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Abstract 

 
In addition to playing a role in genomic function, DNA methylation influences evolution by regulating transcription. 

Technological advances, such as High-Performance Liquid Chromatography (RP-HPLC), have allowed scientists to 

explore genomic regulatory changes that contribute to species diversity and phenotypic variability. Epigenetic 

modifications of notable interest include 5-methylcytosine (5mC) and guanine-cytosine content (GC), as they are 

related to neutral selection on the cellular level. To understand how these regulatory changes evolve in a phylogenetic 

context, quantitative traits were analyzed phylogenetically by mapping them to separate mitochondrial phylogenies 

inferred de novo across 28 reptile species, 26 mammal species, and 42 fish species. Previous studies in vertebrates 

concluded that there was no significant correlation between DNA methylation and environmental stimuli, but these 

studies did not correct for the non-independence of evolutionarily related species and thus violated a fundamental 

statistical assumption. To model 5mC and GC, traits were corrected for phylogeny and phylogenetic comparative 

analyses were run in RStudio®. First, the extent of the phylogenetic non-independence problem was examined by 

estimating measures of phylogenetic signal for each quantitative trait. Then regressions were repeated from a previous 

study, following phylogenetic correction, and inferred correlation between our two epigenetic modifications. Finally, 

a series of evolutionary models were fit to the phylogeny to examine the evolution of these traits across the phylogenies 

and selected the best fit model using an AICc model selection procedure. Phylogenetic signal was found in 5mC for 

both mammal and fish species. In reptile species, phylogenetic signal was found in GC but not 5mC, and that 

phylogenetic correction did not affect results, likely owing to the relatively small number of tips and the lack of 

phylogenetic signal in one of the traits. The evolution of these traits is best approximated by an Ornstein-Uhlenbeck 

model, suggesting that local optima exist for these quantitative characters and predicting a loss of phylogenetic signal 

(convergence or homoplasy). This study is important because the results can be used to understand the modifications 

to the genome influencing phenotypic diversity. 

 

 

1. Introduction 

 

1.1 Epigenetic Modifications In Vertebrates 

 
DNA function is plastic; the most important characteristic of DNA is its ability to change structure and composition 

(and thus function) over time owing to mutation or changes in gene regulation. Epigenetic modifications introduce 

heritable alterations that, unlike mutations, do not change the DNA sequence but will induce changes in gene 

functionality. Of notable interest, DNA methylation, or the addition of a methyl group to a DNA base molecule, is a 

common epigenetic modification. DNA methylation is required to maintain genome stability and is involved with 

different cellular functions such as transcription inhibition1,2, genomic imprinting3, X chromosome inactivation4, 

chromatin stabilization5, and disease states6. Over portions of the genome, repetitive elements in the genetic sequence 

are silenced by DNA methylation7. These repetitive sequences remain inactive to prevent interference with 

transcription and maintain genome stability. Gene-rich regions of the genome are highly methylated, while 
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transposons are largely unmethylated. DNA methylation mediating transposon control in eukaryotes shows a direct 

relationship between gene methylation and transcription1. Global chemical modifications to cytosine bases are 

associated with long-term transcriptional repression or activation. DNA methylation makes the gene less available for 

transcription. Global chemical modifications to cytosine bases are associated with long-term transcriptional repression 

or activation. In regions of the gene with high GC content, phosphates separate cytosines and guanines (CpG). DNA 

methyltransferases add a methyl group to the cytosine. CpG methylation has an effect on transcription factor (TF) 

binding. Transcription factors are often located in the region of the 5’ extremity of CpG islands. In a study using 

massively parallel sequencing to probe the sensitivity of transcription factor binding to DNA modifications in vitro, 

researchers concluded cytosine methylation within the protein-DNA interface increases binding affinity of TFs and 

mechanisms of epigenetic control of mRNA production2. 

 

1.2 DNA Methylation And Vertebrate Evolution 

 
Mechanisms that regulate the expression of genes have accounted for selection among species8. Following events of 

compositional change, gene regulation acts as a mediating factor dictating trait evolution. Reptilian genomes show the 

compositional pattern of ectothermic vertebrates and do not show CpG islands; while the genome size and the 

methylation levels are more similar to those of endothermic vertebrate genomes than to those of ectothermic vertebrate 

genomes9. CpGs represent the composition of the genome that are constituted by repetitive cytosine and guanine 

nucleotides. These regions are frequently methylated in the genome. Regions known as CpG islands show elevated 

CpG content. These regions are typically associated with the promoter or regulatory regions of the gene10. For instance, 

the 5’-flanking region of the Pax6 gene, responsible for the development of eyes, is associated with two CpG islands11. 

Changes to the methylation of the Pax6 gene in olive ridley sea turtles (Lepidochelys olivacea) results in aberrant 

phenotypes. The results suggest and interplay between genetic and epigenetic mechanisms.  

