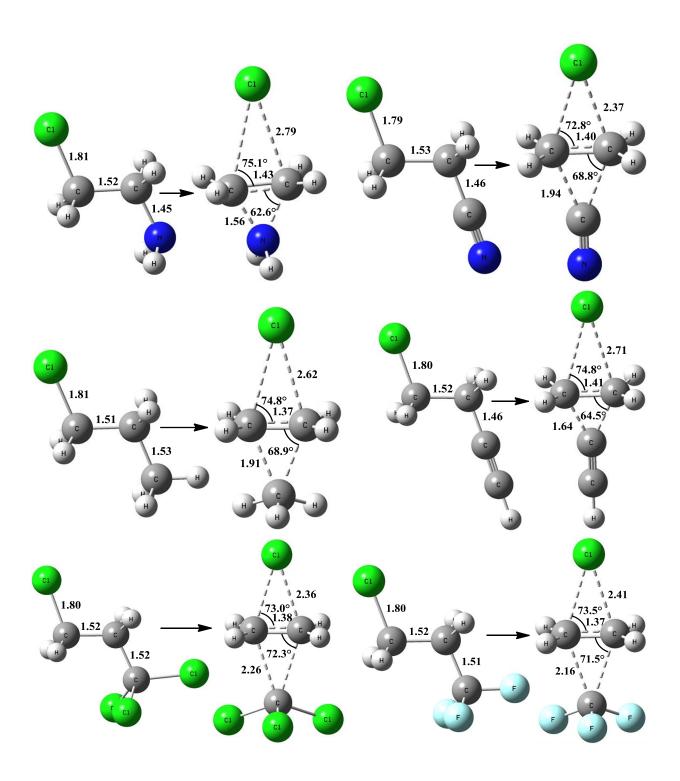
Cl-CH₃ and Br-CH₃ interchanges have been observed experimentally and computationally for (CH₃)₃CCH₂Cl and (CH₃)₃CCH₂Br, providing an alternative mechanism for the formation of CH₂=C(CH₃)C₂H₅ and (CH₃)₂C=CHCH₃ from a Wagner-Meerwein rearrangement.¹⁴ The interchange of Cl with CH₃ has been studied in (CH₃)₃CCD₂Cl¹⁴ and 1,1-dichloroacetone and provided an energetically favorable reaction pathway for the acetone prior to a 1,2-HCl or 2,3-HCl elimination, as opposed to a 1,1-HCl or 1,3-HCl elimination with subsequent isomerization of a biradical or a carbene.¹⁵ The existence of this halogen interchange leads to the question of whether it is only with halogens that this occurs or if pseudohalogens and univalent species, such as OH, SH, CN, NH₂, OCH₃, and CH₃, also

undergo this reaction.

To examine these possibilities, we investigated the interchange between halogens (F, Cl, Br), pseudohalogens (SH, CH₃, NH₂, CN, OH, OCH₃), and other groups (OCF₃, OCH₃, CH=CH₂, CH₂CH₃, CH₃, CH₃, CH₂OH, C≡CH, CH₂CF₃, CCl₃, CF₃) computationally. Electronic structure calculations were performed using density functional theory on molecules of the form CH₂XCH₂R, where X and R represent a halogen or one of the groups listed above. A diagram of the conversion from CH₂XCH₂R to its interchange transition state to CH₂RCH₂X can be found in Figure 1. The lowest energy conformation was used in all calculations; in each case this was the *anti* conformation, which is the conformation the molecule must be in to undergo the interchange reaction. The B3PW91 level of theory, and the 6-31G(d',p') and 6-311+G(2d,p) basis sets were used, which we have found to give energies close to those determined from experimental investigations for the halogen interchange. The main focus of this paper is on the threshold energy barriers and geometries of the transition state. It is hoped that this study will serve as a guide to whether these reactions are worth exploring experimentally and perhaps to help reevaluate results from previous experiments.

Figure 1. A general transition state for the interchange of substituents X and R, where CH₂XCH₂R converts into CH₂RCH₂X (e.g. CH₂FCH₂Br converts to CH₂BrCH₂F).


2. Computational Methods


Density functional theory (DFT) calculations were performed using the Gaussian 09 suite of programs. ¹⁶ Ground state and transition state geometries were optimized and vibrational frequencies and unscaled zero-point energies were calculated using Becke's three-parameter exchange functional ¹⁶ with Perdew and Wang's correlation functional, ¹⁸ B3PW91. The 6-31G(d',p') basis set was used initially to find the optimized geometries. Upon successful optimizations, the 6-311+G(2d,p) basis set was used and all values and geometries reported here were done with the latter basis set. Transition states were characterized by exactly one negative frequency. Intrinsic reaction coordinate (IRC) calculations were performed to verify that the transition state connected reactants and products. The threshold energy (E₀) for each interchange was calculated by multiplying the difference in zero-point energies (Hartrees) between the ground state and transition state by 627.5, thus converting to units of kcal/mol.

