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Abstract 

 
Colliders allow physicists to probe the previously unknown world of sub-atomic physics employing observations of 

exotic particles through high-energy collisions. Physics communities regularly rely on hand-crafted, high-level 

features in conjunction with shallow machine-learning packages to accurately identify particles produced in 

collisions. This process proves excessive and time-consuming. This work provides an innovative means of solving 

the problem of accurate identification of Higgs boson particles through state-of-the-art, semi-supervised learning 

methods, and data collected by the European Centre for Nuclear Research. This research demonstrates how using 

semi-supervised learning techniques, specifically weight-averaged consistencies and data abstraction methods, 

alleviates the need for fully labeled datasets in accurate identification. Furthermore, it is demonstrated how deep 

semi-supervised learning models automatically extrapolate high-level features from the data given.   

 

 

1 Introduction 

 
There is a wealth of data that comes with most aspects of high-energy physics (HEP). The primary tools for 

investigating HEP are accelerators. These machines collide various fundamental particles to create strange and curious 

resulting particles that can only be studied at high-energy densities. The observation of these particles and the ability 

to measure them provide an exciting view of subatomic physics which may yield critical insights into the fundamental 

nature of matter. An abundance of statistical analysis in partnership with the field of HEP has been improved by recent 

advances in machine learning1. 

   Despite this improvement, there is still much effort focused on the high-level feature engineering used in these 

machine learning algorithms. Teams of physicists spend a great deal of effort on hand-crafting specific field-related 

features that will benefit the machine learning model’s classification abilities. While helpful, this approach can be 

labor-intensive and not always optimal. A deep neural network approach could obviate the need for manual feature 

extraction. Instead of manual derivation, the deep neural networks are capable of deriving high-level features 

automatically2. 

   The Higgs boson was first observed in 2011 and has been the center of focus for the Large Hadron Collider (LHC). 

The Higgs field is a field thought to permeate the entire universe3. Without the Higgs field, subatomic particles would 

have no mass. Without such mass they would not be able to attract each other, leaving particles to float around at the 

speed of light. The more that physicists observe and study the Higgs boson, the more is known about how nature 

works at its most fundamental level 

   This research exploits the abilities of semi-supervised machine learning to produce an accurate, robust neural 

network classifier that can classify an event which produced a Higgs boson as an intermediary particle (signal) from 

an event which looks similar but did not produce a Higgs boson (background). This neural network classifier will be 

able to accurately classify such events without the need for a training dataset4 containing complete, labeled examples. 

In addition, deep semi-supervised learning (SSL) techniques can manually extrapolate high-level features from low-
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level data gathered from runs of the LHC with little to no human interference. More importantly, SSL methods allow 

accurate models to be trained with less than half of the labeled data previously used5. This classification algorithm 

provides an excellent test case for innovative semi-supervised learning research and its application to real-world data 

that contains vast amounts of noise and nuanced features. Other existing approaches use classical, supervised deep 

learning techniques6, which may be more susceptible to noise and misclassification in addition for the need of fully 

labeled data. Other solutions pre-process the labeled data into heat images of jet stream information collected by the 

detectors7. While this approach yields higher classification accuracy over classical deep learning techniques, it requires 

significant effort and computation time to pre-process large amounts of collider runs to create the necessary jet stream 

heat images. 

   Thus, while a small set of approaches have been previously explored, a semi-supervised learning application for this 

problem is still lacking. It is in this gap that the following is addressed: 

 

● An innovative application of SSL is applied to high-energy physics in order to help identify unstable 

particles through inference and generative models 

● It is shown how SSL can reduce the amount of labeled data that is necessary in a dataset without losing 

accuracy. 

● It is demonstrated how deep semi-supervised learning classification tasks concerning colliders and high-

energy physics can obviate the need for manual creation of high-level features currently used in 

classification tasks 

 

 

2 Background 

 

2.1 The Underlying Physics 

 
Particle physics makes up the heart of the understanding of nature and the laws by which it abides. The standard model 

offers an innovative, unifying picture concerning the fundamental particles of the universe and the forces which control 

the interactions between such particles. All matter in the known universe consists of these fundamental particles, 

which occur in two types called quarks and leptons. In addition to providing an exciting view into fundamental matter, 

the standard model also describes a structure where the forces by which particles interact are mediated themselves by 

the exchange of particles.  