   Chromosomal variation in reptiles is attributed to the presence of microchromosomes12. A microchromosome is a 

characteristically small and cytogenetically indistinguishable component of the karyotype. Microchromosomes are 

found in birds, reptiles, and fish, but are absent in mammals13. Microchromosomes are GC rich, contain higher 

frequencies of CpG dimers, and lack repetitive elements14. In mammalian genomes that lack characteristic components 

of microchromosomes, epigenetic drift has been attributed to the global decrease in DNA methylation. Drift, as a 

result of epigenome maintenance, has been constrained to CpGs across the human genome15. A similar divergence of 

the epigenome associated with age has been observed in American alligators (Alligator missippiensis); in which 

differences in the epigenome are the result of external factors. As with other vertebrates, global DNA methylation 

declines with age in alligators16. The relationship to age is further compounded by the correlation between long-term 

mercury exposure with DNA methylation. A negative relationship exists between DNA methylation, age, and mercury 

exposure16. Mechanisms that regulate the epigenome are observed across families of vertebrates indicating a retention 

of function in accordance with a divergence of character trait relatedness. Methylation of the genome is also conserved 

across vertebrates. 

   Cytosine methylation of the CpG dinucleotide in reptiles is carried out by three types of DNA methyltransferase 

(DNMT) enzymes. DNMT3a and DNMT3b methylate DNA de novo, DNMT1 is a maintenance methyltransferase. 

DNMT1 preferentially methylates hemimethylated DNA17. The activity of DMT1 declines with age. The decline is 

thought to contribute to “drift” in cells18. DMRT1 is up-regulated in males during embryonic development. DMRT1 

is up-regulated during the thermosensitive period of sex determination of Trachemys scripta, and up-regulation 

influences sex determination during TSD in this species19. DNMT3a has no related methyltransferase activity. 

DNMT3l, a related protein, is essential for imprinting genes in vertebrates20. Imprinting has evolved in placental 

mammals and comparisons of gamete-specific methylation of DNMT3 in vertebrates reveals a link between the 

existence of DNMT3l and the evolution of imprinting. DNMT enzymes have been speculated to have prokaryotic 

origins owing to their conservation throughout evolutionary time. Homologs of DNMT enzymes have been identified 

in fish, birds, and plants21. 

   Inheritance of epigenetic markers leave a physical mark (e.g., a methyl group) on DNA as well as altered gene 

expression. A growing body of literature has investigated DNA methylation in the context of vertebrate 

evolution9,22,24,25. Specifically, the relation between epigenetic modifications and transcription inactivation is of 

interest because of the relation between gene expression and phenotype. Patterns of methylation (and thus gene 

regulation) might accompany evolutionary divergence; and such heritable functional changes are speculated to serve 

as a force driving evolutionary divergence25. Therefore, current studies regarding the epigenetic regulation of 

reproduction will be fundamental to our understanding of expression profiles that are heritable and able to be passed 

to subsequent generations. 
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   DNA methylation expression patterns are variable between cell types and biological sex. The difference in cellular 

and molecular components of tissues can contribute to phenotype variations that will persist throughout the lifespan 

of an offspring suggesting a change in gene transcription. Modifications to promoter regions may play a role in gene 

regulation. For example, in zebrafish, DNA methylation was found to be associated with down regulation of 

transcription of genes in the gonads and livers26. Genes regulating epigenetic processes were over-expressed in female 

reproductive tissue. In females, esr1 was over-expressed in the liver. The promoter of this gene was hypo-

methylated26. Induced changes to tissue structure introduce variability to the gene transcript by environmental 

influence27. DNA methylation influences cell differentiation and the differentiation of tissues. For example, germline-

specific high-CpG-density promoters (HCPs) are hypermethylated in brain tissue, while most HCPs are unmethylated 

in embryonic stem cells28. 

 

1.3 Phylogenetic Comparative Methods 

 
Phylogenetic comparative methods (PCMs) enable researchers to analyze correlations between traits in an explicitly 

evolutionary context. Correlations can be drawn between characters or within a character-by-environment 

interaction29. Importantly, these methods can be used to detect selection in character trait evolution30. Recent 

phylogenetic analyses have focused on how to map character traits onto a phylogenetic tree while accounting for 

uncertainty in character change31. Phylogenetic comparative methods are used to compare traits across species to test 

hypotheses about trait and evolutionary history. These methods show evolutionary relatedness and work backwards 

around the problem of phylogenetic uncertainty to answer questions about evolutionary processes driving trait 

changes. Inferences about patterns of evolution are modeled using a continuous-time Markov-chain that considers all 

possible character histories. The probability of the instantaneous character state depends only on the current character 

state transition matrix. This matrix is used to describe these transition rates among the characters. Rates of change are 

in-turn dependent on the evolutionary model specified32. A likelihood function is then used to analyze the fit of the 

model to the data. The maximum-likelihood (ML) solution suggests the best-fit model of evolution to the data. Further, 

branch length is incorporated and is used to determine the best-fit model based on evolutionary time (or distance).   