3. Transition State Geometry

The transition state geometries of Cl interchanging with each of the halogens, pseudohalogens, and R groups are shown in Figure 2. All geometries in Figure 2 have labeled bond lengths (Å) and angles (°).

The two interchanging atoms/groups are located halfway between the two carbons, and these four atoms/groups are nearly planar. The hydrogens are nearly planar with the two carbons, which takes on a trigonal planar geometry similar to an ethene. The C-C bond distance becomes shorter in the transition state compared to the ground state by about 0.10 Å.

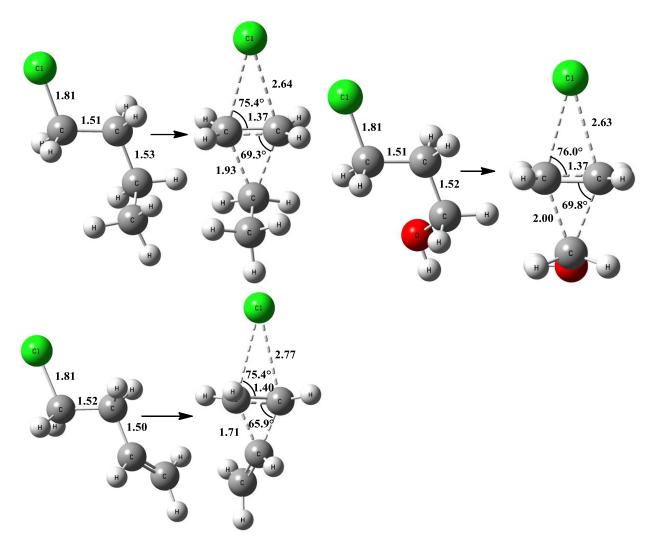


Figure 2. Pictures of the reactant and transition state structures for various Cl interchanges with labeled C-C, C-Cl, and C-R bond lengths (Å), and Cl-C-C and R-C-C bond angles (°).

4. Results and Discussion

Ground state and transition state geometries were found computationally for the 1,2-XR interchanges on a two carbon system. E₀ was calculated for the interchange of each combination of two groups from the following list: F, Cl, Br, OH, OCH₃, SH, NH₂, CN, and CH₃. The E₀'s (kcal/mol) are given in Table 1. All reported values were calculated using the B3PW91 level of theory and 6-311+G(2d,p) basis set.

The Br-Br interchange has the lowest E_0 (33.8 kcal/mol), while the CH_3 - CH_3 interchange has the highest E_0 (134.8 kcal/mol). Systems involving Br have the lowest E_0 's (33.8 – 67.5 kcal/mol), which is likely due to the large size of Br and its subsequently weaker bonds to carbon. The E_0 for interchanges involving Cl are about 5 kcal/mol higher than those involving Br, while the E_0 for F systems are 13-17 kcal/mol higher than Cl systems.

The barrier for CH₃ interchanges ranges from 67.5 kcal/mol (Br-CH₃) to 134.8 kcal/mol (CH₃-CH₃), which is due to the strong C-C bonds. CN systems also have high E₀'s (76.1 – 124 kcal/mol), but the C-CN bond lengths in the calculated geometries are too long to be considered accurate representations of a transition state for a concerted interchange.

A general periodic trend can be seen in these E_0 values. There tends to be a decrease in E_0 going across the periodic table from C to F and from S to Cl. There is also a decrease in E_0 going down the periodic table from F to Br and from O to S. The pseudohalogens that have the same atom bonded to the carbon atoms in the ground state,

such as OH and OCH_3 or CH_3 and CN, tend to have similar E_0 values. Interchanges involving CN and CH_3 generally have the highest E_0 values, and the only interchanges involving either of these groups that have a low enough E_0 to occur before decomposition are Cl with CN or CH_3 and OCH_3 with CH_3 . As seen previously with halogen interchanges, several of the halide-pseudohalide interchanges have a low enough E_0 that they may be in competition with elimination reactions.

Groups with a lone pair of electrons had the lowest E_0 barriers, such as the halogens, SH, OCH₃, OH, and NH₂. Having lone pairs likely helps the groups to break and form new bonds as they interchange. If those bonds are considered coordination bonds, then a possible explanation for the lower E_0 for groups with lone pairs is that, as the electrons in the starting bond go to the interchanging group and form a new lone pair, the existing lone pair donates both of its electrons to form the new bond with the adjacent carbon. The equidistant position of the group with both carbons, along with the positions of the lone pairs further supports this theory.

