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Abstract 

 
A novel method of point weather forecasting is presented in which an ensemble of 950 individually trained feed-

forward back propagation neural networks were developed to produce 24-hour forecasts for nine different cities across 

the contiguous United States in varying climate regimes totaling 72 forecasts. The ensemble forecasts consisted of the 

following parameters: 24-hour maximum temperature, minimum temperature, 2-minute maximum sustained wind 

speed, and accumulated precipitation. The ensemble neural network was trained on dynamical weather models 

(comprised of the primitive equations of the atmosphere), statistical weather forecasts (dynamical guidance post-

processed using linear statistical methods), and human forecasters as input. More than two years of historical weather 

observations served as verification/targets for the input. Performance of the ensemble is assessed through a 

comparative analysis between it and the five input predictors to measure relevant error reduction achieved by the 

network. Error metrics that were used to assess this are: root mean square error (RMSE) and bias. Results indicate 

significant error reduction across all forecast parameters between the ensemble network forecasts and input model 

forecasts. Assessing ensemble forecast performance per city shows ensemble reductions of RMSE from the input 

models for maximum and minimum temperature, on average, exceeding 2-3 degrees Fahrenheit, wind of 3-5 knots 

and precipitation of 0.10-0.20 inches. 

 

 

1. Introduction 

 
A novel ensemble weather forecasting approach has been developed in which 950 feed-forward backpropagation 

neural networks1 were individually trained on dynamical and statistical forecast guidance for nine different US cities 

(Figure 1) to produce 24-Hour forecasts from 06z-06z for maximum and minimum temperature, maximum 2-minute 

wind, and accumulated precipitation. Forecast model ensembles are developed by way of combining initial conditions 

(airport observations, weather balloon launches, derived satellite observations, etc.) with the first guess field (the 6-hr 

forecast from the prior deterministic run of the given model), running a sophisticated algorithm1 in order to perturb 

these initial conditions, and finally utilizing the primitive equations of the atmosphere on these varied solutions to 

develop an ensemble of N number of solutions. 

   Over the last several decades, these ensemble prediction methods have been increasingly used in operational spaces 

due to the high level of skill in accounting for a wide range of possible solutions and postprocessing estimation errors 

of the initial boundary conditions2. From the specific model ensemble, several different forecast products can thus be 

created—one of which has high utility to operational meteorologists - probabilistic forecasts. Probabilistic weather 

guidance can be developed to quantify and convey overall uncertainty in any given forecast to the general public, 

whether it be a point forecast or a large geographical area. A study3 divulging ensemble techniques elaborates by 

highlighting that the use of ensemble probabilistic forecasts as opposed to a single deterministic run of say, the Global 

Forecast System (GFS), proves to have systematic higher skill. Moreover, research has shown that when initializing 
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an ensemble forecast system with both the initial conditions and forecast model uncertainty, that a larger scope of 

possible true solutions is found and thus uncertainty is quantified on a much more accurate and robust level4. 

   Within the focus of a neural network ensemble, a “normal” practice for perturbing possible solutions begins to 

diverge. One study5 utilized two separate feed forward backpropagation neural networks with the input training data 

modified slightly in order to obtain localized precipitation forecasts. For their first iteration they trained on rain gauge 

data (as verification/targets for forecast model input) without regard for gauge measurement accuracy; for the second 

iteration all positive rain gauge errors of 0.09” were removed from the training data. The author notes that both 

individual and consensus neural network forecasts performed significantly better than the input numerical model (the 

Nested Grid Model (NGM), which has since been discontinued and superseded by the Global Forecast System model 

(GFS). Another study6 utilized a unique a method of ensemble creation in order to forecast hail over Northeast Italy. 

Manzato used a bootstrap ensemble technique7 in order to continuously retrain and assess for the highest performing 

feed forward neural network and thus implement them as the ensemble members. Results show that when compared 

to operational forecasts, this ensemble technique for hail forecasting, using sounding-derived indices, produced an 

84% improvement in overall forecast with regards to the studies specific table of performance metrics.   

