

Effects of pH on the Synthesis of TiO₂ Brookite Nanocrystals

Camila Rendon Bernot
Chemistry
The University of North Carolina Asheville
One University Heights
Asheville, North Carolina 28804 USA

Faculty Advisor: Dr. Oksana Love

Abstract

Water is essential for the sustenance of all living organisms. There are many methods of water purification, and the most promising seems to be the use of nanotechnology. It has been found that titanium dioxide (TiO₂) nanoparticles (NPs) have photocatalytic properties which can be used for the degradation of organic pollutants in water. The light absorption of TiO₂ NPs can vary with the morphology of the nanoparticles. TiO₂ NPs have three different crystal forms: anatase, rutile and brookite. Past research showed that brookite-phase TiO₂ NPs absorb low UV-light frequencies, have a higher surface area and have a higher reduction potential compared to the other morphologies of the nanoparticles. These properties make brookite phase TiO₂ a better photocatalyst. This study consisted of the synthesis of brookite TiO₂ NPs by hydrothermal synthesis at different pH. Precursor samples were set to have a pH between 7.00 and 12.96 with the objective to determine the effects that pH has on size and shape of the brookite TiO₂ NPs. The samples were then characterized using the Scanning Electron Microscope FEI Quanta 450 (SEM) and the X-Ray Diffractometer MiniFlex II (XRD). It was observed that TiO₂ anatase was formed up to 10.27 pH and TiO₂ brookite was formed between pH 11.91 and 12.96. Based on the imaging obtained up to date, the size of both anatase and brookite seemed to increase as the pH increases; however, further in-depth studies should be performed.

1. Introduction

Solving environmental issues has become a great importance to society. Scientists have put a lot of effort to perfect water purification methods by using nanotechnology. These efforts have led to the experimentation with titanium dioxide (TiO₂) nanoparticles (NPs) as a photocatalyst. NPs are particles measured between 1 nm and 100 nm. The size of a material's particles can have an effect on its properties. The smaller the material's size in a given volume, the larger the surface area will be (Image 1).¹

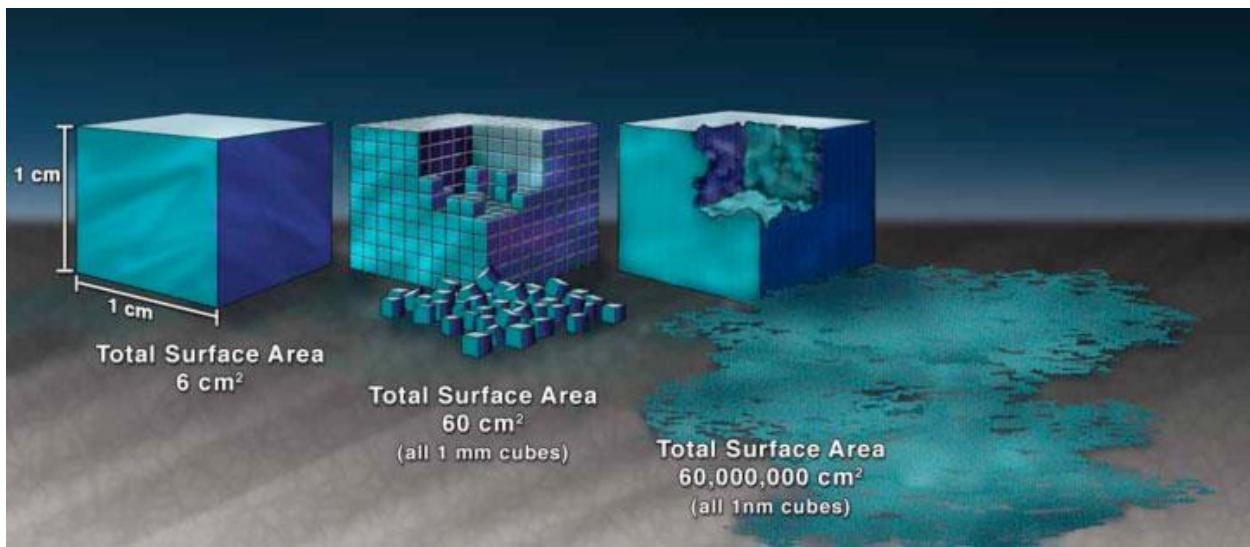


Image 1 Decrease of particles' sizes increase the surface area ¹

A large surface area allows materials to react with a higher amount of surrounding material. It has been found that a particle of TiO_2 has a wide band gap, high redox potential, low cost, chemical stability, and nontoxicity which makes a particle of TiO_2 an effective photocatalyst for organic pollution degradation.²⁻⁷ But, at the same time, the compound has some limitations. Its wide band gap limits the UV absorption causing the compound to only utilize 3% to 5% of the solar energy absorbed for its activation.^{8,9} The low percentage of utilized light is due to the small fraction accounted for UV light in solar energy compared to that of the visible light.⁹ TiO_2 also photogenerates and recombines its electron-hole pairs during photocatalysis. Photocatalysis allows TiO_2 to react with light and oxidize or reduce materials forming different product which include hydrogen and hydrocarbons.¹⁰ According with Nakata et al, the recombination of electron-hole pairs diffuse in the TiO_2 surface allowing to react with absorbed water molecules resulting in the formation of hydroxyl radicals.¹⁰ Both the hydroxyl radicals and the photogenerated holes then oxidize near organic compounds on the TiO_2 surface. The electrons in the conduction band will react with the oxygen in the air and reducing the molecular oxygen into superoxide radical ($\text{O}_2^{\cdot-}$) (Image 2).