   A stochastic model of character evolution addresses the problem of uncertainty of phylogenetic trees most accurately 

when character history is corrected33. Stochastic character mapping (SCM) uses a Bayesian Markov-chain Monte 

Carlo (MCMC) approach to infer rate of change of the character trait across the phylogeny. Likely changes along 

branches are simulated based on draws from a prior distribution; and multiple changes can be modeled along a branch. 

Methods described for stochastic character mapping of molecular character history have been applied to address trait 

uncertainty29,34. In the previous study, uncertainty in morphological character history was represented using such a 

Bayesian method, which accounts for uncertainty in the phylogenetic hypothesis. 

   Models can be used to study the evolutionary mechanisms by simulating species traits over a phylogeny, and thus 

explicitly over the evolutionary history of the group of interest. Biological evolution is not constant; rates of evolution 

vary conditionally in accordance with exposure over an observed period of time. Phylogenetic data stimulation (PDS) 

can be used in extension to PCM to answer biological questions about relatedness. Simulations are used to make 

theoretical predictions— PDS methods generate a random number on the phylogeny given an a priori model of trait 

evolution. Common models used for continuous traits include: Brownian motion (BM), which describes a stochastic 

process of trait evolution, and Ornstein-Uhlenbeck (OU), which describes the existence of optimal trait value(s) 

towards which traits are evolving. However, parameter values for traits can be dependent on time, which might 

introduce complication35. This method can be extended to model several traits evolving simultaneously on the 

phylogeny.   

   Phylogenetic signal is the tendency for related species to resemble each other in trait values23, meaning that evolved 

traits are non-independent among lineages with varying evolutionary relatedness. Different measures exist to quantify 

phylogenetic signal— common indices include Moran’s I37, Aboufeif’s Cmean
38, Pagel’s λ31, and Blomberg’s K39. 

Pagel’s λ is the most reliable for continuous trait values that follow a Brownian motion (BM) model of evolution. 

Pagel’s λ has been implemented to measure phylogenetic dependence of observed traits31. The coefficient λ accounts 

for the weight of phylogenetic influence and fits the trait data to the model of evolution36.  
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2. Methods 

 

2.1 Phylogeny Inference 

 
Published global cytosine DNA methylation percentages for individual vertebrate taxonomic groups— non-avian 

reptiles, mammals, and actinopterygian fish species25,40,41 (Table 1)— were used to model on phylogenies constructed 

using mitochondrial DNA. Mitochondrially encoded NADH dehydrogenase 2 sequence accessions for each species 

represented in the methylation dataset were collected from GenBank® using custom R scripts and the APE package in 

R v3.5.0 running in RStudio® 42. Selection of the mtDNA sequences was based on the representation in the methylation 

database and the relative sequence length of the accession (i.e., short sequences were excluded). Mitochondrial 

sequence data and DNA methylation rates were aligned separately for each taxonomic group (reptiles, mammals, 

actinopterygian fishes) in a matrix using the ClustalW 2.3 algorithm in the program Geneious 10.5.1 (Biomatters, 

Auckland, NZ)43. A phylogeny was inferred for each vertebrate group using a maximum-likelihood method 

implemented in the RaxML algorithm plugin in Geneious® v10.444. For each of the three alignments, a GTRGAMMA 

model and rapid bootstrapping algorithm was used with 1,000 bootstrap replicates followed by a thorough maximum-

likelihood search option with 100 independent searches. The resulting tree with support values was then exported as 

a nexus text file to import into the R environment.   

 

Table 1. Global cytosine DNA methylation rates and mitochondrial sequence data. 

 

