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Abstract 
 

What is Bitcoin and how does it work? We explore the popular cryptocurrency using time series analysis. We 

demonstrate how one can model the returns and volatility of the asset with GARCH models. We then pose a discussion 

of what the future of Bitcoin is, its identity as a so called “currency” and its evolving identity as a financial asset.  

 

 

1. Introduction 

 
The endless arrival of both data and information in financial markets demands the analysis of volatility or the variation 

in asset prices across time. Volatility is of upmost importance for financial researchers, practitioners, and risk adverse 

investors. The unpredictability of prices negatively affects investors, and also impacts “consumption patterns, 

corporate capital investment decisions, leverage decisions and other business cycles and macroeconomic variables1.” 

Tools for modeling such processes can begin with financial time series, which investigate changes in asset returns and 

volatility across time. Stylized facts or typical exhibited behaviors and properties in financial data play an important 

role when it comes to modeling conditional volatility of asset returns. The unconditional distributions tend to have fat 

tails and are accompanied by changing volatility over time, where high volatility periods are followed by low ones 

and vice versa. We describe such behavior as time varying conditional variance or volatility clustering1. Practices in 

financial time series have not only aimed to model fluctuations in returns, but capture volatility clusters and the impact 

of good and bad news on the volatility of asset returns. Much research is built upon initial work of Engle, who 

developed the autoregressive conditional heteroskedasticity model, or more commonly known as the ARCH model2. 

The GARCH model shortly followed, or the generalized autoregressive conditional heteroskedasticity model, an 

extension of the ARCH model by Bollerslev3. 

   Further investigation of the volatility of asset returns has been carried out with GARCH models since their induction, 

as well as various model extensions. Some of which include the exponential GARCH or EGARCH model introduced 

by Nelson4, the asymmetric power GARCH or APGARCH introduced by Engle and Ng5, the GJR-GARCH introduced 

by Glosten, Jagannathan, and Runkle6, the quadratic GARCH or QGARCH introduced by Sentana7, the regime 

switching GARCH or RSGARCH introduced by Cai8, Hamilton and Susmel9 and Kim and Kim10 and Susmel11, the 

threshold GARCH or TGARCH, developed by GJR6 and Zakoian12. Extensions of the GARCH model aim to capture 

asymmetry of volatility due to news impacts, as well as strengthen forecasts of conditional volatility. A characteristic 

of the volatility of returns is asymmetry, which is commonly referred to as leverage effect. Asymmetry in volatility 

occurs due to larger impacts from negative shocks, as opposed to positive shocks, where shocks are the results of good 

and bad news13. Previous examination of asymmetric volatility attributes the leverage effect to the causal relationship 

between bad news, lower prices, and higher leverages14. Motivated by past developments with GARCH models of 

exchange rates and stock prices, this paper will aim to apply them to the cryptocurrency Bitcoin.  

   Bitcoin is a virtual currency that is decentralized, peer to peer, and has encrypted transactions. Transactions of the 

cryptocurrency involve no centralized authority, clearing house, or institution. Bitcoin operates with block chain 
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technology, of which a transparent and secure system of accounting is used, that transfers ownership and stored data 

of every Bitcoin transaction via the above mechanisms15. Bitcoin has received much criticism, scrutiny, and media 

attention since its release, leading to high amounts of volatility in its life cycle thus far.     

   Previous empirical investigations of Bitcoin have found it is more characteristic of an asset rather than a currency, 

and also possessive of risk management and hedging capabilities16. Examination of volatility has also taken place, 

with multiple univariate GARCH17 models and multivariate GARCH models, comparing Bitcoin with other assets 

such as gold16. What has not been extensively investigated is the exploration of the leverage effect in the volatility of 

Bitcoin returns. This paper will aim to employ methodologies of Beg and Anwar18 and Zivot14 to explore various 

univariate GARCH models that measure the effects of good and bad news on Bitcoin returns.  

 

 

2. Data and Methodology 

 
The data used for this paper spans from August 21, 2013 to August 18, 2017. Bitcoin to dollar exchange rate data has 

been sourced from Coindesk19. The data span 998 observations after the removal of holidays and weekends from all 

data points, thus following a steady stream of financial events and one that is similar to other exchange rates20. 

