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Abstract

What is Bitcoin and how does it work? We explore the popular cryptocurrency using time series analysis. We
demonstrate how one can model the returns and volatility of the asset with GARCH models. We then pose a discussion
of what the future of Bitcoin is, its identity as a so called “currency” and its evolving identity as a financial asset.

1. Introduction

The endless arrival of both data and information in financial markets demands the analysis of volatility or the variation
in asset prices across time. Volatility is of upmost importance for financial researchers, practitioners, and risk adverse
investors. The unpredictability of prices negatively affects investors, and also impacts “consumption patterns,
corporate capital investment decisions, leverage decisions and other business cycles and macroeconomic variables?.”
Tools for modeling such processes can begin with financial time series, which investigate changes in asset returns and
volatility across time. Stylized facts or typical exhibited behaviors and properties in financial data play an important
role when it comes to modeling conditional volatility of asset returns. The unconditional distributions tend to have fat
tails and are accompanied by changing volatility over time, where high volatility periods are followed by low ones
and vice versa. We describe such behavior as time varying conditional variance or volatility clustering®. Practices in
financial time series have not only aimed to model fluctuations in returns, but capture volatility clusters and the impact
of good and bad news on the volatility of asset returns. Much research is built upon initial work of Engle, who
developed the autoregressive conditional heteroskedasticity model, or more commonly known as the ARCH model?.
The GARCH model shortly followed, or the generalized autoregressive conditional heteroskedasticity model, an
extension of the ARCH model by Bollersleve.

Further investigation of the volatility of asset returns has been carried out with GARCH models since their induction,
as well as various model extensions. Some of which include the exponential GARCH or EGARCH model introduced
by Nelson?, the asymmetric power GARCH or APGARCH introduced by Engle and Ng®, the GIR-GARCH introduced
by Glosten, Jagannathan, and Runkle®, the quadratic GARCH or QGARCH introduced by Sentana’, the regime
switching GARCH or RSGARCH introduced by Cai®, Hamilton and Susmel® and Kim and Kim* and Susmel®!, the
threshold GARCH or TGARCH, developed by GJR® and Zakoian'?. Extensions of the GARCH model aim to capture
asymmetry of volatility due to news impacts, as well as strengthen forecasts of conditional volatility. A characteristic
of the volatility of returns is asymmetry, which is commonly referred to as leverage effect. Asymmetry in volatility
occurs due to larger impacts from negative shocks, as opposed to positive shocks, where shocks are the results of good
and bad news™®. Previous examination of asymmetric volatility attributes the leverage effect to the causal relationship
between bad news, lower prices, and higher leverages'4. Motivated by past developments with GARCH models of
exchange rates and stock prices, this paper will aim to apply them to the cryptocurrency Bitcoin.

Bitcoin is a virtual currency that is decentralized, peer to peer, and has encrypted transactions. Transactions of the
cryptocurrency involve no centralized authority, clearing house, or institution. Bitcoin operates with block chain



technology, of which a transparent and secure system of accounting is used, that transfers ownership and stored data
of every Bitcoin transaction via the above mechanisms'®. Bitcoin has received much criticism, scrutiny, and media
attention since its release, leading to high amounts of volatility in its life cycle thus far.

Previous empirical investigations of Bitcoin have found it is more characteristic of an asset rather than a currency,
and also possessive of risk management and hedging capabilities'®. Examination of volatility has also taken place,
with multiple univariate GARCH'” models and multivariate GARCH models, comparing Bitcoin with other assets
such as gold*®. What has not been extensively investigated is the exploration of the leverage effect in the volatility of
Bitcoin returns. This paper will aim to employ methodologies of Beg and Anwar'® and Zivot!* to explore various
univariate GARCH models that measure the effects of good and bad news on Bitcoin returns.

2. Data and Methodology

The data used for this paper spans from August 21, 2013 to August 18, 2017. Bitcoin to dollar exchange rate data has
been sourced from Coindesk®®. The data span 998 observations after the removal of holidays and weekends from all
data points, thus following a steady stream of financial events and one that is similar to other exchange rates®.
Preliminary examination of the data confirm GARCH effects, with the log return and squared return series exhibiting
clusters of volatility. We let p, denote the price of Bitcoin at time t. We define the return x, to be the natural log of
the argument:
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We present time series plots below of both the log returns and the squared log returns.
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Figure 1. Time series plots of Bitcoin log returns and squared log returns.
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Initial testing of Bitcoin returns indicates asymmetry. Kurtosis and skewness test statistics \/b_l and b, were used,
as seen in Shapiro and Wilk?!. Additionally, these tests both agree with the Jarque Bera test of normality, a joint test
of skewness and kurtosis of a normal distribution, with significance at the 5% level. The test of zero mean was
significant at the 5% level. These results indicate Bitcoin returns are non-normal with pronounced kurtosis®®. Further,
significant skewness at the 5% level indicates returns are also heavily skewed and leptokurtic. We present the
following table below, summary statistics and hypothesis tests of Skewness, Kurtosis, and the Jarque Bera test for
normality.