Class Species GC % 5mC % Mt-DNA 

accession 

Crocodilia Alligator mississippiensis 48.56 0.96 jf315622 

 Crocodylus niloticus 48.44 0.85 dq273697 

Testudines Caretta caretta 46.74 0.96 fr694649 

 Testudo graeca 45.7 0.77 dq080049 

 Trachemys scripta elegans 46.98 1.14 km216748 

 Chelydra serpentinae 47.68 1.33 ef122793 

 Macrochelys temminckii 48.98 1.11 ef071948 

Squamata Chlamydosaurus kingii 44.67 0.93 hq684213 

 Furcifer oustaletia 44.49 1.14 af448769 

 Python molurus molurus 43.18 0.81 hm581978 

 Boa constrictor 41.95 0.68 ab177354 

 Walterinnesia aegyptia 42.77 0.8 ay059001 

 Natrix tessellata 44.12 1.03 ay870642 

 Pantherophis guttatus 41.83 1.29 dq902218 

 Hierophis viridiflavus 44.16 1.32 ay487018 

 Zamenis lineatus 43.9 1.4 dq902251 

 Euprepiophis mandarinus 43.05 1.23 dq902222 

 Bothrops jararaca 42.99 1.16 ku194299 

 Vipera aspis aspis 43.4 1.2 am944744 

 Podarcis muralis 48.18 1.34 ay234145 

 Podarcis siculus 47.02 1.47 fj460598 

 Gekko gecko 46.05 1.09 jx170698 

 Tarentola mauritanica 46.59 0.94 jx041447 

 Anguis fragilis 47.6 1.01 fj666559 

 Iguana iguana 44.33 1.36 aj278511 

 Sceloporus magistera 45.84 0.85 af528741 

 Tupinambis teguixin 45.6 0.86 jn700173 

 Chelonia mydas 47.38 1 ab012104 

Placentals Rattus norvegicus 43.9 0.9 eu104718 

 Sciurus vulgaris 39.5 0.6 ku962990 

 Homo sapiens 42.8 0.7 dq473645 

 Hapalemur griseus 41.4 0.9 kc757397 
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 Galeopterus variegatus 40.6 0.9 aj428849 

 Oryctolagus cuniculus 44.3 0.9 aj001588 

 Procavia capensis 41 0.7 ab096865 

 Balaenoptera physalus 41.3 0.9 kc572860 

 Physeter catodon 41.9 1.1 ku891394 

 Sus scrofa 44.6 0.9 kj782448 

 Equus caballus 42.8 1 ku575247 

 Hipposideros galeritus 41.4 0.9 ay504532 

 Crocidura russula 41.4 0.7 ay769264 

 Noctilio albiventris 43.3 0.6 ay504576 

 Myotis lucifugus 43.5 1 ay504565 

 Nycteris hispida 42.9 0.9 ay504544 

 Canis lupus familiaris 41.1 0.7 ay729880 

 Panthera uncia 41.5 0.9 kp202269 

 Erinaceus europaeus 45.5 0.5 af513818 

 Didelphis virginiana 39.2 0.3 z29573 

Monotremes Ornithorhynchus anatinus 48.5 1.2 x83427 

 Tachyglossus aculeatus 48.9 1 aj303116 

Marsupials Macropus rufus 41.7 0.4 jn967007 

 Macropus robustus 41.2 0.4 y10524 

 Vombatus ursinus 40.9 0.3 af343893 

 Monodelphis domestica 39.1 0.3 aj508398 

Actinopterygians Jordanella floridae 41.43 1.1 ay902108 

 Ophiodon elongatus 44.31 1.78 ay225719 

 Scorpaena guttata 41.27 1.48 jq088494 

 Notopterus notopterus 44.96 1.22 ap008925 

 Pantodon buchholzi 45.66 1.77 ab035229 

 Sardina pilchardus 47.12 1.4 ap009233 

 Danio rerio 39.19 1.35 km244705 

 Carassius auratus auratus 39.53 1.44 jx183457 

 Oncorhynchus keta 45.75 1.49 ap010773 

 Merluccius merluccius 48.69 2.18 fr751402 

 Gadus morhua 48.61 2.37 hg514359 

 Arctogadus glacialis 48.13 2.74 am919429 

 Boreogadus saida 48.48 2.22 dq356936 

 Mullus barbatus 48.86 2.19 aj491821 

 Capros aper 46.69 1.87 ap009159 

 Aphyolebias peruensis 45.7 1.5 af092407 

 Holacanthus passer 44.1 1.43 kp965872 

 Aphanius fasciatus 43.17 1.62 af449313 

 Xiphophorus maculatus 41.28 1.39 ef017600 

 Fundulus heteroclitus 42.8 1.76 kj878751 

 Cottoperca gobio 43.65 1.98 jn186884 

 Bovichtus diacanthus 41.95 1.83 kf412875 

 Pseudochaenichthys georgianus 44.9 2.22 hm165672 

 Neopagetopsis ionah 43.8 2.08 hm165754 

 Chaenocephalus aceratus 44.27 2.1 hm166185 

 Chionodraco rastrospinosus 43.65 2.28 hm165958 

 Chionodraco hamatus 43.9 2.4 hq170102 

 Champsocephalus esox 45.54 2.22 hq170096 

 Notothenia rossii 44.52 1.78 ay256567 

 Notothenia coriiceps 44.4 1.87 fj647714 

 Dissostichus mawsoni 44.09 1.85 dq184498 

 Trematomus bernacchii 43.59 1.82 fj647717 

 Trematomus newnesi 44.57 1.82 dq184506 

 Lepidonotothen nudifrons 43.74 1.79 kp745380 
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 Patagonotothen guntheri 44.08 1.69 kf412892 

 Lepidonotothen squamifrons 43.79 1.87 kp745376 

 Lepidonotothen kempi 43.31 1.64 kf412886 

 Gobionotothen marionensis 44.32 1.92 kp745410 

 

2.2 Phylogenetic Comparative Analyses 

 

2.2.1 stochastic character mapping 

 
R v3.5.0 in Rstudio® was used to address phylogenetic non-independence of constructed phylogenies. Two continuous 

character traits, 5mC: the methylated form of the DNA based cytosine and GC: the percentage of nitrogenous based 

that are either guanine or cytosine, were stochastically mapped to phylogenetic trees for each class of vertebrates using 

the make.simmap function in the R package PHYTOOLS45. Each tree contained a fixed number of species (reptiles: n 