Table 1. Threshold energy barriers for interchange reactions (kcal/mol) calculated at the B3PW91/6-311+G(2d,p) level of theory and basis set. * Transition state not found.

	Br	Cl	F	SH	OCH ₃	ОН	NH ₂	CN	CH ₃
Br	33.8	38.8	51.6	39.6	53.6	53.7	44.0	76.1	67.5
Cl		43.8	56.4	44.4	58.4	58.5	48.8	80.7	72.3
F			69.0	57.9	71.6	71.5	65.2	92.2	86.4
SH				53.8	66.7	67.4	67.8	84.0	86.6
OCH ₃					78.3	79.4	80.2	96.4	98.2
ОН						80.5	82.4	98.0	106.8
NH ₂							98.6	*	112.6
CN								124.0	*
CH ₃									134.8

Calculated E_0 's (kcal/mol) for the interchange of a halogen with -OCF₃, -CH=CH₂, -CH₂CH₃, -CH₂OH, -C=CH, -CH₂CF₃, -CCl₃, and -CF₃ are provided in Table 2. Several of these interchanges have low enough threshold energy barriers that they can be reasonably believed to occur, especially those involving Cl (58.4-72.5 kcal/mol) and Br (52.5-74.6 kcal/mol).

Among the halogens, Br lowers the E_0 barriers by 5-6 kcal/mol compared to Cl, while Cl lowers the E_0 barriers by 13-16 kcal/mol compared to F. This trend can be explained by the larger atomic size and lower charge density of Br and Cl compared to F, which leads to weaker C-Br and C-Cl bonds, and therefore, Br and Cl undergo interchange more readily than F. Interchanges involving CF_3 and CCl_3 are the least likely to occur, as they have the highest E_0 values. The F-OCF₃ and all OCH₃ interchanges have the lowest E_0 values.

The C-C bond lengths are approximately the same for F (1.36-1.40 Å), Cl (1.37-1.41 Å), and Br (1.37-1.42 Å) transition states. However, the C-Br bonds (2.51-2.95 Å) are about 0.16 Å longer than the C-Cl bonds (2.36-2.77 Å), and the C-Cl bonds are about 0.56 Å longer than the C-F bonds (1.82-2.19 Å). The longer carbon-halogen bond lengths support a correlation between longer bond lengths and lower E₀'s for interchange involving a halogen.

Table 2. Threshold energy barriers for halogen (F, Cl, Br) interchanges (kcal/mol) with various R groups calculated at the B3PW91/6-311+G(2d,p) level of theory and basis set. E_0 is arranged in ascending order based on F systems. * Transition state not found.

R =	X = F	X = C1	X = Br
OCF ₃	67.7	*	*
OCH ₃	71.6	58.4	53.6
CH=CH ₂	82.8	66.1	60.6
CH ₂ CH ₃	85.3	70.9	*
CH ₃	86.4	72.3	67.5
CH ₂ OH	87.1	72.8	67.8
С≡СН	88.0	72.5	66.7
CH ₂ CF ₃	89.4	*	*
CCl ₃	93.9	80.2	74.6
CF ₃	100.7	87.9	82.9

5. Conclusions

The optimized ground state and transition state for several interchange reactions involving halogens, pseudohalogens, and other groups were found computationally. Zero-point energies were used to calculate the threshold energy barrier for interchange. In general, larger atoms/groups with lone pairs such as Br, Cl, SH, and OCH_3 tend to lower the E_0 barrier for interchange, making them the most likely to undergo rearrangement. Systems with an E_0 around 70 kcal/mol and lower can be considered for experimental observation.