   Three of the four fundamental forces: the electromagnetic, weak nuclear, and strong nuclear force are all described 

by a Quantum Field Theory (QFT) for their respective fields. Each QFT for a certain force corresponds to the exchange 

of a force-carrying particle known as a gauge boson. The force-carrying particle for the electromagnetic field is the 

well-known photon. The gauge boson for the strong nuclear force is the gluon. And lastly, the force-carrying particles 

described by the weak nuclear force’s QFT are the W and Z bosons.  

   While this theory is largely successful, there was a caveat in the equation. The W and Z bosons theoretically emerge 

without any mass, despite physicists having an abundance of experimental evidence suggesting that the W and Z 

bosons have a mass of 80.379±0.012 GeV/c2, and 91.1876±0.0021 GeV/c2 respectively. Thus, the final field and 

particle is the Higgs boson, discovered by the Compact Muon Solenoid (CMS) and A Toroidal LHC ApparatuS 

(ATLAS) experiments at the European Centre for Nuclear Research (CERN) in the Large Hadron Collider. This Higgs 

boson plays an integral role in the workings of the standard model; it provides a structure from which all other particles 

acquire their mass.  

   While it is beyond the scope of this paper to explain the mechanisms and exact details of how the Higgs mechanism 

works, it is integral to study and observe all of the properties in order to better understand the nature of mass and the 

interaction of fundamental particles. Studying and observations are accomplished through analyzing many events in 

supercolliders in which the Higgs boson has been produced. Therefore, possessing an accurate model that can label 

events as signal or background events is essential in learning more about the Higgs boson.  

   The Higgs boson has many different channels through which it can decay9. A channel is a way in which a particle 

may decay into certain specific final state particles. This decay produces other unique particles as a result of the 

instability of the Higgs boson. Three channels of Higgs decay have been observed, each consist of a decay to boson 

pairs. These discoveries only account for roughly ~40% of Higgs decays. The remaining ~60% of Higgs decay modes 

lies in the Higgs to bottom quark decay channel, shown below9.  
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      𝑔𝑔 →   𝐻0  →  𝑊∓𝐻±  →  𝑊∓𝑊±ℎ0  →   𝑊∓𝑊±𝑏𝑏−                                                       (1) 

 

 

   In this process, two gluons fuse into a Higgs boson. This boson then decays into a charged Higgs boson and a W 

boson. These particles then decay into two W bosons and a light Higgs boson. The light Higgs then decays into a pair 

of bottom and anti-bottom quark. The observance of these decay modes are necessary steps to confirming the 

generation of mass for fermions. The observations of the 𝐻 → 𝑏𝑏, are the decay modes modeled in the training data 

used by the classifier.  

 
 

 

 

 

 

 

 

 
 

 

 

 

 
    

 

 

 

    

 

 

 

Figure 1a. 𝐻 → 𝑏𝑏 decay, Figure 1b. Background event 

 

Figure 1. (a) Diagram describing signal event containing 𝐻0 and 𝐻± bosons with decay congruent with 𝐻 → 𝑏𝑏.(b) 

Diagram describing a background event involving t-quarks, with same resulting 𝑏𝑏 decay with 𝑤𝑤. 

 

The Large Hadron Collider provides the means of detecting the Higgs boson due to its capability to run searches for 

Higgs particles up to 1 𝑇𝑒𝑉/𝐶2 with reactions of the type 

 

 

      𝑝 + 𝑝 →  𝐻0 + 𝑋                                                                                                                    (2) 
 

 

where X is any decay allowed by the conservation of energy laws. The mass of most Higgs bosons recently observed 

appears to be at 125 𝐺𝑒𝑉/𝑐210. The LHC circles proton-proton collisions at a rate of ~50 nanoseconds, these collisions 

are called events. When these protons collide, a shower of new particles is produced. The resulting particles can 

optionally decay into more stable particles or remain if stable3. One drawback to definitively proving the existence of 

certain particles is due to the unobservability of certain unstable intermediary particles. Physicists can only analyze 

the stable particles which hit the silicon layered detectors in the ATLAS and CMS detectors11. These detectors then 

use the evidence of the resulting particles to infer which intermediary particles were produced during specific events. 

Observable decay products that may be observed include electronically-charged leptons (𝜄), and particle jets. 

    The current approach to the identification of signal events is primarily through the direction of the resulting particles 

and their momentum11. The trigger system for these detectors automatically discards any unnecessary data; 

subsequently, it then makes the decision to keep certain events based on a three-layered classifier which significantly 
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decreases the number of events written to disk, specifically from ~20,000,000 to ~400 events. The primary task is to 

aid in deciphering these ~400 events to determine the existence of a 𝐻 → 𝑏𝑏 event.  