= 28; mammals: n = 26; fishes: n = 42). A continuous-time Markov chain was used to the model evolutionary history 

of the character change29. Possible character histories for each trait were sampled such that specific history varied with 

the distribution of the posterior probabilities. Joint reconstruction of continuous character data across nodes on a matrix 

were plotted from their joint posterior probability distribution29. Changes along edges of the tree were simulated using 

rejection. Wait times for the changes between states were drawn on exponential distribution with rate. Further changes 

were stimulated if waiting time was shorter than total branch length. Successful stimulation of stochastic history was 

achieved when branch nodes matched. Stochastic character maps were then plotted on the phylogenetic tree to 

visualize the different character state probabilities through time using the plotSimmap function in phytools45,46. 

Ancestral states were estimated for internal nodes using ML then interpolated along the branches of the tree47. A 

continuous color gradient was applied to the trait maps to visualize character state-change through time. 

 

2.2.2 phylogenetic signal 

 
To ascertain whether a phylogenetic correction was necessary for subsequent analyses, a series of methods were used 

to test for autocorrelation of phylogenetic distance and character traits. Correlograms were constructed for each trait 

(GC, 5mC) for each taxonomic group (reptiles, mammals, fishes) as a method for assessing lag distance. The distance 

between trait values, or lag, represents a correlation between plot points. The PHYLOSIGNAL package in R was then 

used to analyze measures of phylogenetic signal in a simulated phylogenetic context using actual continuous trait data 

(5mC and GC)49. Global measures of autocorrelation were used to indicate the presence of phylogenetic signal in the 

simulated phylogenies. Phylogenetic signal indices Moran’s I37, Aboufeif’s Cmean38, Pagel’s λ31, and Blomberg’s K39 

were evaluated based on spatial autocorrelation within the context of the phylogenetic trees to establish an informative 

measure of phylogenetic signal. Signal indices were based on phylogenetic independent contrasts assuming Brownian 

motion. Moran’s I describes the relationship of a trait variation to the phylogeny37, Aboufeif’s Cmean describes 

independence among traits based on closely related species38, Pagel’s λ measures phylogenetic dependence of traits31, 

and Blomberg’s K represents phylogenetic signal strength as a ratio39. Statistical non-independence was assumed for 

5mC and GC traits when determining phylogenetic relatedness. Based on the results of this simulation study, Pagel’s 

λ was selected as the autocorrelation index because of experimental small type I error across all sizes of phylogenies 

for test of phylogenetic signal36. The index assumes a Brownian motion (BM) model of evolution31. A value of zero 

indicates phylogenetic independence; values of one indicated distribution under BM and phylogenetic signal. The R 

package GEIGER was used to estimate Pagel’s λ and the function fitContinuous was then used to correct for 

phylogenetic autocorrelation49. Character traits were individually tested for phylogenetic signal in each phylogeny 

using Pagel’s λ, resulting in nine total tests of signal (2 trait sets for each of 3 phylogenies). 

  

2.2.3 phylogenetic regression 

 
Two different regression models were fit for the relationship between 5mC and GC between each class to check the 

type I error. Regression models were applied in which permutations of the values of y were based on a single 

predictor50. Regression model I assumed a fixed value of the predictor. Parametric tests of significance in this model 

are through the origin. Pearson’s product-moment correlation coefficient (r) was used to analyze the strength of the 

association between variables. The sample population was statistically independent for the application of this 
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correlation. Regression model II, also called the phylogenetically-corrected regression, assumes the predictor and 

response vary jointly following a multivariate BM process47. Traits were not log-transformed prior to the regression. 

However, standardized phylogenetic independent contrast for both traits was computed. Variance of standard was 

computed as an index to evaluated the fit of the tree to the data. Contrast was compared with the values obtained after 

the data was permutated randomly across the tips of the tree. Permutations are independent of relationship to the 

phylogeny39. Residuals are distributed normally with covariances proportional to branch length51. A least-square linear 

regression through the origin was used for the contrast. 

 

2.2.4 evolutionary models 

 
Evolutionary models of continuous character evolution were fit to our phylogeny to test the following evolutionary 

models of speciation and trait evolution: Brownian motion (BM)52, white-noise (White)53, Early-burst (EB)54, and 

Ornstein-Uhlenbeck (OU)55. Models for continuous character data include Brownian Motion (BM) and Ornstein-

Uhlenbeck (OU). The Brownian motion model has been described as a “random walk.” Trait evolution occurs over a 

contingency. In the Ornstein-Uhlenbeck model, trait evolution is attached towards a central, optimum value. The Early 

Burst model is applicable for studies of adaptive radiation. In this model, trait evolution is rapid during early stages 

and subsequently slows down54. However, few studies have revealed an Early Burst model of evolution56. Models for 

estimates of divergence time include white-noise and CIR. Both models function in the Bayesian framework. The 

white-noise model is non-autocorrelative and an alternative form of relaxed clock models53. Akaike information 

criterion was used to select the model that was the most efficient approximation. The best fit model was selected using 

AICc optimized under the function fitContinuous in the R package GEIGER49.  