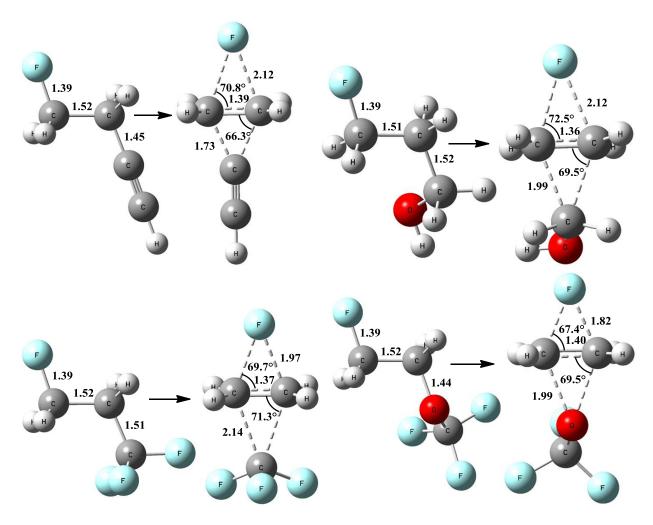
Transition states for CN-NH₂ and CN-CH₃ interchanges were not optimized, but the long C-CN bond lengths in the optimized transition states for other CN systems indicate that they are not accurate transition states. The Cl-OCF₃, Br-OCF₃, Cl-CH₂CF₃, Br-CH₂CF₃, and Br-CH₂CH₃ transition states were also not optimized. Based on the trend of increasing E₀ from OCH₃ to CF₃, it is reasonable to assume that Cl-OCF₃ and Br-OCF₃ would have lower E₀ barriers than Cl-OCH₃ (58.4 kcal/mol) and Br-OCH₃ (52.5 kcal/mol).

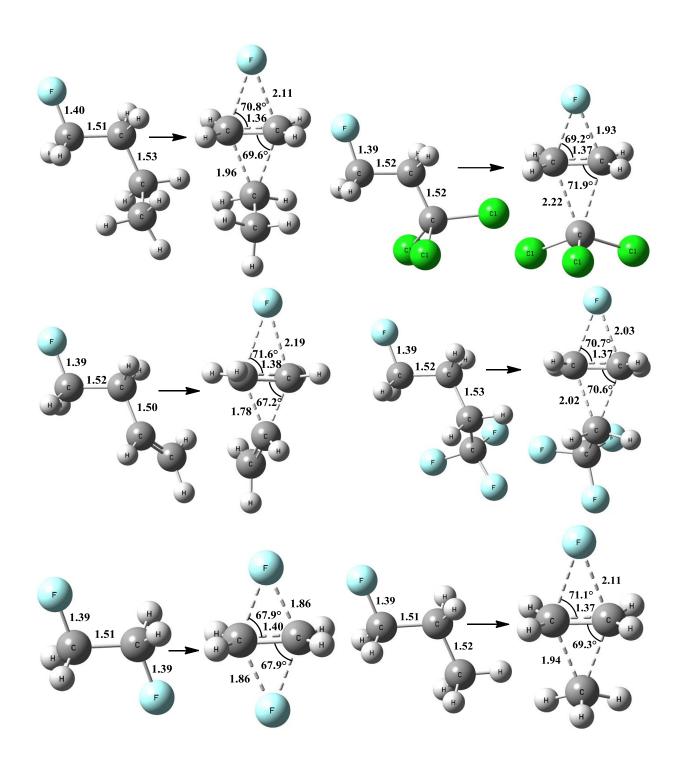
The systems studied here were done with four hydrogens on a two-carbon backbone. For further research, the hydrogens could be replaced with various electron donating and withdrawing groups to determine their effect on the E_0 for interchange. The carbon backbone could also be elongated or changed to a C-Si or Si-Si backbone. Replacing C with larger Si atoms could further lower the E_0 barrier for interchange since Si would form weaker bonds to its substituents. There is also a possibility that the greater bulk of Si could alter the geometry of the transition state.

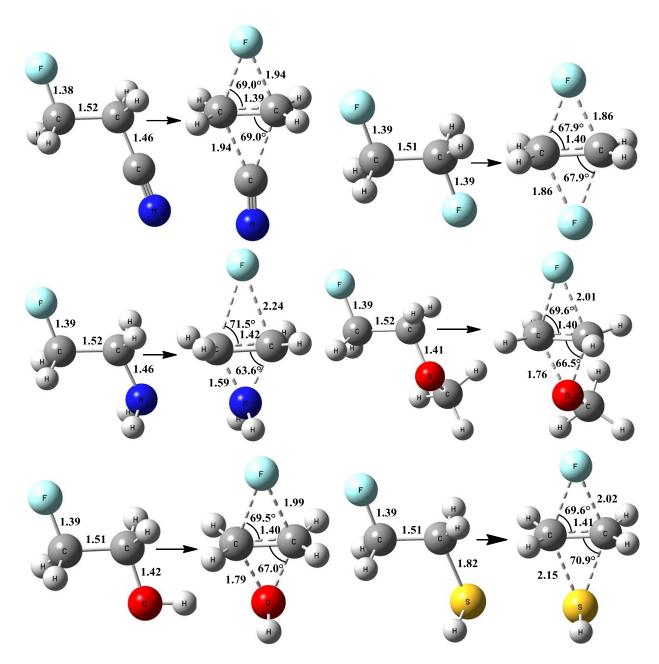
The systems studied here involve the interchange of various groups on a small, two carbon backbone, where the rearrangement yields the same product as the reactant. However, when the backbone is expanded and larger molecules undergo interchange, the rearranged product will be different from the reactant, and the interchange can then be compared to other reaction pathways such as 1,2-eliminations.