 

 

2.2 Machine Learning 

 
Current standard approaches to the identification of Higgs bosons come through the standardized machine learning 

techniques12. Such techniques involve boosted decision trees and single-layer feed-forward neural networks. The 

shallow nature of these machine learning techniques requires significant effort to be put into manual feature extraction. 

These requirements significantly slow down and increase effort in the classification process. 

   New approaches have been proposed involving the use of deep neural networks in classifying event data13. This 

technique offers an improvement of 14% to 0.802 or 80% accuracy in classification. This study employed the use of 

a deep neural network with 300 hidden units in each of the five hidden layers and an initial learning rate of 0.03. This 

process marked a significant boost in the classification abilities of deep learning techniques.  

   Another approach was recently undertaken in using convolutional neural networks in identifying Higgs bosons7. 

This technique involved preprocessing significant amounts of data into jet energy images. This conversion allowed 

the use of computer vision tools to be utilized. Convolutional neural networks were used as classifiers trained off these 

jet images. This process raised the accuracy to 0.825 or 82%, a significant improvement over other methods. However, 

the preprocessing nature of the data and conversion to jet-pull images can be relatively costly and time-consuming 

compared to training with raw collider data.  
 

2.3 Semi-Supervised Learning 

 
Semi-supervised learning seeks to combine the efficient classification abilities of supervised learning with the self-

sufficient labeling abilities of unsupervised learning. Fully labeled datasets are expensive and sometimes time-

consuming to fully gather both data and labels. Because of this, an efficient way of training an accurate model can be 

achieved through semi-supervised learning. In our case, almost all data used comes with a label, but the abilities of 

semi-supervised learning techniques may yield a more accurate classification than traditional methods. Therefore, a 

portion of the data used is purposely de-labeled to exploit the semi-supervised learning methods, in addition to 

showcasing the application of SSL in high energy physics.  

   Recent work called MixMatch14 has been published which proposes the use of a holistic approach to SSL in 

combining multiple learning techniques from past research. This method works by adding a loss term computed from 

the unlabeled data which encourages the model to better generalize to unlabeled data. The loss term is the specific 

term which is unified from three main areas: generic regularization- whose goal is to generalize and avoid the neural 

network from overfitting15, consistency regularization - whose goal is to encourage confident output from the neural 

network when the input is transformed16, and entropy minimization - whose goal is to encourage confident output 

from unlabeled data17.  

    In order to properly disseminate the underlying methods used in MixMatch, it will be important to outline existing 

methods of SSL from which MixMatch builds upon.  

 

2.3.1 consistency regularization 

 
This technique relies heavily on data augmentation, the application of many different stochastic transformations on 

the input data, largely known to not have any effect on the important semantics of the data. Consistency regularization 

utilizes the effectiveness of data augmentation by exploiting the theorem that the model should output the same y over 

an x which has gone through augmentation Augment(x)16. 

 

 

      ||𝑃𝑚𝑜𝑑𝑒𝑙(𝑦|𝐴𝑢𝑔𝑚𝑒𝑛𝑡(𝑥); 𝜃)  −  𝑃𝑚𝑜𝑑𝑒𝑙(𝑦|𝐴𝑢𝑔𝑚𝑒𝑛𝑡(𝑥);  𝜃)||2
2
                                    (3) 

 

 

It should be noted that Augment(x) is a stochastic transformation to the data, so each term is different16. One main use 

of the consistency regularization is from the application of the “Mean Teacher”16 where one of the Augmentation 

terms is replaced with an exponential moving average (EMA) of the model’s parameters. The use of EMA enables a 
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more accurate model than using the final parameters directly18.   

 

2.3.2 exponential moving average 
 

The exponential moving average, classically used for time-series data, is used on the weights (parameters) of the 

neural network. The EMA is defined as: 

 

      𝜃′𝑡  =  𝛼 𝜃′𝑡−1 + (1 − 𝛼) 𝜃𝑡                                                                                                  (4) 

 
With 𝜃′𝑡 at time t as a mix between the value of the raw weight 𝜃𝑡 mixed with the previous moving average 𝜃′𝑡−1. 

This degree of mixing between the previous EMA and the current weight is determined by the smoothing coefficient 

hyperparameter 𝛼. This smooths the weights from noisy data, and gives the model a better prediction due to the 

smoothing.  

