

CO₂ Emissions from Asheville's Craft Brewing Industry

Metis Meloche and Jacob Taylor
Environmental Studies
The University of North Carolina Asheville
One University Heights
Asheville, North Carolina 28804 USA

Faculty Advisor: Dr. Evan Couzo

Abstract

This study examined the relationship between two of Asheville's foundational identities—its environmentally mindful community and the craft brewing industry. The goal was to quantify CO₂ emissions from the fermentation process of brewing beer at local breweries in Asheville. Additionally, this project determined whether emissions from fermentation were substantial compared to CO₂ emissions from the breweries' electricity usage. Data from three breweries were analyzed. Our results show that the emissions from fermentation were not substantial in relation to electricity usage. Total CO₂ emissions from electricity usage from all three breweries were slightly over 31,000 tonnes compared to just under 70 tonnes of CO₂ from fermentation. Emissions from fermentation were less than 0.5% of emissions from electricity usage at all three breweries. While 70 tonnes of CO₂ may not seem substantial, this study was limited to just three of the more than 35 breweries in Asheville as of 2016. Given the size of the brewing industry, it is too soon to dismiss fermentation emissions as being unimportant to Asheville's carbon footprint.

1. Introduction

It is well known that greenhouse gas (GHG) emissions have steadily increased since the start of the Industrial Revolution. Reducing these emissions have become a global priority as outlined in the United Nations Sustainable Development Goals¹. Carbon dioxide (CO₂) is the primary GHG emitted through human activities and accounts for the vast majority of all GHG emissions from anthropogenic sources in the United States². In order to reduce CO₂ emissions, first, it is important to quantify those emissions. One such method to measure GHG emissions is by calculating a carbon footprint. A carbon footprint is a measurement of total greenhouse gas emissions. It is a quantitative estimate that assesses direct and indirect sources of pollution, GHG emissions from stationary and mobile combustion of fuels, emissions from physical and chemical processing, as well as indirect sources of electricity^{3,4}.

Asheville is a mid-sized city in western North Carolina that prioritizes reducing CO₂ emissions. The city achieved a reduction in CO₂ emissions from 2008-2015⁵. Asheville's environmental identity is reinforced by its Sustainability Management Plan, which commits the city to reducing GHGs, reducing total energy consumption of city facilities, and increasing renewable energy use for water consumption and distribution⁶. Asheville is also home to the Collider, a co-working space for dozens of market-based climate businesses including the National Environmental Modeling and Analysis Center, which developed the U.S. Climate Resilience Toolkit⁷. Additionally, Asheville is home to the National Oceanic and Atmospheric Administration's National Centers for Environmental Information headquarters, which holds the largest database of climate, weather, and environmental information globally⁸.

In addition to its environmental identity, Asheville has deep roots in the craft brewing industry. It is home to the third most microbreweries per capita in the nation⁹, and there are more than 35 brewing businesses that provide over 2,500 jobs, add a collective \$111 million in labor income, and generate \$934 million in total output as of 2016¹⁰.

To unite these two identities, some breweries, like New Belgium Brewing Company, have incorporated many environmental efforts such as calculating their carbon footprints into their industry practices¹¹. New Belgium follows

the Beverage Industry Environmental Roundtable (BIER) Beverage Sector Guidelines. BIER guidelines do not calculate emissions totaling less than one percent of CO_{2e} (CO₂ equivalent), therefore CO₂ emissions from the fermentation process of brewing beer are not accounted for. Alcoholic fermentation inherently creates CO₂ as a byproduct, and while the emissions from fermentation are likely to be smaller than one percent of lifecycle CO_{2e}, fermentation emissions may be considerable when looking at the extent of Asheville's brewing industry.

There is a potential dissonance between these two foundational identities that Asheville holds. Yeast action during fermentation inherently creates ethanol and CO₂ and yet is a missing piece within Asheville's carbon footprint¹³. Therefore, our study aims to quantify the CO₂ emissions from the fermentation process of brewing beer and determine if they are a substantial amount compared to the breweries overall coal-based electricity CO₂ emissions.

2. Methodology

This study was divided into two sections— quantifying CO₂ emissions from the fermentation process of brewing beer and quantifying CO₂ emissions from breweries' coal-based electricity usage. The fermentation data collected from breweries included the alcohol content (alcohol by volume, or ABV) and amount (volume) produced for all beer types. The electricity usage data from breweries was provided in kilowatt hours (kwh) and was received either in a monthly breakdown or annual sum.