   In this study, 72 forecasts for 9 different US cities are produced from an ensemble feed-forward backpropagation 

neural network (henceforth referred to as the FFE). The FFE was developed to forecast daily 24-hour maximum and 

minimum temperatures, 2-minute wind speed, and total accumulated precipitation from 06z-06z. In the following 

section, methodology and datasets will be presented, alongside the selection of tuned hyperparameters, and data 

sources. Section 3 will outline conclusions, results, and future work 

 

 
Figure 1. Locations of ASOS test sites. 

 

2. Methodology and Datasets 
 

Within a neural network (NN) framework, there are “tuning” parameters that allow the user to adjust certain aspects 

of the architecture in order to achieve maximum performance. Some of those parameters include number of neurons, 

performance statistics utilized in training (MAE, MSE etc.…), number of epochs (iterations through training set), 
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number of validation checks, learning rate, and much more. Within the FFE, the number of neurons, the training 

algorithm, validation checks, and epochs were all tweaked to achieve maximum performance.  The novelty and power 

of the FFE is that the ensemble technique utilized is adapting many different training algorithms, training the FFE 50 

times per algorithm and pooling each individual training sequence output into a total ensemble. Given such a high 

volume of non-linear training sequences, this allowed for far less time to be devoted to hyperparameter tuning as no 

appreciable increases (or decreases) in accuracy were observed in changing either the number of neurons, validation 

checks, or epochs.  

   With these small-scale changes of accuracy in mind, the number of epochs initialized within the FFE was 500, 

validation checks 500, and generally <5 neurons were used to decrease computational wear and tear. Exact 

specifications of each weather parameter and attendant hyperparameters can be seen in Table 1. Special attention is 

drawn to the precipitation ensemble hyperparameters as this parameter required the most tweaking due to the highly 

non-linear and complex nature of quantitative precipitation forecasts. Thus, a more constrained set of algorithms was 

utilized alongside a higher number of epochs and validation checks per train. 

 
Table 1. FFE Hyperparameter Settings 

 
Maximum 

Temperature 

Minimum 

Temperature 

Maximum 

2-Minute 

Wind 

Speed 

Quantitative 

Precipitation 

Forecast 

# Validation checks 500 500 500 500 

# Epochs 500 500 300 300 

# Neurons 3 3 10 3 

 

 

   Training algorithms implemented into the FFE are as follows: scaled conjugate gradient backpropagation (trainscg), 

Levenberg-Marquardt backpropagation (trainlm), Bayesian regularization backpropagation (trainbr), Conjugate 

gradient backpropagation with Powell-Beale restarts (traincgb), gradient descent with momentum backpropagation 

(traingdm), gradient descent with momentum and adaptive learning rate backpropagation (traingdx), and Gradient 

descent backpropagation (traingd). Specific training algorithms utilized within the different weather parameter batch 

trains are included in Table 2. Further, in order to achieve brevity, for in-depth training specifications regarding each 

algorithm and supplementary methodology the author refers the reader to MATLAB documentation8 for further 

reading. 

 
Table 2. Specifications of algorithms utilized within each parameter 

 
Maximum 

Temperature 

Minimum 

Temperature 

Maximum 2-

Minute Wind 

Speed 

Quantitative 

Precipitation 

Forecast 

Trainscg X X X X 

Trainlm X X X X 

Trainbr X X X X 

Traincgb X X X X 

Traingdm   X  

Traingdx X X X X 

Traingd   X  

Total Ensemble Members 

(NN Retrains) 
N = 250 N = 250 N = 350 N = 250 

 

   The FFE was trained on five input predictors and their attendant 24-Hour forecasts from 06z-06z for a 2.5-year 

period from January 2018—January 2021. Those input predictors are, the North American Mesoscale Model Output 

Statistics (MOS) product (the NAM), the Global Forecast System MOS product (the GFS), the National Blend of 