6. Acknowledgements

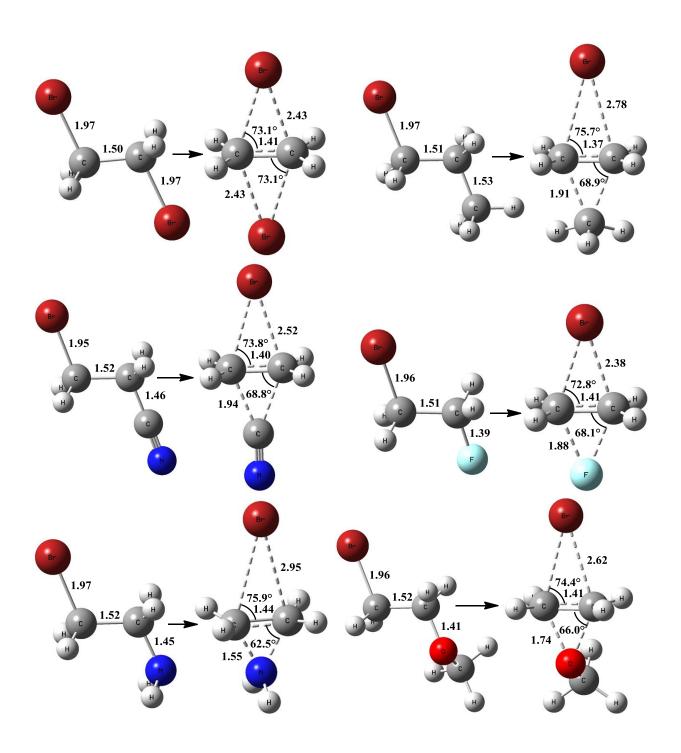
The author expresses gratitude to professors Dr. Bert E. Holmes and Dr. George L. Heard for their instruction, guidance, and support over the course of his undergraduate experience and research. He thanks fellow student members of the research group, both past and current, for their advice and companionship. He also thanks the University of North Carolina at Asheville and the Department of Chemistry for providing an incredible learning environment. Financial support from the National Science Foundation grants NSF-1111546 and NSF-1229406 is gratefully acknowledged for funding this research.