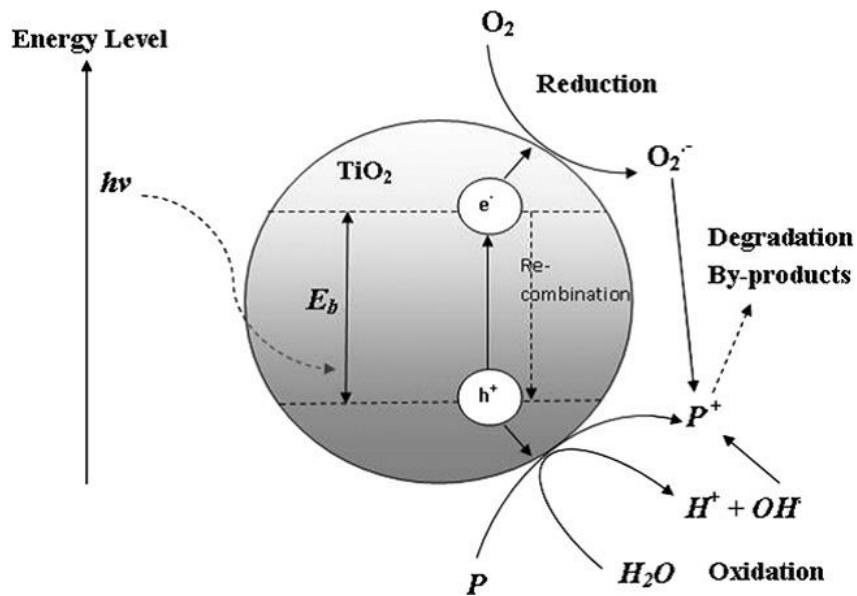


Image 2 Photocatalytic Process on the Surface of TiO_2 ¹¹

However, this photocatalytic process for degradation must have electron scavengers. The absence of these electron scavengers will cause the excited electrons in the conduction band recombine with the valence band holes in nanoseconds.⁹

Light absorption can vary depending on the morphology of TiO_2 nanoparticles, thus affecting the photocatalytic activity. TiO_2 NPs can be found in three different crystal forms, anatase, rutile, and brookite. Both anatase and rutile have tetragonal shape based on the crystal system. Brookite has an orthorhombic shape based on the crystal system (Image 3).¹³

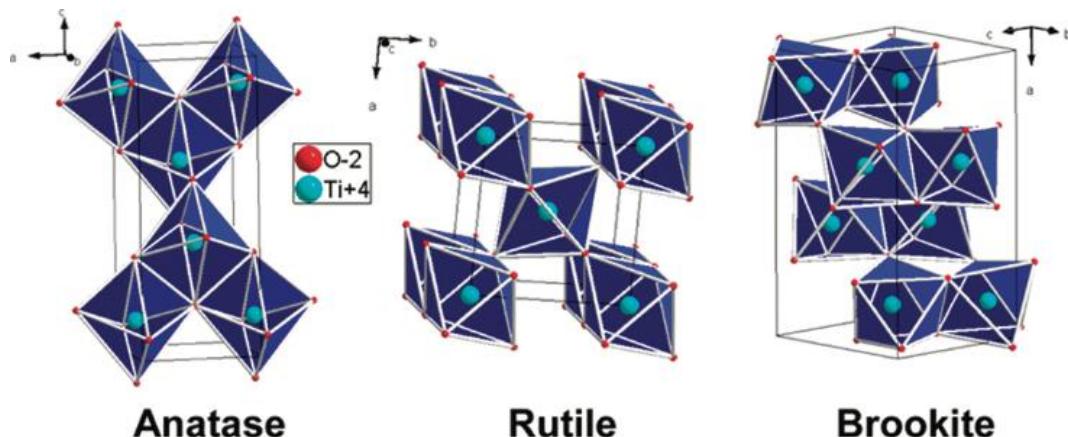


Image 3 Crystal forms of TiO_2 : Anatase, Rutile, Brookite¹³

According to Liu et al.¹⁴ the morphology of TiO_2 NPs can make the mass transportation, light harvesting, movement of charge acceleration and the separation of photogenerated electron-hole pair easier. It has been found that the precursor's conditions in which TiO_2 is synthesized can affect the product. Things such as the materials, the temperature, and the pH can promote the formation of different TiO_2 crystals and its sizes.^{6,15-19} Kaplan et al. have shown that synthesizing TiO_2 particles in acidic conditions (pH 2.94) promotes the formation of anatase with a surface area of $132 \text{ m}^2/\text{g}$ whereas synthesizing TiO_2 particles in alkali conditions promotes the formation of brookite with a smaller surface area of $25 \text{ m}^2/\text{g}$.⁷ Previous research on the effects of pH on TiO_2 anatase have shown that as the pH increases the specific surface area increases.²⁰ Hu et al. have reported that slightly changing the pH in the synthesis of brookite from 12.5 to 12 affects how the NPs assemble with no mention of morphology change of the NPs themselves.¹³ The shape of the crystals and their structure can be determined by using an x-ray powder diffractor (XRD), a scanning electron microscope (SEM), and/or transmission electron microscope (TEM). TiO_2 crystals can be synthesized using hydrothermal method. This method is a similar process to that of natural crystal formation. It also is simple, cheap, and flexible to conditions changes (pH, temperature, or reagent concentration).²¹