Approximately twenty breweries in Asheville were approached to be a part of this study. Brewery representatives were met in person, called, emailed, and given a letter that detailed the intent of the project, the data needed, and the importance of the study. When asking breweries to participate, it was made clear that breweries identities would remain anonymous. About ten breweries responded, but only three decided to participate in this research. Brewery A's fermentation and electricity data was reported from the entire 2016 calendar year (12 months), Brewery B's data was collected for the 2017 calendar year (12 months), and Brewery C's fermentation data was from March to November 2017 (9 months), while Brewery C's electricity data was from March to October 2017 (8 months). Note that Brewery C's electricity is one month shorter than its fermentation data.

CO₂ emissions from fermentation were determined by converting the ABV and volume of beer produced to a mass of CO₂ by using equation (1).

First, the ABV and volume of beer were converted to moles of ethanol. As given in equation (1), the molar ratio of ethanol to CO₂ is 1:1, thus, the moles of CO₂ equal the moles of ethanol. Then, the moles of CO₂ were used to obtain CO₂ emissions in tonnes.

CO₂ emissions from electricity usage were determined by converting the energy purchased from the local power plant (Duke Energy's Lake Julian Power Plant, or LJPP) into a mass of CO₂. To do so, we assumed that the energy consumed from LJPP was proportional to the CO₂ emissions of LJPP. For example, if a brewery used one percent of LJPP's total energy output, we can apportion one percent of LJPP's CO₂ emissions to that brewery's electricity usage. Data on LJPP's total electricity production was obtained from the U.S. Energy Information Administration (EIA)¹² for the entire 2016 calendar year, and the total CO₂ emissions output by the power plant, from the same time period, came from the Environmental Protection Agency's (EPA) Facility Level Information on Greenhouse Gases Tool¹³. It is important to note that electricity usage from the three breweries studied had differing timeframes. Only Brewery A's electricity data match the emissions data from LJPP.

To quantify CO₂ emissions from breweries' electricity usage, certain assumptions had to be made. These included steady electricity output by LJPP, steady electricity usage by each brewery, all CO₂ emissions from electricity came from LJPP, and a steady rate of CO₂ is emitted from LJPP per kwh of energy generated.

3. Results and Discussion

Knowing alcoholic fermentation inherently creates CO₂ as a byproduct, this study aimed to quantify the CO₂ emissions from the fermentation process of brewing beer and determine if it is a substantial amount compared to the breweries overall coal-based electricity emissions.

The total amount of CO₂ produced from fermentation for Brewery A was 68.2 tonnes (Table 1).

Table 1. Fermentation Data And CO₂ Emissions For Three Breweries in Asheville

	Alcohol by volume (%)	Volume in barrels	Mass of CO ₂ (tonnes)	Total CO ₂ (tonnes)
Brewery A				68.2
Beer A ₁	6.2	5668.8	31.1	
Beer A ₂	5.5	2856	13.9	
Beer A ₃	6	1975.9	10.5	
Beer A ₄	6	231	1.2	
Beer A ₅	6	90.4	0.5	
Beer A ₆	6	1032.1	5.5	
Beer A ₇	5.2	407.1	1.9	
Beer A ₈	4.8	87	0.4	
Beer A ₉	9.3	50	0.4	
Beer A ₁₀	9.5	57	0.4	
Beer A ₁₁	5.7	488	2.5	
Brewery B				0.78
Beer B ₁	5.2	22.6	0.10	
Beer B ₂	5.4	27.1	0.13	
Beer B ₃	6.7	29.4	0.17	
Beer B ₄	6.5	24.8	0.14	
Beer B ₅	5.6	25.8	0.13	
Beer B ₆	5.6	9.0	0.04	
Beer B ₇	7.5	6.5	0.04	
Beer B ₈	7.3	2.6	0.02	
Brewery C				0.88
Beer C ₁	5.8	171	0.88	

Brewery B produced 0.78 tonnes and Brewery C produced 0.88 tonnes of CO₂. The stark difference in the amount of CO₂ created by Brewery A compared to Breweries B and C is due to the greater volume of beer made by Brewery A since ABV does not vary much between the three breweries. Brewery A made just under 13,000 barrels of beer compared to Brewery B's 147.8 barrels, and Brewery C's 171 barrels.