Preliminary examination of the data confirm GARCH effects, with the log return and squared return series exhibiting 

clusters of volatility. We let 𝑝𝑡  denote the price of Bitcoin at time t. We define the return 𝑥𝑡 to be the natural log of 

the argument: 

 

 

      𝑥𝑡 = 𝑙𝑛
𝑝𝑡

𝑝𝑡−1
                                                                                                                                                             (1) 

 

 

We present time series plots below of both the log returns and the squared log returns.  

 

 

 
Figure 1. Time series plots of Bitcoin log returns and squared log returns. 
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   Initial testing of Bitcoin returns indicates asymmetry. Kurtosis and skewness test statistics √𝑏1 and 𝑏2 were used, 

as seen in Shapiro and Wilk21. Additionally, these tests both agree with the Jarque Bera test of normality, a joint test 

of skewness and kurtosis of a normal distribution, with significance at the 5% level. The test of zero mean was 

significant at the 5% level. These results indicate Bitcoin returns are non-normal with pronounced kurtosis18. Further, 

significant skewness at the 5% level indicates returns are also heavily skewed and leptokurtic. We present the 

following table below, summary statistics and hypothesis tests of Skewness, Kurtosis, and the Jarque Bera test for 

normality. 

 

Table 1. Summary statistics and preliminary tests of Bitcoin returns. 

 

Summary Statistics     

Series Mean Std. Deviation Minimum Maximum 

𝑥 0.0036 0.0519 -0.2809 0.4848 

 

Preliminary Tests 

    

Test for Test Value  𝑝- value  

Mean = 0 2.2064  0.0276  

Skewness = 0 0.631  0.0000  

Excess Kurtosis = 0 15.791  0.0000  

Jarque Bera (JB) 6863.10  0.0000  

 

Following this examination, we begin fitting the mean process of the return series. We define the return series as the 

following: 

 

 

𝒙𝒕 = (𝑥1, . . . , 𝑥𝑡)                                                                                                                                                           (2) 

 

 

Where the return series is an (𝑁 − 1) x 1 vector, due to calculating log differences from one period to the next in Eq. 

(1). Prior to fitting the conditional mean process, the return series was tested for stationarity, with the Augmented 

Dickey-Fuller test of unit root. Following the procedure of Ng and Perron22, we specify the lag length of the test as 

𝑝 = 4. We define the unit root test as the evaluation of the following regression model: 

 

 

𝛥𝑥𝑡 =  𝑎0 + 𝑎1𝑥𝑡−1 + ∑ 𝛽𝑘𝛥𝑥𝑡−𝑘 +  𝜉𝑡
𝑝
𝑘=1                                                                                                                  (3)   

 

 

The results of the test are presented in the table below. 

 

Table 2. Results of Augmented Dickey-Fuller test of unit root. 

 

Unit root test Test value  𝑝- value 

H0: 𝑎1 = 0 𝜏𝜇 = -12.283  0.0000 

Ha: 𝑎1 < 0    

 

We reject the null hypothesis that a unit root is present in the series. It follows that the Bitcoin log returns are 

characteristic of a stationary series. The conditional mean model can be specified as a function of the return series, 

and follows as a combination of both autoregressive terms (AR (p)) and moving average terms (MA (q)). Combination 

of these two processes has famously been constructed by Box and Jenkins23. Following the presence of a stationary 

series, one can specify an autoregressive moving average (ARMA) model for the conditional mean as follows: 

 

𝑥𝑡 = 𝜇 + ∑ 𝜑𝑖
𝑝
𝑖=1 𝑥𝑡−𝑖 + ∑ 𝜆𝑗𝑣𝑡−𝑗

𝑞
𝑗=1 + 𝑣𝑡                                                                                                                   (4)                                 
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Where 𝑥𝑡−𝑖 is the return at 𝑖 time periods ago with order 𝑝 and 𝑣𝑡−𝑗  is the residual at 𝑗 time periods ago with order 𝑞, 

and 𝑣𝑡 is the residual at time 𝑡 and assumed to be normal with mean zero and constant variance ℎ𝑡. The ARMA model 

for the Bitcoin return series was found to be an ARMA(4,1), following minimization of Akaike Information Criteria 

with 𝑣𝑡 ~ 𝑡(0, ℎ𝑡). That is, distributed as a Student t, with mean zero and constant variance ℎ𝑡 given the fat tails of the 

Bitcoin log return series. The results of the conditional mean specification are presented in the table below: 

 

Table 3. Estimates of the ARMA(4,1) conditional mean model. 