 

2.3.3 entropy minimization 
 

It is well known that a model’s output decision boundary (the line between what is and is not a signal event) should 

not cross through areas of high-density in the data distribution16. This is achieved through the requirement that the 

model should output low-entropy y’ on data points without labels. MixMatch’s “Pseudo-Label”14  method does this 

by producing 1-hot labels from high-confidence predictions on unlabeled data points. These 1-hot labels are then used 

as training targets employing cross-entropy loss functions.   

 

2.3.4 general regularizatio 
 

Regularization in machine learning largely refers to the effort of constraining the data and model in order to increase 

difficulty in the memorization of training data. This lets the model focus on the more abstract and important aspects 

of the data. This is largely done through weight decay, a process that penalizes the Euclidean norm of the model’s 

parameters19. 

   The power of the methods proposed in MixMatch is through the amalgamation of various effective semi-supervised 

learning methods into one holistic approach. It is for these reasons that MixMatch was chosen as the main 

implementation method from which a computational model may be developed that is effective in accurate 

classification 𝐻−>  𝑏𝑏 tagging with limited amounts of labeled data.  

 

 

3 Data and Features 
 

The Large Hadron collides protons from ionized helium every 50 nanoseconds within each of its four experiments20. 

These proton-proton collisions are called events. Within each event, the two colliding protons collide so rapidly that 

the quarks and gluons which make up the proton interact with enough energy to produce excitations in other fields, 

thus producing massive fundamental particles from the collision3. Because nature tends towards the lowest energy 

state, most of these massive intermediary particles are unstable and decay rapidly into less-energy final state particles. 

Multiple layers of detectors surround the point of collision in order to analyze different kinematic properties of these 

final-state particles. These kinematic data-points are the low-level features which are then used to train the 

computational model to differentiate between an event that is known to have produced a Higgs boson, and an event 

that has identical final-state particles but did not produce the Higgs boson.  

   Observable decay products of a proton-proton collision include charged leptons and particle jets. Particle jets are 

focused cones of particles originating from the hadronization of quarks or gluons3. The particle jets are extremely 

important because the signatures let us analyze many different properties, such as the momentum of the initial particle 

from where the jet originated. We analyze the momentum via three measurements: the momentum transverse to the 

beam direction, the polar angle, and the azimuthal angle. In addition to these three, we also use the pseudorapidity, a 

normalized version of the polar angle, as well as the momentum carried by the intermediate particle. While this may 

not be directly measured by the detectors, it can be inferred from the plane transverse to momentum using conservation 

of momentum. The residual imbalance of the transverse momentum must be due to the production of the intermediate 

particles.  
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   With perfect measurements of the various kinematic properties of the final state particles B and C, we can calculate 

the invariant mass of the short-lived intermediate state A in process 𝐴 → 𝐵 +  𝐶 with a relativistic 4-vector kinematic 

formula: 

 

 

    𝑚𝐴
2 =  𝑚𝐵+𝐶

2  =  (𝐸𝐵 + 𝐸𝐶)2 −  |(𝑝𝐵 + 𝑝𝐶)|2                                             (5) 
 

 

Where E is the energy and p is the momentum. Despite this simple formula, other factors such as escaping neutrinos, 

make it impossible to derive the precise mass of the intermediate properties. Instead, solely the kinematic data from 

the final state particles are studied via machine learning packages and are then used to derive the intermediate mass 

from such low-level data21.

 
Figure 2. Signal event 

 

Figure 2. Signal event captured by the CMS detector at the Large Hadron Collider. Shows the proper jet decay 

congruent with a Higgs boson through the 𝑝𝑝 → 𝑍𝐻. 

 

    The data used to train the computational semi-supervised model in our research is produced via simulated events 

from the official CMS full detector simulator22. The simulator runs random proton-proton collisions based on all the 

knowledge and data accumulated at CERN. The simulator then produces kinematic data and virtual intermediary and 

final state particles. The resultant final state particles are tracked through the virtual model of the detector. Data is 

gathered from the kinematic properties measured of the final state particles. This process yields full simulated events 

with properties that mimic the statistical mechanics of real events.  
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4 Methods 
 

4.1 Current Approach 
 

There exist many standard machine learning methods and techniques available to physicists, such as the TMVA12 

package widely used by the physics community. Many of these machine learning methods rely on single-layer feed-

forward neural networks and boosted decision trees. However, current research10  shows that deep neural networks 

(more than one layer) trained on previous events produce higher accuracy ratings than those produced using the TMVA 

package. The single problem with these deep neural networks is the amount of labeled data needed to effectively train 

them. Therefore, we use state-of-the-art semi-supervised learning methods to attain similar accuracy ratings with just 

50% labeled data. 