CO₂ is a function of both ABV and volume of beer. A low alcohol beer can have high emissions if it is produced in large quantities, and a high alcohol beer can have low emissions if batched in small quantities. As such, CO₂ emissions vary by beer type. Just under half of the CO₂ created by Brewery A is attributed to Beer A₁. This beer generated 31.1 tonnes of CO₂ from slightly over 5,600 barrels of beer and an ABV of 6.2%. The next highest volume of beer made from Brewery A was 2,856 barrels from Beer A₂ which had an ABV of 5.5%. This beer created far less CO₂ than Beer A₁ at 13.9 tonnes. The top three beers made from Brewery A, Beers A₁-A₃, accounted for 81.4% of total CO₂ emissions. Out of eleven beers made by Brewery A, these three were responsible for the majority of CO₂ produced from fermentation.

Brewery B had less variety of beer types compared to Brewery A. Beers B₁-B₅ were all produced in relatively similar volumes, had ABVs that ranged from 5.2- 7.5%, and generated close results in terms of tonnes of CO₂. Beer B₃ (29.4 barrels), created the largest amount of CO₂ at 0.17 tonnes. The last three beer types, Beers B₆-B₈ generated 12.8% of CO₂ emissions, a small percentage when compared to the other five beers from Brewery B.

Brewery C only brewed one stock beer that was used to create other beer types. Brewery C, having made a little over 20 more barrels of beer than Brewery B, output just under one tonne of CO₂. It is important to note that this quantity is artificially low because Brewery C only reported data for 9 months as opposed to 12 months compared to Breweries A and B. So, Brewery C's CO₂ emissions would likely be greater than 0.88 tonnes if they were given for a 12-month period. To account for these differing time spans, calculations for fermentation and electricity emissions were made for a monthly average and per gallon of beer (Tables 2 and 3).

Table 2. Breweries Electricity and Fermentation Emissions Per Month

	Fermentation CO ₂ emissions (tonnes/month)	Electricity CO ₂ emissions (tonnes/month)	Total CO ₂ emissions (tonnes/month)
Brewery A	5.7	1957.8	1963.5
Brewery B	0.1	305.3	305.4
Brewery C	0.1	450.9	451.0

As anticipated, Breweries B and C emitted much less CO₂ per month than Brewery A because B and C make less beer. Brewery A had a total monthly average of 1963.5 tonnes of CO₂ emissions. Brewery B had a much lower total monthly average of 305.4 tonnes of CO₂ emissions and Brewery C was a little higher at 451.0 tonnes of CO₂ emissions per month. This data suggests that there might be a linear relationship between CO₂ emissions from electricity usage, which could indicate a direct proportionality between two emission sources. Figure 1 shows this linear relationship, but more breweries are needed to determine if this relationship is robust. It is interesting how stark the difference between fermentation emissions and electricity emissions per month are. This is true for all three breweries, which demonstrates that electricity usage is responsible for substantially more CO₂. Again, Brewery C's electricity data is one month shorter than its fermentation data as described in the methods section. But, because this is a monthly average, the shorter time span most likely does not make a large impact on the fermentation and electricity emissions.

Table 3. Breweries Electricity and Fermentation Emissions Per Gallon of Beer

	Fermentation CO ₂ emissions (tonnes/gallon)	Electricity CO ₂ emissions (tonnes/gallon)	Total CO ₂ emissions (tonnes/gallon)
Brewery A	0.000170	0.058599	0.058769
Brewery B	0.000171	0.800083	0.800254
Brewery C	0.000147	0.680439	0.680586

Table 3 allows for a direct comparison of CO₂ emissions between the three breweries per unit of beer produced. All breweries had relatively similar fermentation emissions per gallon. This was expected because the chemical process of beer production and the inherent byproduct of CO₂ is consistent from brewery to brewery. The small variance in CO₂ emissions from fermentation between breweries were a result of the differing alcohol contents of the beers produced by each brewery. When calculating the rate of CO₂ from fermentation per gallon at Brewery C, an average rate of production over an eight-month period was used to match the eight months of electricity data. If the volume of beer for all nine months was used, the result would be an artificially low amount of CO₂ emissions from electricity for Brewery C.

While fermentation emissions between breweries were similar, there was substantial variance in the electricity emissions per gallon of beer. As shown above, Brewery A produced far less CO₂ emissions from electricity per gallon of beer than either Brewery B or C. This implies that larger breweries may be more efficient utilizing their electricity per gallon of beer produced.