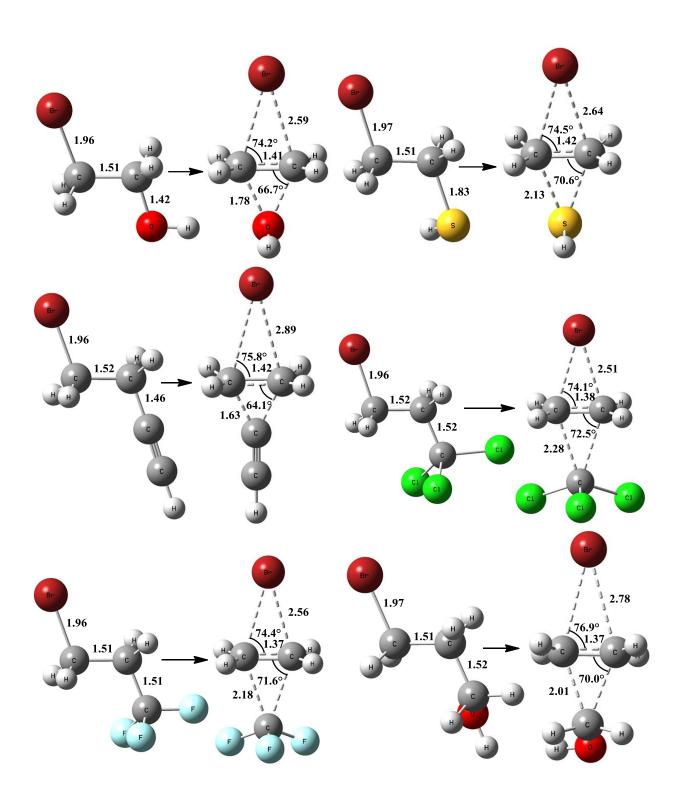

7. References

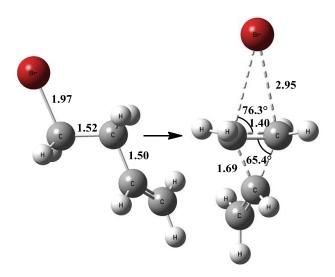

- (1) Burgin, M. O.; Heard, G. L.; Martell, J. M.; Holmes, B. E. Unimolecular Reaction Kinetics of CF₂ClCF₂CH₃ and CF₂ClCF₂CD₃: Experimental Evidence for a Novel 1,2-FCl Rearrangement Pathway. *J. Phys. Chem. A* **2001**, *105*, 1615-1621.
- (2) Heard, G. L.; Holmes, B. E. 1,2-FCl Rearrangement as an Intermediate Step in the Unimolecular 1,3-HCl Elimination from Chlorofluoropropanes. *J. Phys. Chem. A* **2001**, *105*, 1622-1625.
- (3) Zhu, L.; Simmons, J. G., Jr.; Burgin, M. O.; Holmes, B. E.; Setser, D. W. Rate Constants and Kinetic Isotope Effects for Unimolecular 1,2-HX or DX (X = F or Cl) Elimination from Chemically Activated CF₃CFClCH₃-d₀, -d₁, -d₂, and -d₃. J. Phys. Chem. A **2006**, 110, 1506-1517.
- (4) Burgin, M. O.; Simmons, J. G., Jr.; Heard, G. L.; Setser, D. W.; Holmes, B. E. Unimolecular Reactions of Vibrationally Excited CF₂ClCHFCH₃ and CF₂ClCHFCD₃: Evidence for the 1,2-FCl Interchange Pathway. *J. Phys. Chem. A* **2007**, *111*, 2283-2292.
- (5) Beaver, M. R.; Simmons, J. G., Jr.; Heard, G. L.; Setser, D. W.; Holmes, B. E. Unimolecular Reactions Including ClF Interchange of Vibrationally Excited CF₂ClCHFCH₂CH₃ and CF₂ClCHFCD₂CD₃. *J. Phys. Chem. A* **2007**, *111*, 8445-8455.
- (6) Dolbier, W. R., Jr.; Romelaeer, R.; Baker, J. M. Anomalous Elimination of HCl from 2-Chloro-1,1-Difluoroethane. Likely Involvement of a 1,2-FCl Interchange Mechanism. *Tetrahedron Lett.* **2002**, *43*, 8075-8077.
- (7) Beaver, M. R.; Heard, G. L.; Holmes, B. E. Theoretical Calculations of Product Percentage Yields for the Thermal Decomposition of 2-Chloro-1,1-Difluoroethane. *Tetrahedron Lett.* **2003**, *44*, 7265-7268.
- (8) Zaluzhna, O.; Simmons, J. G.; Setser, D. W.; Holmes, B. E. Unimolecular Reactions of CF₂ClCFClCH₂F and CF₂ClCF₂CH₂Cl: Observation of ClF Interchange. *J. Phys. Chem. A* **2008**, *112*, 12117-12124.
- (9) Lisowski, C. E.; Duncan, J. R.; Heard, G. L.; Setser, D. W.; Holmes, B. E. Unimolecular Reactions of Chemically Activated CF₂BrCF₂CH₃ and CF₂BrCF₂CD₃: Evidence for 1,2-FBr Interchange. *J. Phys. Chem. A* **2008**, *112*, 441-447.
- (10) McClintock, C. E.; Smith, K. C.; Heard, G. L.; Setser, D. W.; Holmes, B. E. Effects of CF₃ and CH₃ Groups on the Threshold Energy for the Unimolecular Interchange Reaction of Cl- and F-Atoms in CF₃CHFCH₂Cl and CH₃CHFCH₂Cl. *J. Phys. Chem. A* **2014**, *118*, 2886-2896.
- (11) Tucker, M. K.; Rossabi, S. M.; McClintock, C. E.; Heard, G. L.; Setser, D. W.; Holmes, B. E. Unimolecular Isomerization of CH₂FCD₂Cl via the Interchange of Cl and F Atoms: Assignment of the Threshold Energy to the 1,2-Dyotropic Rearrangement. *J. Phys. Chem. A* **2013**, *117*, 6717-6727.
- (12) Everett, W. C.; Holmes, B. E.; Heard, G. L. A Computational Study of the Threshold Energies of the 1,2-FCl Interchange Reaction of Chlorofluoroethanes. *Can. J. Chem.* **2010**, *88*, 1112-1117.
- (13) Enstice, E. C.; Duncan, J. R.; Setser, D. W.; Holmes, B. E. Unimolecular Reactions in the CF₃CH₂Cl ↔ CF₂ClCH₂F System: Isomerization by Interchange of Cl and F Atoms. *J. Phys. Chem. A* **2011**, *115*, 1054-1062.
- (14) Lisowski, C. E.; Duncan, J. R.; Ranieri, A. J.; Heard, G. L.; Setser, D. W.; Holmes, B. E. Isomerization of Neopentyl Chloride and Neopentyl Bromide by a 1,2-Interchange of a Halogen Atom and a Methyl Group. *J. Phys. Chem. A* **2010**, *114*, 10395-10402.
- (15) Duncan, J. R.; Heard, G. L.; Holmes, B. E. Theoretical Investigation of 1,2-Interchange of a Chlorine Atom and Methyl Group in 1,1-Dichloroacetone. *J. Phys. Chem. A* **2010**, *114*, 12992-12997.
- (16) Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G. A.; Nakatsuji, H.; Caricato, M.; Li, X.; Hratchian, H. P.; Izmaylov, A. F.; Bloino, J.; Zheng, G.; Sonnenberg, J. L.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Vreven, T.; Montgomery, J. A., Jr.; Peralta, J. E.; Ogliaro, F.; Bearpark, M.; Heyd, J. J.; Brothers, E.; Kudin, K. N.; Staroverov, V. N.; Kobayashi, R.; Normand, J.; Raghavachari, K.; Rendell, A.; Burant, J. C.; Iyengar, S. S.; Tomasi, J.; Cossi, M.; Rega, N.; Millam, N. J.; Klene, M.; Knox, J. E.; Cross, J. B.; Bakken, V.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Martin, R. L.; Morokuma, K.; Zakrzewski, V. G.; Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Dapprich, S.; Daniels, A. D.; Farkas, Ö.; Foresman, J. B.; Ortiz, J. V.; Cioslowski, J.; Fox, D. J. Gaussian 09; Gaussian, Inc., Wallingford CT, 2009.
- (17) Becke, A. D. Density-Functional Thermochemistry. III. The Role of Exact Exchange. *J. Chem. Phys.* **1993**, 98, 5648-5652.