 

4.2 Dataset 
 

The data sets used as training, validation, and testing sets were derived from millions of particle collision simulations 

run by the CMS experiment. This data contains 3,640,000 total events, evenly balanced between signal and 

background events. Each event contains 172 features from which to identify whether the event produced a Higgs 

boson. From these 172 characteristics, we used only 27 features which we consider low-level features. These 27 

characteristics make up most of the low-level kinematic data in order for the model to train without high-level features, 

obviating the need for complex equations in accurate identification. 

    The total training data points per training phase of the SSL computational model totals 182,000, of which only 50% 

to 0.5% were labeled. These were then split into 2843 mini-batches of 64 events. 

 

4.3 MixMatch 
 

The primary methods and techniques used in regard to development of the semi-supervised model come from 

MixMatch, a holistic approach to semi-supervised learning method which incorporates ideas from the dominant 

paradigms of SSL. With two batches X, U modeling the labeled examples and unlabeled examples respectively, 

MixMatch produces X’ and U’. X’ represents augmented labeled examples, while U’ represents the unlabeled 

examples with their corresponding “guessed” label from which to train on.  

    For each unlabeled term in U, MixMatch produces a “guess” from the model's prediction. In order to use these 

labels, MixMatch computes the average of the models predicted class distribution across K augmentations using14: 

 

 

      𝑄𝑏  =  
1

𝐾
∑ 𝑃𝑚𝑜𝑑𝑒𝑙( 𝑦 | 𝑢𝑏,𝑘 ;  𝜃)𝐾

𝑘=1                                                                                        (6) 

 

 

   This artificial target is derived through this method. It should be noted that due to the nature of particle physics data 

for which we are applying MixMatch, augmentations are limited due to the fragility of the data used to train and test 

the model. Augmentations, as regarded in the original MixMatch paper, were designed for images, such as warping, 

rotating, etc. This spurred an effort to develop different techniques for augmentations. Most augmentations to the 

collider data involve adding differing amounts of noise, such as Gaussian distribution noise. Gaussian noise was 

applied with a mean of 0 and a standard deviation of 1. In addition to adding various amounts of noise to the input 

data, we also added noise to the activations of neurons, parameters of the model, and outputs. This addition increased 

robustness of the model in conjunction with reducing the possibility of overfitting the model. 

   A sharpening function is added as an additional step to the production of a 1-hot label from an unlabeled event. This 

function uses the approach suggested in Miyato et al23 where we adjust the “temperature” of this categorical 

distribution:14 

 

 

       𝑆ℎ𝑎𝑟𝑝𝑒𝑛(𝑝, 𝑇)𝑖 ∶=  𝑝𝑖

1

𝑇/ ∑ 𝑝𝑗

1

𝑇𝐿
𝑗=1                                                                                     (7) 
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Where p is the average class distribution over K augmentations, and T is a temperature hyperparameter.  

 

4.3.1 loss function 
 

   In order to adhere with the methods proposed with MixMatch, the loss terms were defined and used as14: 

 

 

      𝐿𝑋 =  
1

|𝑋′|
∑ 𝐻(𝑝, 𝑃𝑚𝑜𝑑𝑒𝑙( 𝑦 | 𝑥 ; 𝜃)𝑥

𝑝∈𝑥′                                                                                  (8) 

 

 

      𝐿𝑈  =  
1

𝐿|𝑈′|
∑ || 𝑞 −  𝑃𝑚𝑜𝑑𝑒𝑙( 𝑦 | 𝑦 ;  𝜃)||2

2𝑢
𝑝∈𝑈′                                                                    (9) 

 

 

      𝐿 =  𝐿𝑋  + 𝜆𝑈𝐿𝑈                                                                                                               (10) 

 

 
   H is the standard PyTorch implementation cross-entropy loss function between target distribution p and q with the 

rest being hyperparameters. 

 

   The choice to use MixMatch as our semi-supervised learning techniques comes from the idea that its methods 

combine the most effective and state-of-the-art SSL techniques into one implementation.  