Table 1. Summary statistics and preliminary tests of Bitcoin returns.

Summary Statistics
Series Mean Std. Deviation Minimum Maximum
x 0.0036 0.0519 -0.2809 0.4848

Preliminary Tests

Test for Test Value p- value
Mean =0 2.2064 0.0276
Skewness =0 0.631 0.0000
Excess Kurtosis=0 15.791 0.0000
Jarque Bera (JB) 6863.10 0.0000

Following this examination, we begin fitting the mean process of the return series. We define the return series as the
following:

X = (Xq,..., %) (2)

Where the return series isan (N — 1) x 1 vector, due to calculating log differences from one period to the next in Eq.
(1). Prior to fitting the conditional mean process, the return series was tested for stationarity, with the Augmented
Dickey-Fuller test of unit root. Following the procedure of Ng and Perron??, we specify the lag length of the test as
p = 4. We define the unit root test as the evaluation of the following regression model:

Axy = A+ @y Xe—q + Yooy BelXeoi + & 3)

The results of the test are presented in the table below.

Table 2. Results of Augmented Dickey-Fuller test of unit root.

Unit root test Test value p- value
Hoia; =0 T, =-12.283 0.0000
Haa; <0

We reject the null hypothesis that a unit root is present in the series. It follows that the Bitcoin log returns are
characteristic of a stationary series. The conditional mean model can be specified as a function of the return series,
and follows as a combination of both autoregressive terms (AR (p)) and moving average terms (MA (g)). Combination
of these two processes has famously been constructed by Box and Jenkins?3. Following the presence of a stationary
series, one can specify an autoregressive moving average (ARMA) model for the conditional mean as follows:

Xe =@+ Z?:l QX + Z?:l Ajvt—j + v (4)
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Where x,_; is the return at i time periods ago with order p and v,_; is the residual at j time periods ago with order q,
and v, is the residual at time t and assumed to be normal with mean zero and constant variance h,. The ARMA model
for the Bitcoin return series was found to be an ARMA(4,1), following minimization of Akaike Information Criteria
with v, ~ t(0, h,). That is, distributed as a Student t, with mean zero and constant variance h, given the fat tails of the
Bitcoin log return series. The results of the conditional mean specification are presented in the table below:

Table 3. Estimates of the ARMA(4,1) conditional mean model.

ARMA(4,1) model
with Intercept

Parameter Estimate Std. Error  p-value
1 0.0021 0.0001 0.0272
AR(1) -0.7694 0.1141 0.0000
AR(2) 0.0243 0.0536 0.6499
AR(®3) 0.1228 0.0485 0.8000
AR(4) 0.0309 0.0386 0.4228
MA(1) 0.7767 0.1059 0.0000

Further examination of the conditional mean model was carried out with the Weighted Ljung-Box test®* on the
standardized residuals. This test evaluates autocorrelation in the residuals of a fitted mean or variance model. It has
been shown by Fisher and Gallagher to have higher power when compared to other Portmanteau tests, as well as
greater stability at lags close to the sample size?*. The null hypothesis assumes the data (residuals) have no serial
correlation versus an alternative hypothesis of serial correlation. The presence of autocorrelation in the residuals of
the conditional mean model confirms time dependence amongst lags. Therefore, significant p-values of the test
confirm the existence of nonlinearity, or GARCH effects in the Bitcoin log returns, and agree with earlier examination
the Figure. 1. We present the Ljung-Box statistics of various lags in the table below. Where LBQ (x) denotes the lag
at time period x:

Table 4. Results of Weighted Ljung-Box Statistic

Ljung-Box Statistics

Weighted Standardized Residual Test Value  p- value
LBQ (1) 1.386 0.2391
LBQ (14) 9.547 0.0001
LBQ (24) 13.272 0.3609
Weighted Standardized Squared Residuals

LBQ (1) 0.0205 0.8862
LBQ (5) 0.7373 0.9156
LBQ (9) 1.1166 0.9809

Following the above examination and mean model specification, two GARCH models are fitted to the Bitcoin log
return series to capture nonlinear dynamics in the variance function®. The standard GARCH? is parsimoniously
defined as follows:

Ve|lp_q ~ iid (0, hy) ®)
Ut = Z40y (6)
he = ay + 2?21 ajvtz—j + Zle Bih:—i (7)