Models MOS product (the NBS), the High-Resolution Rapid Refresh dynamical output (the HRRR)9, and the human 

generated Point Forecast Matrix (the PFM) from the National Weather Service. The NAM, GFS, and NBS, all were 

obtained from the Iowa Environmental Mesonet Model MOS archive10. The PFM dataset was also obtained from the 
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NWS product archive from the Iowa Environmental Mesonet and thus had specific forecasts for the desired time range 

programmatically mined. The HRRR archive was obtained from the Utah HRRR archive (Blaylock et al. 2017). For 

verification/targets, the FFE input was validated using the same model input timespan at the designated Automated 

Surface Observation Station (ASOS). Target data are obtained through the National Climatic Environmental 

Information Global Historical Climate Network dataset. Finally, the software utilized to produce and design the FFE 

was MATLAB version R2020a. 

   Training of the FFE was implemented on the latest runs of each of the five input predictors prior to the 00z hour in 

order to ingest the most recent and up to date data into the ensemble. Therefore, the NAM 12z, the GFS 18z, the NBS 

19z, the HRRR 18z, and generally the PFM 21z output (release times of the PFM from each NWS office differs and 

would range from 20-22z) were operational runs on all forecasts of the FFE. For each forecast and each parameter, 

the ensemble mean was implemented as the deterministic forecast of the FFE. Of all the forecast parameters, as can 

be seen in Table 1, QPF is the only parameter with less than half of the models as its input. The decision to only utilize 

the HRRR and the NBS was a difficult one but ultimately was a result of data source issues where for the GFS and 

NAM bulletin’s, QPF is given as a code and represents a range of precipitation (e.g., 0.00-0.10”) not a deterministic 

output and the PFM QPF output had inconsistent forecast ranges for the time range (06z-06z) that was settled upon. 

Thus, the available model output dwindles down to the HRRR and the NBS.  

 

 

3. Results 

 
Two performance metrics were calculated to evaluate the FFE: root mean squared error (RMSE) and bias: (2). 

 

 

      𝑅𝑀𝑆𝐸 = √
1

𝑛
Σ𝑖=1

𝑛 (𝑑𝑖 − 𝑓𝑖)
2         (1) 

 

 

      𝐵𝑖𝑎𝑠 = (θ̂)̅̅̅̅̅ =
1

𝑛
∑ ((θ̂) − 𝜃)𝑛

𝑖=1         (2) 

 

 

   Where in equation (1), parameter 𝑑𝑖, is the predicted model value and parameter 𝑓𝑖, is the observed/target value. For 

equation (2), parameter (θ̂) is the predicted model value and parameter 𝜃, is the observed target value. 

   Performance metrics were constrained to the two based on the following criterion: 1) RMSE and its correlation and 

power within assessing a given models predictive accuracy, and 2) average bias and its simplicity in evaluating the 

normal tendency of model’s predictive behaviors across an entire dataset  

 

3.1 Maximum Temperature 

 
Figures 2-3 compare the average RMSE and bias of each input model over the course of the 9 different ASOS locations 

against the FFE. Analyzing these results provides insight to the true power of a NN and the significant ability at 

reducing systematic bias and error within a forecast model output for any given location. Figure 2, the average RMSE, 

shows promising results with the FFE besting all input models. It’s imperative to note the close RMSE score between 

the FFE and the NAM and then the NBS. Looking at the architecture of these two model inputs, the NAM is a product 

generated from an already sophisticated model output. With a horizontal grid spacing of 3 km and filtering such high-

resolution output through advanced linear statistics (MOS techniques), the NAM thus, on average, is comparable to 

the FFE with an RMSE of 2.74 and the FFE with 2.13. Similarly, the NBS is a product composed of several different 

high-resolution model outputs and also filtered through the same MOS techniques as the NAM, making it as well 

comparable to the NAM and FFE with an RMSE of 3.45. 
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Figure 2. Average RMSE of maximum temperature forecasts. 

 

 
 

Figure 3. Average bias of maximum temperature forecasts 

Figure 3, the average bias, allows for a different look at the resolving and bias reduction of the FFE’s architecture. 