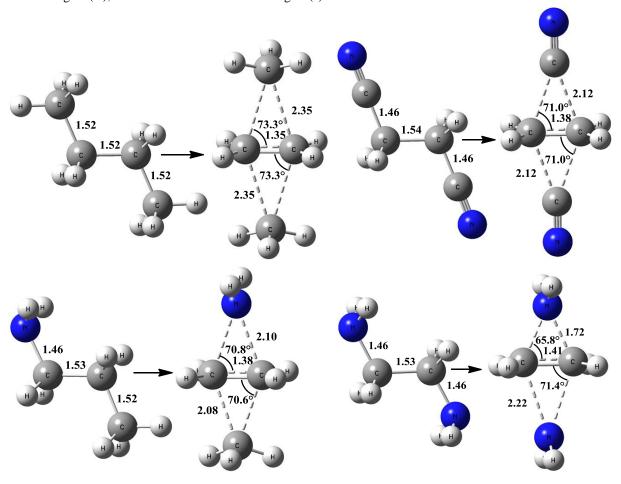

(18) Perdew, J. P.; Chevary, J. A.; Vosko, S. H.; Jackson, K. A.; Pederson, M. R.; Singh, D. J.; Fiolhas, C. Atoms, Molecules, Solids, and Surfaces: Applications of the Generalized Gradient Approximation for Exchange and Correlation. *Phys. Rev. B* **1992**, *46*, 6671-6687.