Where I,_, is the information set available at time t — 1. Observe v, is the residual in Eq. (4). Additionally, «; and g;
are the conditional variance parameters, and are restricted such that a, > 0, @; > 0 and §; = 0. Also observe that v,
is the product of z; and o, , where z, is a sequence with zero mean and unit variance and a; is the conditional standard
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deviation at time t*3. In an effort to capture volatility asymmetry the estimation of two different GARCH models was
conducted; the exponential GARCH (EGARCH) and the traditional GARCH. The EGARCH model captures
asymmetry or the leverage effect with the addition of y; as a parameter. Additionally, this model is a transformation
of the GARCH(1,1), where the logarithm of the conditional volatility h, is modeled®. This guarantees conditional
volatility is positive and does not restrict coefficients in the model to those of Eq. (7). Additionally, note that h, is the
conditional variance (volatility) at time ¢ and can also be written as o2.We represent the EGARCH model as follows*:

[ve_jl+vjve—;
he = loga? = ag + Loy "L 4 ST e ®

Where, we define “good news” when v,_; is positive. Thus, we have a total effect of (1 + y;)v,_;. It follows that v,_;
is negative when there is “bad news”. Thus, we have a total effect of (1 — y;)|v,_;|. It is expected that y; would be
negative, given that more impactful shocks are the result of bad news, as discussed above'®.

Amongst the two models, we specify student t residuals with 4 degrees of freedom following minimization of Akaike
Information criteria, and a first order lag for both the residual and volatility. Resulting in GARCH (1, 1) and E-GARCH
(1, 1) respectively. All parameters were estimated with quasi-maximum likelihood estimation®*® in R programming
software with the “rugarch” package?.

3. Empirical Results

We present our findings below, with estimates of both identified GARCH models:

Table 5. GARCH(1,1) and EGARCH(1,1) estimates.

Volatility Models

GARCH(1,1) Estimate Std. Error p- value
g 0.00006 0.000019 0.0007
a 0.16695 0.037440 0.0000
B 0.76563 0.030727 0.0000
EGARCH(1,1)

g -0.28632 0.081625 0.0004
a, 0.01195 0.019464 0.5391
B 0.95214 0.012600 0.0000
Y1 0.30883 0.036579 0.0000

The results of the GARCH(1,1) model illustrate significance of the model at the 5% level, indicating a good fit for
this model. We also observe a high persistence in shocks, with a; + 8, = .973. This indicates that shocks are actually
persisting with resultant volatility from good news effects!®. The EGARCH(1,1) model presents an insignificant
residual term, but a significant volatility term and asymmetry term, with significance at the 5% level. Examination of
model fits are presented in Figure. 2 as well as the news impact curve suggested by previous examinations of Engle?
and Pagan®. The news impact curve plots the relationship between the conditional variance at time t and the error
term at time t — 1 as seen in Figure 2. In the presence of volatility asymmetry, the plot would exhibit skewness to the
right. In the case of Bitcoin log returns, it follows a nearly symmetric shape, with slightly greater responses from
positive shocks.

4. Conclusion

The above analysis successfully examined clusters of volatility in daily Bitcoin log returns, or the presence of GARCH
effects. A conditional mean model was then specified, followed by the examination of the traditional GARCH and
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exponential GARCH maodels. Our results illustrate that Bitcoin log returns do exhibit clusters of volatility and can be
modeled effectively with conditional volatility models. Further, leverage effects were determined to not exist in the
log return series. That is, negative shocks do not asymmetrically affect the volatility of Bitcoin log returns although
positive ones are more representative in the examined sample. A significant positive asymmetry term y, indicates that
Bitcoin returns are not asymmetrically impacted by the presence of bad news?®. That is, larger volatility has not been
found to be associated with negative shocks. However, a positive asymmetry term suggests positive shocks are more
frequent. Further, that lower volatilities are associated with such news given that market participants aim to keep their
current positions?.Previous examination has encouraged the use of Bitcoin to hedge market risks due to these
properties®’. A further examination of Bitcoin returns are bound to take place in the future. Perhaps the analysis of
intra-day data would present different results due to the 24hr availability for trading of the asset. Further, monthly data
could be examined for leverage effects as more data become available.

The cryptocurrency Bitcoin presents fascination for most, in use and in concept. The analysis performed in this paper
has demonstrated how one can model the volatility of the asset and aims to motivate further analysis of Bitcoin as
more data become available. The future of Bitcoin may appear unrealistic for many, although the asset has shown thus
far to be a useful financial asset.

congitional 30 (v jrsturns])

= _
o
E a
B oo
s MM
(= \W— .-\,'\r-'\m.,..J“"ll‘k
= T T T
2013 2015 2017
Time
Conditional 3D (v jreturns])
=
o
= a
E o
2a1 h h o
a \ !
- J kaﬁWM NPV N | OO [ SR R0V
o T T T
2013 2015 2017
Time
News Impact Curve
[ta]
C! -
o
v 8
a
g
o

T T T T T T T
-0.3 -0.2 -0.1 0.0 0.1 0.2 0.3

R

Figure 2. Model fits of GARCH(1,1) and EGARCH(1,) and news impact curve of EGARCH(1,1) model.
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