Past researchers at the University of North Carolina-Asheville (UNCA) have tried to replicate the experiment of Hu et al.¹³ by forming TiO_2 brookite NPs with a flower-like shape¹⁵. This research focuses on the synthesis of brookite TiO_2 NPs by hydrothermal synthesis with precursors with different pH and their analysis using XRD and SEM. Further research will focus on how the pH between 7 and 13 affects the morphology and crystalline structure of the brookite TiO_2 crystal NPs and their analysis using XRD and SEM.

2. Methodology

2.1 Preparation of brookite TiO_2 NPs

Brookite TiO_2 NPs were synthesized by hydrothermal synthesis.⁴ 50 mL of 0.21 M NaOH solution was added to a solution of 0.31M $\text{TiOSO}_4 \bullet \text{H}_2\text{O}$ H_2SO_4 (deionized water was used as solvent) to form a titanate gel. The gel was stirred until it turned clear. 1M NaOH solution was added to the gel to raise the pH to the pH desired. The pH measurements were done using a pH meter. The gel was then purified by alternating centrifugation and sonication. The sample was centrifuged 3 times for 5 minutes at 4000 rpm and sonicated 3 times for 2 minutes. The gel was then placed in a 50mL inner Teflon liner reactor chamber filled up to 80% (40mL). The pH was measured to verify

the pH desired. If the pH was lower than the desired, 1M NaOH solution was used to raise the pH. The inner Teflon liner reactor chamber was placed in an autoclave and put into a furnace at a temperature of 220°C for 48 hours. After the 48 hours, the sample was let to cool down and purified once more by alternating centrifugation and sonication. The sample was centrifuged 3 times for 5 minutes at 4000 rpm and sonicated 2 times for 2 minutes. The sample was left to dry overnight in the centrifuge tube wrapped in aluminum foil, with the lid off and in cabinet to prevent any interaction between the light and the samples. Once dried, the lid was put on.

2.1.1 preparation of brookite TiO₂ NPs with different pH before and after first purification

Following the methodology in 2.1, five samples were prepared. Their pH before first purification were set to 7, 8, 10, 11, and 12. After the purification and before putting the samples in the furnace, all samples' pH were set to 12.5.

2.1.2 preparation of brookite TiO₂ NPs with same pH before and after first purification

The methodology in 2.1 was used to prepare 14 samples. The pH of the samples before and after the first purification were set between 7.00 and 12.96.

2.2 Sample Characterization

The samples were analyzed using XRD. The scan was set to continuous with a step size width of 0.12 in the range of 15° – 80° with 15 steps. Each analysis took about 11 minutes. After the formation of brookite TiO₂ was confirmed by the XRD analysis, SEM was used to take images of the samples. For the imaging of samples following 2.1.1 methodology, the SEM was set to spot size 3.0 and high voltage 5.00 kV. For the samples following the 2.1.2 methodology, the SEM was set to spot size 3.0 and high voltage 2.00 kV.

3. Data

3.1 Collected Data From Purchased Crystalline TiO₂ Powder Structures: Anatase, Rutile And Brookite

Purchased TiO₂ anatase, rutile and brookite were analyzed using XRD for reference (Figure 1). The peak values were obtained from Kaplan et al and Paolo et al.^{7,22} The peaks of interest are 111 and 121 for brookite, 110 for rutile and 101 for anatase at angles between 15° and 35°. These peaks show the crystalline phases of the samples. SEM was used to take an image of only TiO₂ brookite (purchased) since it is the crystalline structure of interest (Picture 1).