 

2.3 Statistical Analyses 

 
R v3.4.1 in Rstudio® was used to evaluate statistical non-independence between continuous traits, 5mC and GC, and 

habitat parameters. Global cytosine DNA methylation percentages for fish species were analyzed at one factor level 

for habitat based on classification in FishBase®. Habitat levels included polar, temperature, subtropical, and tropical. 

Water temperature was assumed as the mean body temperature for each species. Ectotherms are acclimated to water 

temperature. In teleost fish, species can inhabit a wide range of different temperatures57. Differences in temperature 

affects metabolism; transcriptional regulation has been implicated in relation to metabolism in mammals58. 

Understanding regulatory factors, such as temperature, that influence gene expression is of interest.   

 

 

3. Results 

 

3.1 Variation In DNA Methylation Across Phylogeny 

 
The continuous characters GC and 5mC were mapped to the phylogenies using stochastic character mapping (Fig. 2). 

DNA methylation rates and mtDNA sequences were analyzed for 28 reptile species; two representatives from order 

Crocodilia, five representatives from order Testudines, and twenty-one representatives from order Squamata after 

eliminating MT-ND2 sequences that were not associated with the entire genome. Through the phylogenetic correction 

of non-independence, the trait map indicated order Crocodilia was more GC rich, while Serpentes was more GC poor 

compared to other reptiles. Distribution of 5mC was clade-dependent (Fig. 2a). For the mammalian class, 26 species 

were analyzed; two representatives from order Monotremata, four representatives from order Marsupialia, and twenty 

representatives from order Placentalia were present in the phylogeny. Order Monotremata was more GC and 5mC 

poor compared to other mammals. Two of the species of marsupials (Monodelphis domestica and Vombatus ursinus) 

were more GC and 5mC rich than other species in the order. Order Monotremata was more GC and 5mC poor 

compared to other mammals (Fig. 2b). Forty-two representative fish species were present in the phylogeny. Order 

Cypriniformes was more GC poor compared to other fishes. Order Gadiformes was more GC and 5mC rich (Fig. 2c). 

   To investigate the relationship between DNA methylation rates and phylogeny, autocorrelational analyses were 

performed on the data. In reptiles, our autocorrelation analyses and Pagel’s lambda suggest phylogenetic signal was 

present in the GC character trait and absent in 5mC (GC: λ= 1.00, P= 0.00100, logL= -48.8; 5mC: λ= 0.235, P= 0.181, 

logL= 5.65; Table 2). Subsequence autocorrelational analyses on mammals and fishes indicated phylogenetic signal 

was present in the 5mC character trait; mammals: (GC: λ= 0.375, P= 0.320, logL= -60.5; 5mC: λ= 0.746, P= 0.00160, 
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logL= -1.70; Table 2), fishes: (GC: λ= 6.61E-05, P= 1.00, logL= -96.6; 5mC: λ= 0.755, P= 0.0858, logL= -17.8; Table 

2). 

 

Table 2. Autocorrelation analyses of continuous character trait data using Pagel’s lambda. 

 

Class Data Lambda P log-likelihood 

Reptilian 5mC 0.235 0.181 5.65 

 GC 1.00 0.00100 -48.8 

Mammalian 5mC 0.746 0.00160 -1.70 

 GC 0.375 0.320 -60.5 

Fishes 5mC 0.755 0.0858 -17.8 

 GC 6.61E-05 1.00 -96.6 

 

   Autocorrelation was further explored through correlograms (Fig. 1,3). The correlogram of GC presents a strong 

positive autocorrection for short lags and negative autocorrelation for medium lags in reptiles (Fig. 1a). 

Autocorrelation analyses with Pagel’s lambda suggested phylogenetic signal in the GC character trait for only the 

reptile family. In this family, closely related species are highly correlated for the trait. In mammals, the phylogenetic 

correlogram is relatively flat (Fig. 1b). The sample is random and nonsignificant. A positive autocorrelation for long 

lags is seen in fishes (Fig. 1c). 

 

Figure 1. Phylogenetic correlogram for GC. 

Figure 1 a) correlogram for 28 non-avian reptile species. The solid gray line indicates the expected value under the 

null hypothesis of no autocorrelation. 95% confidence intervals are represented as dashed lines. The red line at the 

bottom indicates significant autocorrelation at a given phylogenetic distance, b) mammals, c) fishes. 

   The correlogram of 5mC exhibits a positive autocorrelation for short lags in reptiles (Fig. 3a). The autocorrelation 

analyses suggest phylogenetic signal is present in the 5mC character trait for mammals and fishes. In mammals, there 

is nonsignificant autocorrelation (Fig. 3b). Positive autocorrelation is observed for short and medium lags in fishes 

(Fig. 3c).  
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Figure 2. Phylogenetic comparison of continuous character evolution. 