  

ARMA(4,1) model 

with Intercept 

   

Parameter Estimate Std. Error 𝑝-value 

μ 0.0021 0.0001 0.0272 

AR(1) -0.7694 0.1141 0.0000 

AR(2) 0.0243 0.0536 0.6499 

AR(3) 0.1228 0.0485 0.8000 

AR(4) 0.0309 0.0386 0.4228 

MA(1) 0.7767 0.1059 0.0000 

 

   Further examination of the conditional mean model was carried out with the Weighted Ljung-Box test24 on the 

standardized residuals. This test evaluates autocorrelation in the residuals of a fitted mean or variance model. It has 

been shown by Fisher and Gallagher to have higher power when compared to other Portmanteau tests, as well as 

greater stability at lags close to the sample size24. The null hypothesis assumes the data (residuals) have no serial 

correlation versus an alternative hypothesis of serial correlation. The presence of autocorrelation in the residuals of 

the conditional mean model confirms time dependence amongst lags. Therefore, significant p-values of the test 

confirm the existence of nonlinearity, or GARCH effects in the Bitcoin log returns, and agree with earlier examination 

the Figure. 1. We present the Ljung-Box statistics of various lags in the table below. Where LBQ (𝑥) denotes the lag 

at time period 𝑥: 

 

Table 4. Results of Weighted Ljung-Box Statistic 

 

Ljung-Box Statistics   

Weighted Standardized Residual  Test Value 𝑝- value 

LBQ (1) 1.386  0.2391 

LBQ (14) 9.547 0.0001 

LBQ (24) 13.272 0.3609 

Weighted Standardized Squared Residuals   

LBQ (1) 0.0205 0.8862 

LBQ (5) 0.7373 0.9156 

LBQ (9) 1.1166 0.9809 

 

   Following the above examination and mean model specification, two GARCH models are fitted to the Bitcoin log 

return series to capture nonlinear dynamics in the variance function18. The standard GARCH3 is parsimoniously 

defined as follows: 

 

𝑣𝑡|𝐼𝑡−1 ~ 𝑖𝑖𝑑(0, ℎ𝑡)                                                                                                                                                      (5) 

 

𝑣𝑡 = 𝑧𝑡𝜎𝑡                                                                                                                                                                      (6) 

 

ℎ𝑡 = 𝛼0 + ∑ 𝛼𝑗𝑣𝑡−𝑗
2𝑞

𝑗=1 + ∑ 𝛽𝑖ℎ𝑡−𝑖
𝑝
𝑖=1                                                                                                                          (7) 

 

Where 𝐼𝑡−1 is the information set available at time 𝑡 − 1. Observe 𝑣𝑡 is the residual in Eq. (4). Additionally, 𝛼𝑗 and 𝛽𝑖 

are the conditional variance parameters, and are restricted such that 𝛼0 > 0, 𝛼𝑗  ≥ 0 and 𝛽𝑖  ≥ 0. Also observe that 𝑣𝑡 

is the product of 𝑧𝑡 and 𝜎𝑡 , where 𝑧𝑡 is a sequence with zero mean and unit variance and 𝜎𝑡 is the conditional standard 



147 
 

deviation at time 𝑡13. In an effort to capture volatility asymmetry the estimation of two different GARCH models was 

conducted; the exponential GARCH (EGARCH) and the traditional GARCH. The EGARCH model captures 

asymmetry or the leverage effect with the addition of 𝛾𝑗 as a parameter. Additionally, this model is a transformation 

of the GARCH(1,1), where the logarithm of the conditional volatility  ℎ𝑡 is modeled13. This guarantees conditional 

volatility is positive and does not restrict coefficients in the model to those of Eq. (7). Additionally, note that ℎ𝑡 is the 

conditional variance (volatility) at time 𝑡 and can also be written as 𝜎𝑡
2.We represent the EGARCH model as follows4: 

 

 

ℎ𝑡 = 𝑙𝑜𝑔𝜎𝑡
2 = 𝑎0 + ∑ 𝛼𝑗

|𝑣𝑡−𝑗|+𝛾𝑗𝑣𝑡−𝑗

𝜎𝑡−𝑗

𝑞
𝑗=1 + ∑ 𝛽𝑖ℎ𝑡−𝑖

𝑝
𝑖=1                                                                                               (8)  