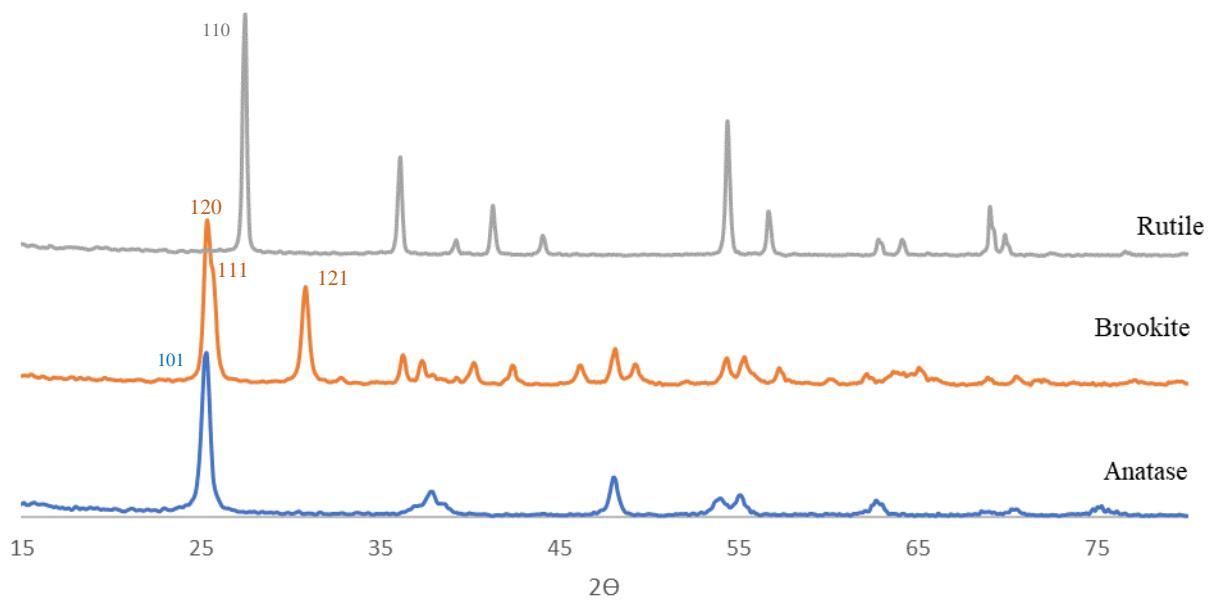
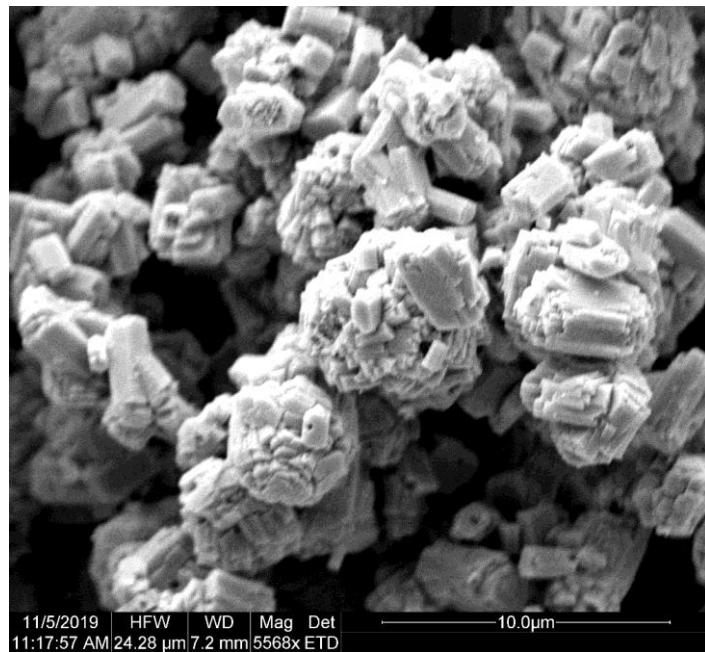



Figure 1. XRD pattern of purchased TiO_2 anatase, rutile and brookite

Picture 1. SEM of purchased TiO_2 brookite

3.2 Obtained Data From Experiment

The pH conditions of a samples have an important effect on the size and morphology of brookite TiO_2 product prepared by hydrothermal method.^{6-7, 13, 15-18}

3.2.1 synthesized brookite TiO_2 NPs following 2.1.1 methodology

Figure 2 shows the XRD pattern of a TiO_2 the samples prepared under the same conditions mentioned in 2.1.1. When the samples' pH before purification were set to 7, 8, 10, 11 and 12, three diffraction peaks of interest can be observed. By comparing these peaks with the peaks 120, 111 and 121 of brookite in Figure 1, the brookite crystalline structure of TiO_2 was confirmed.