Figure 2 a) continuous character evolution for GC (left) and 5mC (right) across major groups of non-avian reptiles. 

Note the position of Chelonia mydas, there was low support for this topological placement owing to the quality of 

the sequence data, b) mammals, c) fishes.  
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Figure 3. Phylogenetic correlogram for 5mC. 

Figure 3 a) correlogram for 28 non-avian reptile species. The solid gray line indicates the expected value under the 

null hypothesis of no autocorrelation. 95% confidence intervals are represented as dashed lines. The red line at the 

bottom indicates significant autocorrelation at a given phylogenetic distance, b) mammals, c) fishes.  

   To determine the representative phylogenetic signal index, traits were stimulated under increasing values of 

Brownian motion. At complete randomness through the contingency, lambda was the most efficient method for 

measuring phylogenetic signal under increasing values of Brownian motion in reptiles (Fig. 4a). The strength of the 

lambda index in the mammal and fish model was not as strong (Fig. 4b, 4c). 

 

Figure 4. Phylogenetic signal test. 

Figure 4 a) response to stimulate trait values under increasing values of Brownian motion on the reptile phylogeny. 

Pagel’s lambda clearly shows the most power to resolve phylogenetic signal for the phylogenies, b) simulated trait 

values on mammalian phylogeny, c) fish phylogeny. 

   To reaffirm results of previous correlational studies between GC and 5mC rates in reptiles, linear regressions 

between each family were conducted. Previous studies concluded there was no significant correlation between DNA 

methylation in reptiles41. Reptiles show variability in DNA methylation rates when corrected for phylogeny 

(regression1: R2=0.00, df =26, P=0.87, regression2: R2=0.008, df=26, P=0.65; Fig. 5a, 6a). Subsequent analyses in 

mammals indicated the relationship between GC and 5mC in vertebrates was a positive, linear correlation25. There 

was a significant relationship between GC and 5mC rates in mammals for linear and phylogenetically corrected 

regressions (regression1: R2=0.2939, df =24, P=0.004226, regression2: R2=0.2228, df=22, P=0.01492; Fig. 5b, 6b). 
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The same paper presented a positive, linear correlation between GC and 5mC rates in fishes25. There was a significant 

relationship between GC and 5mC rates in fishes for linear and phylogenetically corrected regressions (regression1: 

R2=0.2752, df =40, P=0.0003615, regression2: R2=0.08692, df =40, P=0.05804; Fig. 5c, 6c). Methylation may linearly 

increase with GC content; however, phylogenetic factors may also influence trait selection subject to exploration. 

 

Figure 5. Linear model. 

Figure 5 a) linear relationship between 5mC and GC in reptiles (R2=0.001, df =26, P=0.87), showing no correlation, 

b) linear relationship between 5mC and GC in mammals (R2=0.2939, df =24, P=0.004226), c) linear relationship 

between 5mC and GC in fishes (R2=0.2752, df =40, P=0.0003615). 

 

Figure 6. Phylogenetic correction. 

Figure 6 a) phylogenetically-correlated regression for the relationship between 5mC and GC in reptiles (R2=0.008, 

df=26, P=0.60), the statistically appropriate approach, also showing no relation, b) phylogenetically-correlated 

regression for the relationship between 5mC and GC in mammals (R2=0.2228, df=22, P=0.01492), c) 

phylogenetically-correlated regression for the relationship between 5mC and GC in fishes (R2=0.08692, df =40, 

P=0.05804). 

   The model of evolution that best predicts the trait selection for the reptile sample with AICC was OU (L = 5.54, 

AICC = -4.01, Δi= 0.00, wi = 0.73; Table 3). Mammals are also represented under OU (L=7.45, AICC = -7.81, Δi= 0.00, 

wi = 3.90E-01; Table 3). Fishes are best represented by BM (L=-2.34, AICC = 11.32, Δi= 0.00, wi = 9.99E-01; Table 

3). Families best represented by the OU model of trait evolution are attracted towards a central, optimum value. Traits 

occur over a contingency in the fishes that are best represented by the BM model of trait evolution. 
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Table 3. Best-fit evolutionary models for the continuous character data (# iterations = 50). 