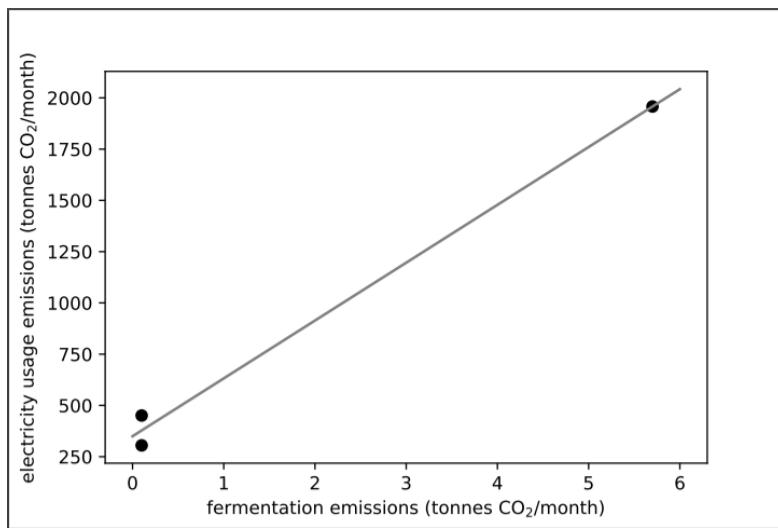


Figure 1. Relationship between CO₂ emissions from brewery electricity usage and fermentation

Figure 1 There is an apparent linear relationship between CO₂ emissions from fermentation and CO₂ emissions from electricity usage. $y = 282.09x + 349.89$, $R^2 = 0.9937$.

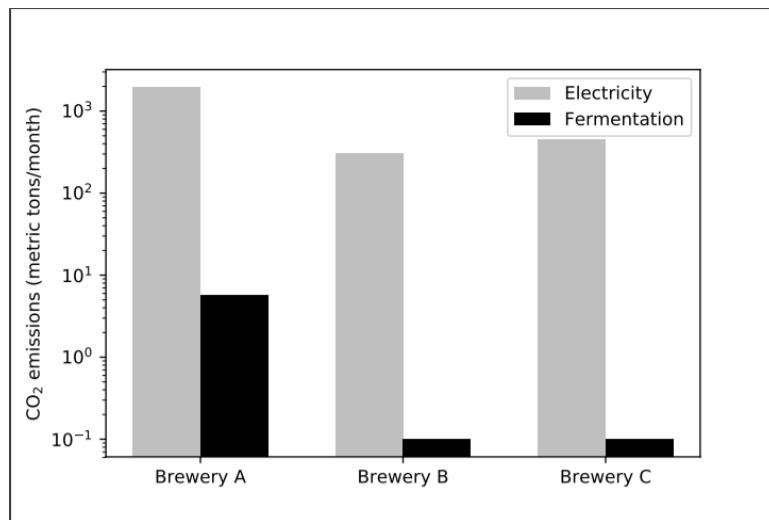


Figure 2. CO₂ emissions from brewery electricity usage and fermentation

Figure 2 CO₂ emissions from electricity usage compared to CO₂ emissions from fermentation. Note the log scale on the y-axis. Emissions from electricity usage are given in gray and emissions from fermentation are given in black.

For all three breweries, CO₂ emissions from electricity usage were substantially greater than emissions produced from fermentation (Figure 2). CO₂ emissions from fermentation were less than one percent than emissions from electricity usage for all breweries. Brewery A's CO₂ from fermentation was 0.29% that of its electricity usage. Brewery B and C had the same percentage of CO₂ from fermentation compared to their electricity usage at 0.02%. Based off of these values, it does not seem that the CO₂ produced from the fermentation process of brewing is substantial in comparison to breweries electricity usage. However, that does not mean that CO₂ emissions from fermentation are not important. The sum of all of Asheville's breweries (not just the three reported here) might be a significant contributor to carbon emissions in the region.

4. Conclusion

This study sought to quantify a missing piece of the carbon footprint within Asheville's brewing industry. Based off the information received from the three breweries that participated, two measurements of CO₂ emissions were calculated for each brewery. The first was from fermentation and was found by deriving CO₂ emissions from a brewery's ABV and volume of beer. The second measurement calculated emissions from breweries' electricity usage (kwh) into tonnes of CO₂ emissions. Based off of these three breweries, CO₂ from fermentation is not substantial compared to CO₂ created from breweries' electricity usage. However, it is important to note that only three breweries participated in this study compared to the over 35 local breweries in Asheville. While proportionally emissions from fermentation were substantially smaller than emissions from electricity at each brewery, the total emissions from fermentation of all Asheville's collective brewing community could be a substantial part of Asheville's carbon footprint. As such, what is yet to be determined is the importance of fermentation emissions in totality within Asheville.