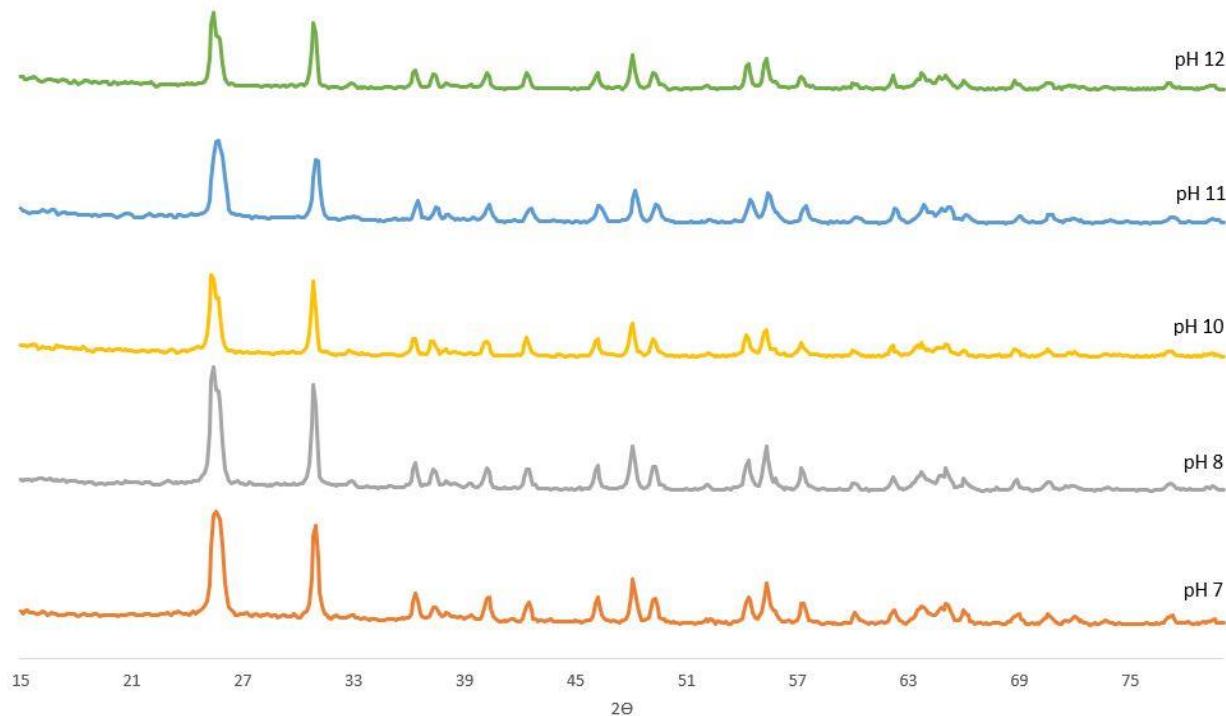
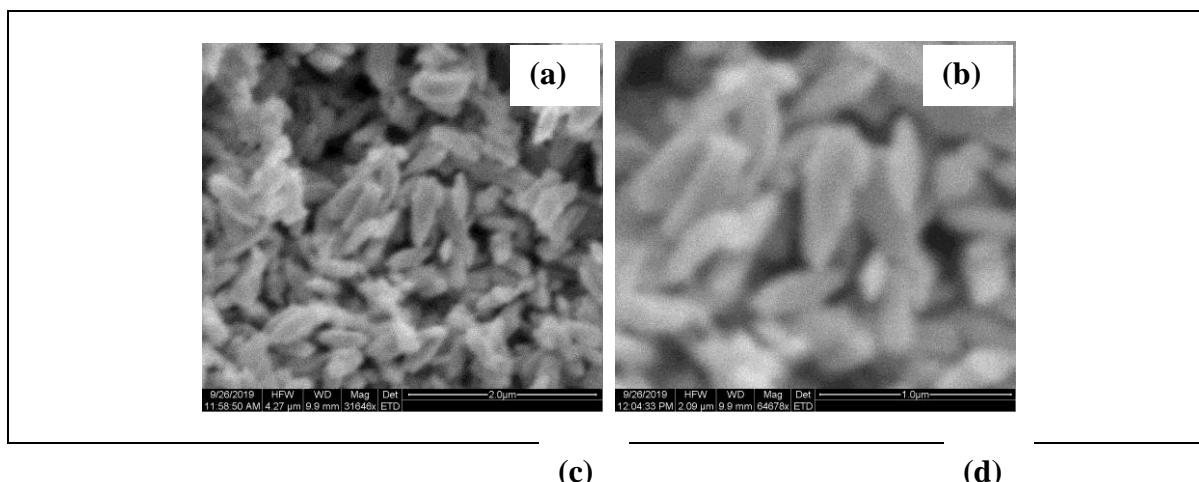
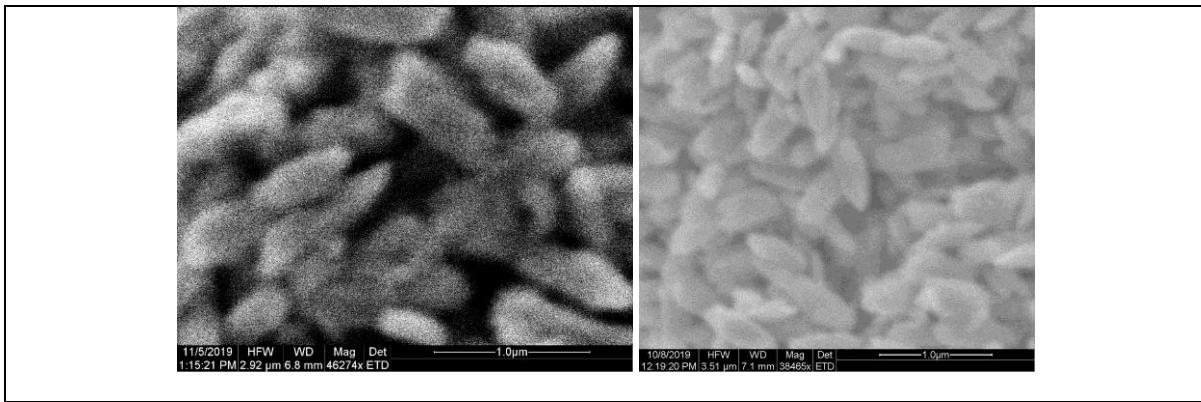