 

 

Where, we define “good news” when 𝑣𝑡−𝑗 is positive. Thus, we have a total effect of (1 + 𝛾𝑗)𝑣𝑡−𝑗. It follows that 𝑣𝑡−𝑗 

is negative when there is “bad news”. Thus, we have a total effect of (1 − 𝛾𝑗)|𝑣𝑡−𝑗|. It is expected that 𝛾𝑗 would be 

negative, given that more impactful shocks are the result of bad news, as discussed above13. 

   Amongst the two models, we specify student t residuals with 4 degrees of freedom following minimization of Akaike 

Information criteria, and a first order lag for both the residual and volatility. Resulting in GARCH (1, 1) and E-GARCH 

(1, 1) respectively. All parameters were estimated with quasi-maximum likelihood estimation18 in R programming 

software with the “rugarch” package25.  

 

 

3. Empirical Results 

 
We present our findings below, with estimates of both identified GARCH models: 

 

Table 5. GARCH(1,1) and EGARCH(1,1) estimates. 

 

Volatility Models    

GARCH(1,1) Estimate Std. Error 𝑝- value 

𝛼0  0.00006 0.000019 0.0007 

𝛼1  0.16695 0.037440 0.0000 

𝛽1  0.76563 0.030727 0.0000 

EGARCH(1,1)    

𝛼0 -0.28632 0.081625 0.0004 

𝛼1  0.01195 0.019464 0.5391 

𝛽1  0.95214 0.012600 0.0000 

𝛾1  0.30883 0.036579 0.0000 

 

The results of the GARCH(1,1) model illustrate significance of the model at the 5% level, indicating a good fit for 

this model. We also observe a high persistence in shocks, with 𝛼1 + 𝛽1 = .973. This indicates that shocks are actually 

persisting with resultant volatility from good news effects18. The EGARCH(1,1) model presents an insignificant 

residual term, but a significant volatility term and asymmetry term, with significance at the 5% level. Examination of 

model fits are presented in Figure. 2 as well as the news impact curve suggested by previous examinations of Engle26 

and Pagan27. The news impact curve plots the relationship between the conditional variance at time 𝑡 and the error 

term at time 𝑡 − 1 as seen in Figure 2. In the presence of volatility asymmetry, the plot would exhibit skewness to the 

right. In the case of Bitcoin log returns, it follows a nearly symmetric shape, with slightly greater responses from 

positive shocks.  

 

 

4. Conclusion 

 

The above analysis successfully examined clusters of volatility in daily Bitcoin log returns, or the presence of GARCH 

effects. A conditional mean model was then specified, followed by the examination of the traditional GARCH and 
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exponential GARCH models. Our results illustrate that Bitcoin log returns do exhibit clusters of volatility and can be 

modeled effectively with conditional volatility models. Further, leverage effects were determined to not exist in the 

log return series. That is, negative shocks do not asymmetrically affect the volatility of Bitcoin log returns although 

positive ones are more representative in the examined sample. A significant positive asymmetry term 𝛾1 indicates that 

Bitcoin returns are not asymmetrically impacted by the presence of bad news16. That is, larger volatility has not been 

found to be associated with negative shocks. However, a positive asymmetry term suggests positive shocks are more 

frequent. Further, that lower volatilities are associated with such news given that market participants aim to keep their 

current positions20.Previous examination has encouraged the use of Bitcoin to hedge market risks due to these 

properties17. A further examination of Bitcoin returns are bound to take place in the future. Perhaps the analysis of 

intra-day data would present different results due to the 24hr availability for trading of the asset. Further, monthly data 

could be examined for leverage effects as more data become available. 

   The cryptocurrency Bitcoin presents fascination for most, in use and in concept. The analysis performed in this paper 

has demonstrated how one can model the volatility of the asset and aims to motivate further analysis of Bitcoin as 

more data become available. The future of Bitcoin may appear unrealistic for many, although the asset has shown thus 

far to be a useful financial asset.   

 

 
Figure 2. Model fits of GARCH(1,1) and EGARCH(1,) and news impact curve of EGARCH(1,1) model. 
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