 

4.4 Hyperparameter Optimization 
 

Hyperparameters were chosen from different combinations of the parameters listed in Table 1. The combinations were 

chosen based on previous classification accuracy measured through the validation data during the training of the deep 

neural networks. The most accurate models based on testing data were the models with the largest amounts of layers 

and neurons per layer.  

 

Table 1. Hyperparameters for computational models 

 

Hyperparameters Options 

Number of Layers  3, 4, 5, 6 

Hidden units per layer  128, 256, 512 

Learning Rate  0.03, 0.01, 0.003, 0.001 

Dropout  0.1, 0.3 

Weight Decay  0.01, 0.001, 0.003 

 
    Other neural network hyperparameters were not determined through optimization methods. The ReLU24 activation 

function was used for all hidden units, while a SoftMax activation function25 was used for the output layer.  
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4.5 Computation 
 

Computations were performed using machines with 8 Intel Xeon cores, an integrated Intel graphics processor, and 16 

GB memory. All gradient computations were made on mini batches from 64 to 1024. All neural networks were trained 

using the PyTorch machine learning framework26.  

 

 

5 Results 
 

We evaluate the performance of the semi-supervised learning computational models in terms of error rate and accuracy 

with varying number of labeled examples from 1000 to a completely labeled set. Each model was tested on data not 

seen in the training phase. The evaluation of neural networks with different numbers of hidden layers and hidden units 

with various amounts of labeled data points can also be seen in Figure 3. The exact accuracy scores can be viewed in 

Table 2. 

 
Figure 3. Accuracy of models with respect to amount of labeled data present in dataset 

 

Figure 3. Evaluation of neural networks with different amounts of hidden layers and units. Models were tested on 0.5, 

2, 5, 27, 100 percent labeled data in the dataset. As shown, the model with 512 units per hidden layer performed the 

best on 1000 and 50,000 labeled data points. Curiously, the model with 128 hidden units vastly outperformed other 

models on the dataset where only 5000 data points were labeled.  

 

   In total, the different models outperformed expectations on training with less than 1% of the data being labeled. 

Achieving close to an average 83% accuracy from the best model. According to results it seems that with any part of 

the data abstracted from the set results in the model having difficulty in surpassing 88% percent accuracy, except for 

a fully labeled dataset. 
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Table 2. Table of all accuracy scores of different models 

 

Percentage of data 

labeled 

Model – 128 hidden 

units per layer 

Model – 256 hidden 

units per layer 

Model – 512 hidden 

units per layer 

100% 90.09 92.15 91.97 

27% 86.89 86.21 87.98 

5% 87.79 86.02 87.74 

2% 85.90 83.50 84.33 

0.5% 82.78 79.00 83.73 

 

 

Table 2. Accuracy of models  

   All models followed similar trends of error rate dropping as more labels are added to the dataset used in the training 

phase. It should be noted that while error rates did drop, the rates for 0.5% labeled data point training remained 

competitively accurate despite the absence of more labeled data. 

 

In comparison with previously outlined work, the model performance with 100% labeled data performed at a higher 

level by 7 – 9.65 % accuracy compared to models detailed in section 2.2. When labeled data was restricted to only 2% 

of the full dataset, the models proposed in this paper achieved similar accuracy ratings to previous work. Thus, 

demonstrating the ability of semi-supervised learning algorithms deprived of fully labeled datasets in achieving similar 

accuracy scores to fully supervised models with complete labeled datasets.  

 

 

6 Conclusion 
 

Limitations in machine learning algorithms currently being used in high-energy physics lead to manually extracted 

high-level functions derived from low-level data, in addition to lower accuracy scores. This research mitigates these 

shortcomings by implementing deep semi-supervised neural networks in the high-level feature extraction process. It 

is demonstrated how we have mitigated the need for complete labeled datasets in training such models in addition to 

proposing novel applications of semi-supervised learning methods and techniques. The authors hope this will aid in 

physicists' abilities to accurately identify the Higgs boson, in addition to helping reduce the amount of labeled data 

used by the European Centre for Nuclear Research. We hope the results of this research stimulate the development of 

even more powerful semi-supervised learning classification methods, specifically in its application to high-energy 

physics, of which there remains much scope. This appears to be the first implementation of cutting edge semi-

supervised learning methods in this specific application to high energy physics. 

    Future work includes the development of domain-specific semi-supervised learning algorithms designed to work 

solely with particle accelerators. In addition to this, future work would also include the application of semi-supervised 

learning towards individual particle tracking and event reconstruction. 
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