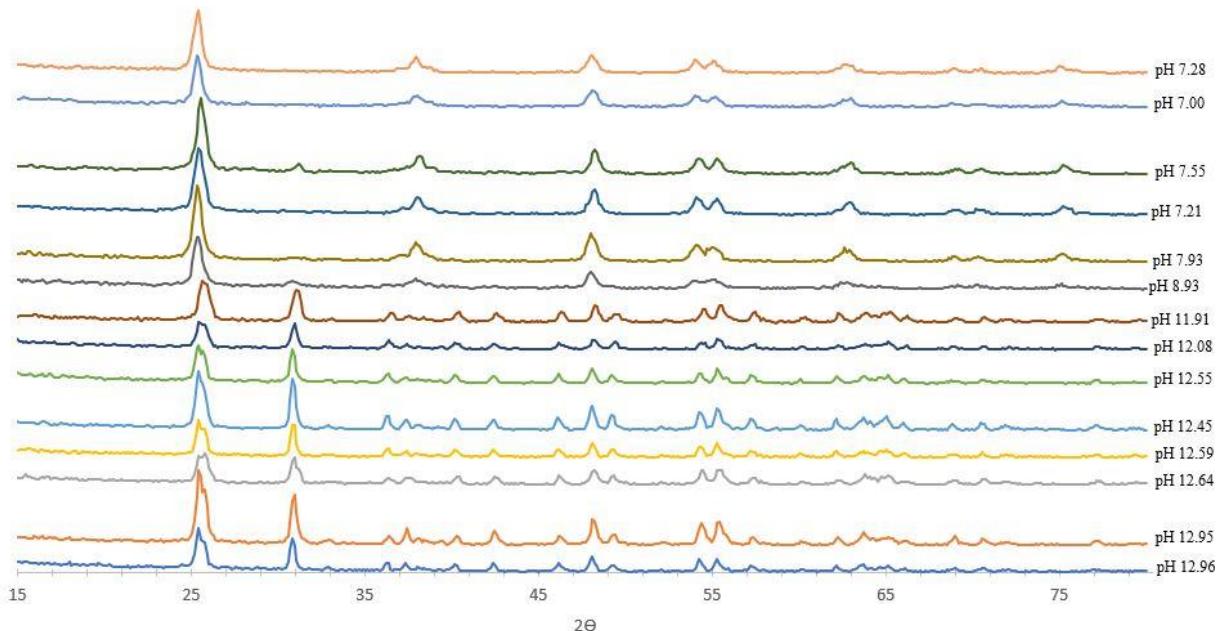
Figure 2. XRD pattern samples obtained at different pH before first purification

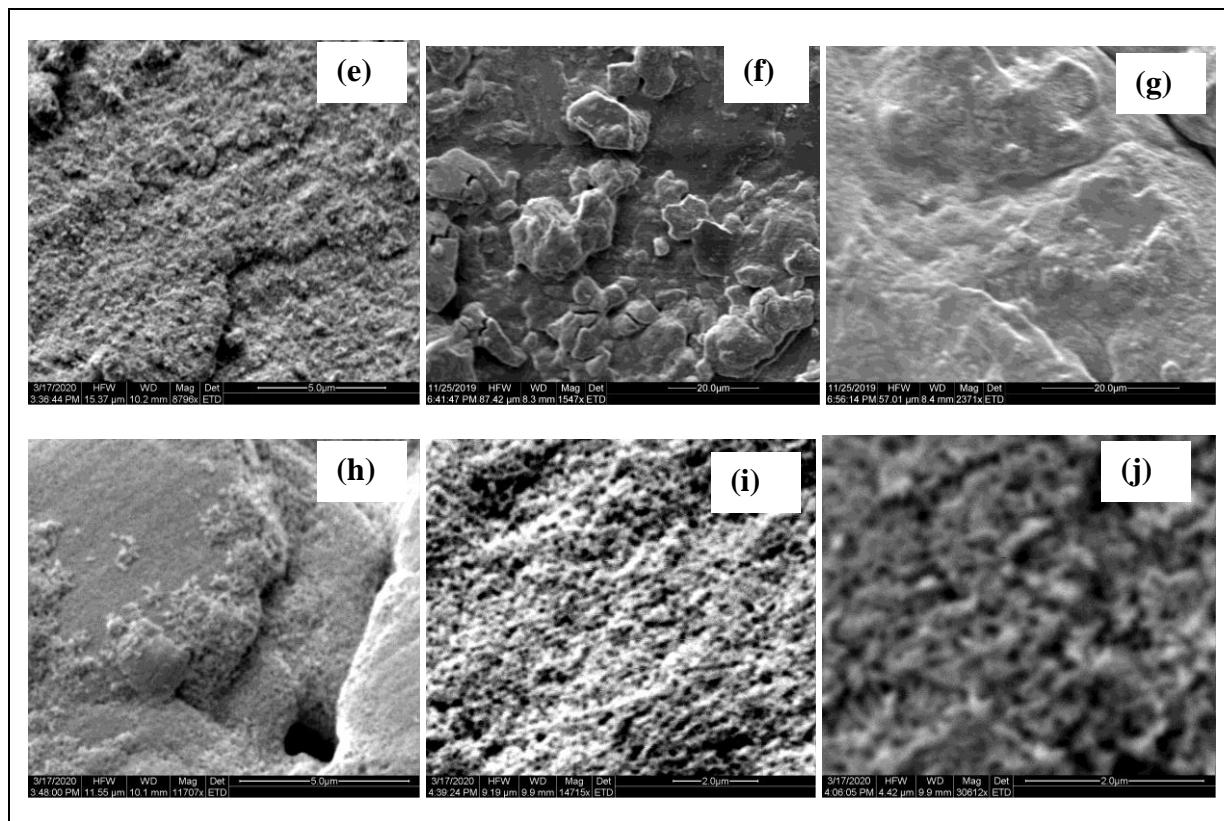
Picture 1 show images a-d of the morphology of brookite TiO_2 at pH 7 (a), 8 (b), 10 (c) and 12 (d). All images show agglomerates of nano-size particles. The particles in the samples had a width between 150 nm and 300 nm. The particles obtained are not considered nanoparticles since they do not measure between 1nm to 100nm. Compared to Picture 1, the particles obtained were not as agglomerated, were smaller and single particle size could be measured.