This project served as a pilot study and will guide the next phase of research. This line of questioning will be continued and will include a larger number of Asheville's breweries. In addition to this, more in-depth analysis will be undertaken on breweries electricity usage because this study only determined emissions from coal-based electricity, but many breweries use other sources of electricity such as natural gas. Continuing this project will allow for a better representation of the CO₂ emissions from fermentation and electricity usage within the brewing industry in Asheville. Asheville commits itself to reducing GHG emissions, and the city has successfully reduced emissions from municipal operations in 2008-2015. By being able to fill-in a missing piece of Asheville's total carbon footprint, this research helps serve the city's goals of quantifying CO₂ emissions throughout Asheville, North Carolina. Calculating emissions from fermentation, Asheville can have a more complete carbon footprint. Realizing the smaller emissions of GHGs that are otherwise unaccounted for, Asheville can acknowledge and potentially address them.

5. Acknowledgements

First and foremost, the authors would like to thank the breweries within Asheville, North Carolina, for giving their time and sharing their trade. Community-based research is only achievable with community, and the authors were lucky enough to be embraced by the breweries and brewers within them. The authors would also like to extend their gratitude to their advisor, Dr. Evan Couzo, for continuous support, enthusiasm and kindness. His guidance and support was immense, and his patience unrivaled.

6. References

1. United Nations, "Sustainable Development Goals," <https://www.un.org/sustainabledevelopment/climate-change-2/>.
2. Environmental Protection Agency, "Overview of Greenhouse Gases," 2017, <https://www.epa.gov/ghgemissions/overview-greenhouse-gases>.
3. Fouad Al-Mansour and Viktor Jejcic, "A model calculation of the carbon footprint of agricultural products: The case of Slovenia," *Energy* 136, (2017), <https://www.sciencedirect.com/science/article/pii/S0360544216315444#!>.
4. California Climate Action Network, "Calculating Carbon Emissions," 2009, http://www.ca-ilg.org/sites/main/files/file-attachments/calculating_carbon_emissions_0.pdf.
5. City of Asheville, "City of Asheville FY 2015 Carbon Footprint Update," <http://www.ashevillenc.gov/civicax/filebank/blobdload.aspx?BlobID=23077>.
6. City of Asheville, "Sustainability Management Plan," 2009, <http://www.ashevillenc.gov/civicax/filebank/blobdload.aspx?BlobID=23072>.
7. National Environmental Modeling and Analysis Center, "U.S. Climate Resilience Toolkit," <https://nemac.unca.edu/us-climate-resilience-toolkit>.
8. National Aeronautics and Space Administration, "North Carolina - NCEI," 2017, <https://develop.larc.nasa.gov/nodes/NC.html>.

9. Niall McCarthy, “Which U.S. Cities Have The Most Microbreweries Per Capita? [Infographic],” 2016, <https://www.forbes.com/sites/niallmccarthy/2016/11/01/which-u-s-cities-have-the-most-micrbobreweries-per-capita-infographic/#21c8f578e19b>.
10. Brewbound, “Economic Development Coalition Releases Contribution Analysis of Brewery Industry in Asheville Region,” 2017, <https://www.brewbound.com/news/economic-development-coalition-releases-contribution-analysis-of-brewery-industry-asheville-region>.
11. New Belgium Brewing Company, “Carbon Emissions,” <http://www.newbelgium.com/Sustainability/Environmental-Metrics/GHG>.
12. Beverage Industry Environmental Roundtable, “Beverage Industry Sector Guidance for Greenhouse Gas Emissions Reporting,” 2010, https://www.fcrn.org.uk/sites/default/files/Beverage_Industry_Sector_Guidance_for_GHG_Emissions_Reportin_v2.0.pdf
13. I. S. Daoud and B. A. Searle, “On-line Monitoring of Brewery Fermentation by Measurement of CO₂ Evolution Rate, *Brewing Research Foundation* 96, (1990), <https://onlinelibrary.wiley.com/doi/abs/10.1002/j.2050-0416.1990.tb01034.x>.
14. U.S. Energy Information Administration, “Electricity Data Browser,” <https://www.eia.gov/electricity/data/browser/#/plant/2706?freq=M&start=200101&end=201711&ctype=linechart<ype=pin&columnchart=ELEC.PLANT.GEN.2706-ALL-ALL.M&linechart=ELEC.PLANT.GEN.2706-ALL-ALL.M&pin=&maptype=0>.
15. U.S. Environmental Protection Agency Facility Level Information on Greenhouse Gases Tool, “2016 Greenhouse Gas Emissions from Large Facilities,” <https://ghgdata.epa.gov/ghgp/main.do#>.