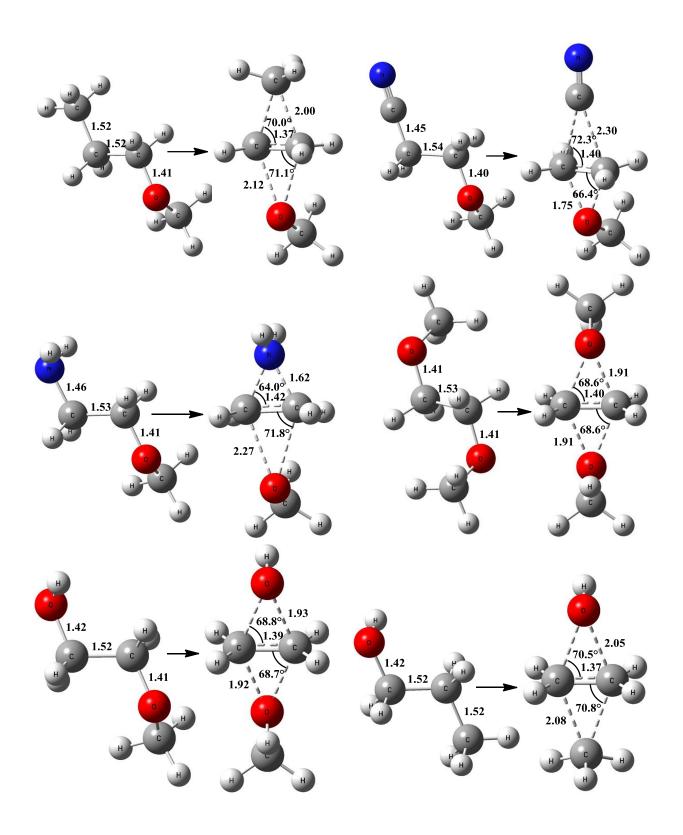
8. Supporting Information

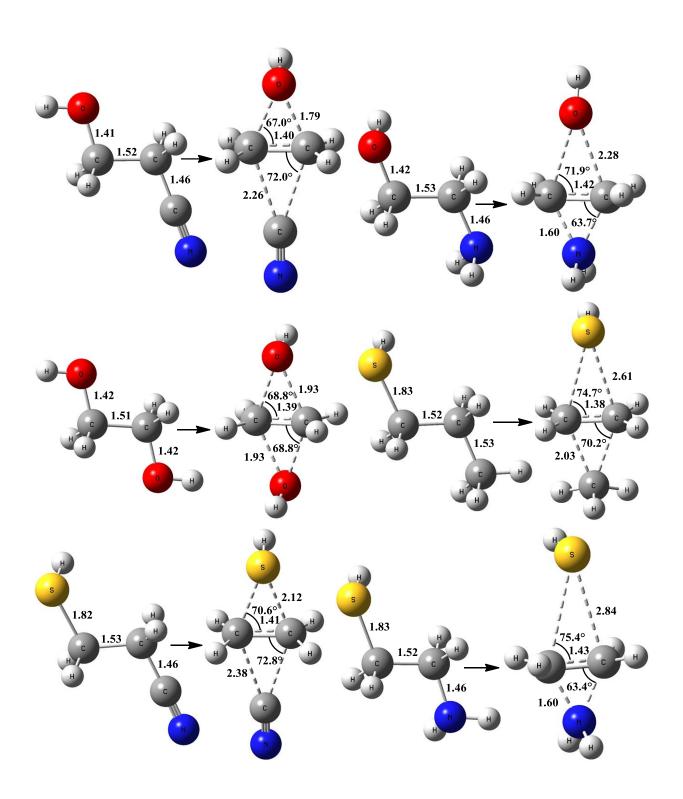

Pictures of the ground state and interchange transition state geometries, with labeled bond lengths and angles, for the rest of the systems that are not shown in Figure 2 are provided below.

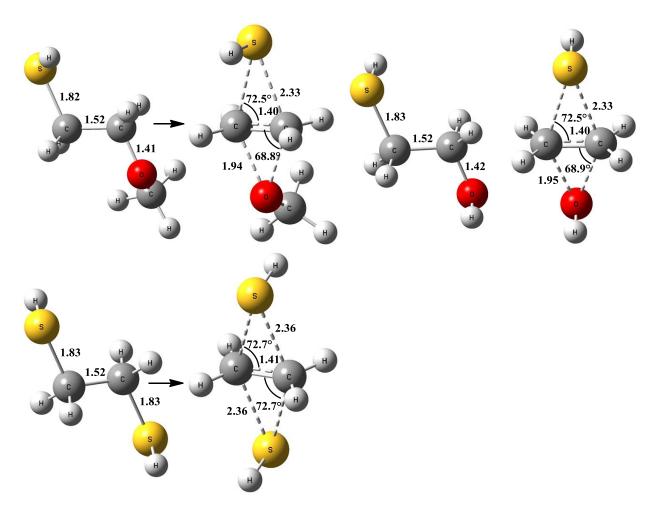





S1. Pictures of the reactant and transition state structures for various F interchanges with labeled C-C, C-F, and C-R bond lengths (\mathring{A}), and F-C-C and R-C-C bond angles ($\mathring{\circ}$).







S2. Pictures of the reactant and transition state structures for various Br interchanges with labeled C-C, C-Br, and C-R bond lengths (\mathring{A}), and Br-C-C and R-C-C bond angles ($^{\circ}$).

S3. Pictures of the ground and transition state structures for the interchanges between various R groups: SH, OCH₃, OH, NH₂, CN, and CH₃. The C-C, C-R₁, and C-R₂ bond lengths (\mathring{A}), and R₁-C-C and R₂-C-C bond angles ($^{\circ}$) are provided.