Picture 1. SEM images of TiO_2 NPs at different pH before and after first purification

3.2.2 synthesized brookite TiO_2 NPs following 2.1.2 methodology

Figure 3 shows the XRD pattern of TiO_2 when the samples prepared under the same pH conditions mentioned in 2.1.2. When the samples' pH before purification were set from 7.00 to 8.93, a single peak (101) between 15° and 35° were present confirming the anatase crystalline structure. When the samples were set with a pH from 11.91 to 12.96, three peaks (120, 111 and 121) were present confirming the brookite crystalline structure.




Figure 3. XRD patterns of samples with same pH condition before and after first purification


The synthesis of TiO_2 brookite was successful at pH from 11.91 to 12.96. The pH of the samples slightly decreased after the first purification and NaOH was used to increase the pH. The samples at pH 7.00 to 8.93 were determined to be TiO_2 anatase. The pH of the samples increased after the first purification and no NaOH was added. The change of pH of these samples are caused by the oxolation and deoxolation in TiO_2 . Table 1 shows the change of pH of the samples after first centrifugation and their crystalline structure.

Table 1. Change of pH of the samples after centrifugation and their crystalline structure.

Initial pH	pH after centrifugation	TiO ₂ Crystalline Structure
7.00	8.47	Anatase
7.21	9.40	Anatase
7.28	8.19	Anatase
7.55	10.27	Anatase
7.93	8.79	Anatase
8.93	9.82	Anatase
11.91	11.73	Brookite
12.08	11.73	Brookite
12.45	Unknown	Brookite
12.55	Unknown	Brookite
12.59	11.83	Brookite
12.64	11.86	Brookite
12.95	12.00	Brookite
12.96	12.03	Brookite

Picture 2 show the SEM images of the samples with pH 7.00 (e), 7.21 (f), 7.55 (g), 7.93 (h), 8.93 (i), 11.91 (j), 12.45 (k), 12.55 (l) and 12.95 (m). It can be observed that images e-i that are TiO_2 anatase show larger particles compared to those of TiO_2 brookite in images j-m.

Picture 2. SEM images of TiO₂ NPs formed at different pH

4. Conclusion

Two methodologies were carried throughout the research. In the first methodology (2.1.1), the TiO₂ NPs were prepared with different pH before and after purifications. The results show that the synthesis of TiO₂ brookite particles was successful, however the particles' sizes obtained cannot be considered nanoparticles since they do not follow the nanoparticle parameters. It was determined that setting a different pH before first purification and same pH after purification (2.1.1) does not have an effect on the TiO₂ particles.

The second methodology (2.1.2), the TiO₂ NPs were prepared with same pH before and after first purification. The synthesis of TiO₂ brookite particles was successful when the pH before and after purification were set at 11.91 to 12.96. The samples set at pH 7.00 to 8.93 however were determined to be TiO₂ anatase particles. It was determined that pH did have an effect on size and morphology in the TiO₂ particles synthesis. The crystalline structure of TiO₂ NPs changes from anatase to brookite when the pH is close to 11.91 and above. Based on the imaging obtained up to date (Figures 7 to 15), the size of both anatase and brookite seemed to increase as the pH increases; however, further in-depth studies should be performed.