 

Class Model log-

likelihood 

AIC AICc Delta AICc 

(Δi) 

Akaike 

weight (wi) 

Reptilian BM 3.67 -1.35 -0.349 3.73 0.113 

 White 3.67 -1.35 -0.349 3.73 0.113 

 EB 3.67 0.651 2.39 5.73 0.0416 

 OU 5.54 -5.08 -4.08 0.00 0.732 

Mammalian BM 7.45 -8.90 -7.81 0.0000120 3.90E-01 

 White -1.32 8.63 9.73 17.5 6.07E-05 

 EB 7.87 -7.75 -5.84 1.16 2.19E-01 

 OU 7.45 -8.90 -7.81 0.00 3.90E-01 

Fishes BM -2.34 10.7 11.3 0.00 9.99E-01 

 White -14.8 35.6 36.2 24.9 3.95E-06 

 EB -14.8 37.6 38.6 26.9 1.45E-06 

 OU -8.87 23.7 24.4 13.1 1.46E-03 

 

   A one-way ANOVA between temperature conditions was conducted to compare the effect of DNA methylation 

rates on habitat parameters in fishes for GC and 5mC. There were no statistically significant differences between 

group means as determined by one-way ANOVA for GC (F=0.865, df=3, P=0.468). There was a significant effect of 

5mC on habitat at the p<0.05 level for the four conditions (F=8.479, df=3, P=0.000194). 

 

4. Discussion 

 
Among reptiles, there was dependence of DNA methylation rates as a result of a phylogenetic relationship in GC, but 

not in 5mC. This indicated that closely relates species share comparable GC content in their genomes as a result of 

evolutionary similarity. Patterns of similarity are best analyzed through quantitative, phylogenetic analysis. The 

reptilian model has been imposed as a historical sequence for the evolution of quantitative traits, including squamate 

viviparity and matrotrophy. Viviparity, derived from independent origins, is more similar between squamate clades 

than that of mammals and fishes59. A modified scenario for the evolution of DNA methylation is suggested to appear 

in conjunction with reptile speciation. The rate of chromosome change was been correlated to the number of living 

reptile species12. DNA methylation has been proposed as an epigenetic mechanism used to preserve chromosome 

stability60. DNA methylation is thus a mediating factor dictating the propensity of the chromosomes to acquire 

variation. 

   Monodelphis domestica and Vombatus ursinus are represented in a separate clade from the other marsupials in the 

phylogeny. Previous research has indicated monotremes are more GC rich and 5mC rich in comparison to other 

mammals25.The results indicate monotremes are more GC poor and 5mC poor than other mammals. 

   Fishes in the same genus share similar DNA methylation rates regardless of body temperature. Species of genera 

Lepidonotothen have different habitat parameters. Lepidonotothen nudifrons is a polar fish, while Lepidonotothen 

squamifrons and Lepidonotothen kempi are temperature fish according to FishBase®. Phylogenetic proximity was 

more important than body temperature when determining character trait relatedness. A previous study concluded 

fishes that belong to the same genus and share the same body temperature showed similar GC and 5mC levels40. Their 

analyses did not account for a fundamental statistical assumption that would have corrected for phylogenetic non-

independence.    

   While phylogenetic signal was exclusively indicated for the GC character trait in reptiles, there was autocorrelation 

of both traits at low phylogenetic distance. With increasing phylogenetic distance, phylogenetic signal of traits 

decreases. At high phylogenetic distance, we see no autocorrelation. These findings indicate closely related species 

are highly correlated. The phylogenetic relationships between these species thus indicate statistical non-independence 

of the trait values. There was nonsignificant autocorrelation of both traits in mammals across all phylogenetic distance. 

In fishes, there was autocorrelation for GC at high phylogenetic distance; however, phylogenetic signal was not 

exhibited by this trait in successive tests. 

   The phylogenetic signal that is strongly exhibited by the GC trait value in reptiles and 5mC trait value in mammals 

and fishes is most effectively measured using lambda values. Lambda recovers phylogenetic signal for the trait value 

at low levels of phylogenetic signal imparted under a Brownian motion simulation of trait evolution.  
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   Previous studies have determined no significant correlation exists between DNA methylation rates; however, the 

results were statistically invalid because they did not correct for phylogeny25,41. In reptiles, no statistically significant 

correlation was identified when corrected for phylogeny, thus indicating a variability in DNA methylation rates 

between reptiles. However, through events of speciation, there are instances of diversification that pull groups towards 

a central optimal value (the Ornstein-Uhlenbeck Model). The optimal values for each lineage appear to co-evolve 

independently. There is indication that the optimum value for Crocodilians is a tendency towards low 5mC and high 

GC, while Testudines exhibit a weaker autocorrelation of GC richness. Squamates, specifically Serpentes, evolved 

towards high 5mC and low GC. 

   In mammals and fishes, a statistically significant correlation was identified for the linear regression and when 

corrected for phylogeny, thus indicating a correlating factor between these rates. However, identification of 

phylogenetic signal indicates that speciation impacts events of diversification in these families. Mammals show a pull 

toward a central optimum value. There is indication that the optimum value for Monotremes is a tendency towards 

low 5mC and GC.  

   Habitat conditions influence global cytosine methylation in fishes. GC content is not supported by habitat selection. 

Previous studies have indicated a connection between DNA methylation and environment25. However, the phylogeny 

influences the value of these traits. There was phylogenetic signal in the 5mC character trait in fishes exclusively. This 

dimensionality suggests DNA methylation does not function in isolation of environmental or phylogenetic factors. 
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