With a positive bias of .31, the FFE successfully removed all negative bias from the model input. With the closest 

competitor being the GFS at -.46 and the worst competitor being the PFM at -2.15, these results are promising and 

display a powerful post-processing technique for temperature output. 
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3.2 Minimum Temperature 

 

 
 

Figure 4. Average RMSE of minimum temperature forecasts. 

Figure 4 shows the average RMSE for minimum temperature of all model input versus the FFE. It’s clear that the FFE 

has an edge on its competitors though only with a small reduction in error, again, over the NAM. With the NAM 

versus the FFE being 2.6 and 2.54, respectively. Though when analyzing all inputs against the FFE, the error reduction 

of the ensemble is clearly superior. 

 

 
 

Figure 5.  Average bias of minimum temperature forecasts. 

Figure 5 displays the average bias of all of the models’ minimum temperature. Looking over this performance metric 

illustrates a new story in which all guidance showed to have a positive bias. While the FFE, again, was able to almost 

completely remove all bias it was able to stay within the confines of a positive bias at .04 or, in other terms, not over-
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correct for the significant biases within the model input. This is a significantly promising result as it shows both the 

powerful bias reduction and the stability of the model to not overcorrect and thus unintentionally underperform. 

 

3.3 Maximum 2-Minute Wind 

 

 
 

Figure 6. Average RMSE of maximum 2-minute wind speed forecasts. 

Without a doubt one of the most promising results seen in the FFE’s performance is the significant error reducing and 

bias removal of wind speed forecasts of all the input models. Figure 6 shows the true power of the FFE in this light 

with an RMSE of 2.95 and the closest competitor being the GFS at 5.19. The FFE’s error reduction in wind speed 

forecasts, with respect to RMSE, very clearly shows a powerful post processing output technique. 

 

 
 

Figure 7. Average RMSE of maximum 2-minute wind speed forecasts. 

Analyzing the average bias in Figure 7, the same story as RMSE comes to light. With a slight overcorrection in bias 

at a positive .71 and all model input being <-4.75, it is important to note the power of the FFE with regards wind 
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speed forecasts. Results of this magnitude bring to light the need for either far better post processing techniques of 

wind speed or a much larger in-depth review of attendant physics packages utilized in wind speed forecasts. 

 
3.4 Quantitative Precipitation Forecasts 

 

 
 

Figure 8. Average RMSE of QPF. 

 
 

Figure 9. Average bias of QPF. 

Possibly one of the most challenging parameters to tune a forecast model to is QPF. Due to the highly nonlinear and 

non-normal distributions of QPF datasets, QPF forecasting of the FFE and most certainly other output, is far from 

perfect. Displayed in Figure 8 and figure 9, a slight reduction in overall error and bias compared to the NBS is seen. 

Although the FFE does achieve marginally better error reduction than the NBS, the HRRR is noted to have narrowly 

better metrics with an RMSE of .08 and a bias of .01. With these results comes the necessity to highlight the deficiency 

in model input and training data—the HRRR’s dataset begins in September 2019 and the NBS in November 2019. 

The shortened training dataset coupled with only two models as input, puts the FFE’s QPF forecasts at a disadvantage. 
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Thus, author notes that these results should be taken with a grain of sand and will refine datasets and predictors in 

future work. 
 

 

4. Conclusions 
 

In this study, a novel ensemble weather forecast model composed of 950 individually trained NNs was utilized to 

produce point forecasts for maximum and minimum temperature, maximum 2-minute wind speed, and total 

accumulated precipitation across nine different US cities.  
   Results of this study, proved to be significant and overall, successful. With respect to developing postprocessing 

techniques for operational model output, results from this study show the necessity of implementing similar techniques 

to those found in this study.  
   In regard to future work many avenues are planned to refine and increase overall ensemble accuracy. This includes 

higher order ensemble filtering techniques11 the implementation of a multimodel superensemble technique12 for each 

algorithm, and finally in the later stages, a graphical timeseries FFE forecast. 
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