5. Acknowledgement

Dr. Love's Research Team
 UNC Asheville Chemistry Department
 Furman University for letting us use their XRD

6. References

1. What's So Special about the Nanoscale? <https://www.nano.gov/nanotech-101/special> (accessed May 2, 2019).
2. Atout, H.; Álvarez, M. G.; Chebli, D.; Bouguettoucha, A.; Tichit, D.; Llorca, J.; Medina, F. "Enhanced photocatalytic degradation of methylene blue: Preparation of TiO₂/reduced graphene oxide nanocomposites by direct sol-gel and hydrothermal methods." *Materials Research Bulletin* **2017**, 95, 578–587.
3. Altomare, M.; Dozzi, M. V.; Chiarello, G. L.; Paola, A. D.; Palmisano, L.; Selli, E. "High activity of brookite TiO₂ nanoparticles in the photocatalytic abatement of ammonia in water" *Catalysis Today* **2015**, 252, 184–189.
4. Rahal, R.; Wankhade, A.; Cha, D.; Fihri, A.; Ould-Chikh, S.; Patil, U.; Polshettiwar, V. "Solvothermal synthesis of hierarchical TiO₂ nanostructures with tunable morphology and enhanced photocatalytic activity". *RSC Advances* **2012**, 2(18), 7048.
5. Abdelraheem, W. H.; Patil, M. K.; Nadagouda, M. N.; Dionysiou, D. D. "Hydrothermal synthesis of photoactive nitrogen- and boron- codoped TiO₂ nanoparticles for the treatment of bisphenol A in wastewater:

Synthesis, photocatalytic activity, degradation byproducts and reaction pathways". *Applied Catalysis B: Environmental* **2019**, *241*, 598–611.

6. Štengl, V.; Králová, D. "Photoactivity of brookite–rutile TiO₂ nanocrystalline mixtures obtained by heat treatment of hydrothermally prepared brookite". *Materials Chemistry and Physics* **2011**, *129*(3), 794–801.

7. Kaplan, R.; Erjavec, B.; Dražić, G.; Grdadolnik, J.; Pintar, A. "Simple synthesis of anatase/rutile/brookite TiO₂ nanocomposite with superior mineralization potential for photocatalytic degradation of water pollutants". *Applied Catalysis B: Environmental* **2016**, *181*, 465–474.

8. Kanakaraju, D.; Wong, S. P. "Photocatalytic Efficiency of TiO₂-Biomass Loaded Mixture for Wastewater Treatment". *Journal of Chemistry* **2018**, *2018*, 1–14.

9. Dong, H.; Zeng, G.; Tang, L.; Fan, C.; Zhang, C.; He, X.; He, Y. An Overview on Limitations of TiO₂-Based Particles for Photocatalytic Degradation of Organic Pollutants and the Corresponding Countermeasures. *Water Research* **2015**, *79*, 128–146.

10. Nakata, K.; Fujishima, A. "TiO₂ photocatalysis: Design and applications". *Journal of Photochemistry and Photobiology C: Photochemistry Reviews* **2012**, *13*(3), 169–189.

11. Umar, M.; Abdul, H. "Photocatalytic Degradation of Organic Pollutants in Water". *Organic Pollutants - Monitoring, Risk and Treatment* **2013**, 195–208.

12. Asadollahi, E.; Youzbashi, A. A.; Keyanpour-Rad, M. "Synthesis and investigation of crystal structure and optical properties of brookite TiO₂ nanoparticles capped with (2-chloroquinoline-3-yl) methanol". *Journal of Molecular Structure* **2017**, *1128*, 612–618.

13. Hu, W.; Li, L.; Li, G.; Tang, C.; Sun, L. "High-Quality Brookite TiO₂ Flowers: Synthesis, Characterization, and Dielectric Performance". *Crystal Growth & Design* **2009**, *9*(8), 3676–3682.

14. Liu, X.; Yang, W.; Yu, C.; Zhang, H. "Influence of TiO₂ morphology on adsorption-photocatalytic efficiency of TiO₂-graphene composite for methylene blue degradation" *Journal of Environmental Chemical Engineering* **2018**, *6*(4), 4899–4907.

15. Davis, Joshua. "Influence of Alkali Metal Nitrate and Chloride Mineralizers on the Synthesis of Titanium Dioxide Nanocrystals". *University of North Carolina at Asheville* **2018**.

16. Paola, A. D.; Bellardita, M.; Palmisano, L. "Brookite, the Least Known TiO₂ Photocatalyst". *Catalysts* **2013**, *3*(1), 36–73.

17. Zheng, Y.; Shi, E.; Cui, S.; Li, W.; Hu, X. "Hydrothermal Preparation of Nanosized Brookite Powders" *Journal of the American Ceramic Society* **2004**, *83*(10), 2634–2636.

18. Zheng, Y.; Shi, E.; Cui, S.; Li, W.; Hu, X. "Hydrothermal Preparation and Characterization of Brookite-Type TiO₂ Nanocrystallites". *Journal of Materials Science Letters* **2000**, 1445–1448.

19. Mitsuhashi, T.; Watanabe, M. "Brookite Formation from Precipitates Containing Calcium Ions". *Mineralogical Journal* **1978**, *9*(4), 236–240.

20. Ibrahim, S. A.; Seekantan, S. "Effects of pH on TiO₂ Nanoparticles via Sol-Gel Method". *Advance Material Research* **2011**, *173*, 184–189.

21. Quartz Hydrothermal Growth. http://www.roditi.com/SingleCrystal/Quartz/Hydrothermal_Growth.html

22. Paolo, A.; Bellardita, M.; Palmisano, L.; Brookite, the Least known TiO₂ Photocatalyst. *Catalysts* **2013**, *3*, 36–73