University of North Carolina Asheville
Journal of Undergraduate Research
Asheville, North Carolina

May 2021

Utilizing an Ensemble Feed Forward Neural Network to Reduce 24 — Hour
Weather Forecast Error

Andrew Coleman
Department of Atmospheric Sciences
The University of North Carolina Asheville
One University Heights
Asheville, North Carolina 28804 USA

Faculty Advisor: Dr. Christopher Hennon

Abstract

A novel method of point weather forecasting is presented in which an ensemble of 950 individually trained feed-
forward back propagation neural networks were developed to produce 24-hour forecasts for nine different cities across
the contiguous United States in varying climate regimes totaling 72 forecasts. The ensemble forecasts consisted of the
following parameters: 24-hour maximum temperature, minimum temperature, 2-minute maximum sustained wind
speed, and accumulated precipitation. The ensemble neural network was trained on dynamical weather models
(comprised of the primitive equations of the atmosphere), statistical weather forecasts (dynamical guidance post-
processed using linear statistical methods), and human forecasters as input. More than two years of historical weather
observations served as verification/targets for the input. Performance of the ensemble is assessed through a
comparative analysis between it and the five input predictors to measure relevant error reduction achieved by the
network. Error metrics that were used to assess this are: root mean square error (RMSE) and bias. Results indicate
significant error reduction across all forecast parameters between the ensemble network forecasts and input model
forecasts. Assessing ensemble forecast performance per city shows ensemble reductions of RMSE from the input
models for maximum and minimum temperature, on average, exceeding 2-3 degrees Fahrenheit, wind of 3-5 knots
and precipitation of 0.10-0.20 inches.

1. Introduction

A novel ensemble weather forecasting approach has been developed in which 950 feed-forward backpropagation
neural networks! were individually trained on dynamical and statistical forecast guidance for nine different US cities
(Figure 1) to produce 24-Hour forecasts from 06z-06z for maximum and minimum temperature, maximum 2-minute
wind, and accumulated precipitation. Forecast model ensembles are developed by way of combining initial conditions
(airport observations, weather balloon launches, derived satellite observations, etc.) with the first guess field (the 6-hr
forecast from the prior deterministic run of the given model), running a sophisticated algorithm? in order to perturb
these initial conditions, and finally utilizing the primitive equations of the atmosphere on these varied solutions to
develop an ensemble of N humber of solutions.

Over the last several decades, these ensemble prediction methods have been increasingly used in operational spaces
due to the high level of skill in accounting for a wide range of possible solutions and postprocessing estimation errors
of the initial boundary conditions2. From the specific model ensemble, several different forecast products can thus be
created—one of which has high utility to operational meteorologists - probabilistic forecasts. Probabilistic weather
guidance can be developed to quantify and convey overall uncertainty in any given forecast to the general public,
whether it be a point forecast or a large geographical area. A study® divulging ensemble techniques elaborates by
highlighting that the use of ensemble probabilistic forecasts as opposed to a single deterministic run of say, the Global
Forecast System (GFS), proves to have systematic higher skill. Moreover, research has shown that when initializing



an ensemble forecast system with both the initial conditions and forecast model uncertainty, that a larger scope of
possible true solutions is found and thus uncertainty is quantified on a much more accurate and robust level®.

Within the focus of a neural network ensemble, a “normal” practice for perturbing possible solutions begins to
diverge. One study® utilized two separate feed forward backpropagation neural networks with the input training data
modified slightly in order to obtain localized precipitation forecasts. For their first iteration they trained on rain gauge
data (as verification/targets for forecast model input) without regard for gauge measurement accuracy; for the second
iteration all positive rain gauge errors of 0.09” were removed from the training data. The author notes that both
individual and consensus neural network forecasts performed significantly better than the input numerical model (the
Nested Grid Model (NGM), which has since been discontinued and superseded by the Global Forecast System model
(GFS). Another study® utilized a unique a method of ensemble creation in order to forecast hail over Northeast Italy.
Manzato used a bootstrap ensemble technique” in order to continuously retrain and assess for the highest performing
feed forward neural network and thus implement them as the ensemble members. Results show that when compared
to operational forecasts, this ensemble technique for hail forecasting, using sounding-derived indices, produced an
84% improvement in overall forecast with regards to the studies specific table of performance metrics.

In this study, 72 forecasts for 9 different US cities are produced from an ensemble feed-forward backpropagation
neural network (henceforth referred to as the FFE). The FFE was developed to forecast daily 24-hour maximum and
minimum temperatures, 2-minute wind speed, and total accumulated precipitation from 06z-06z. In the following
section, methodology and datasets will be presented, alongside the selection of tuned hyperparameters, and data
sources. Section 3 will outline conclusions, results, and future work
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Figure 1. Locations of ASOS test sites.

2. Methodology and Datasets

Within a neural network (NN) framework, there are “tuning” parameters that allow the user to adjust certain aspects
of the architecture in order to achieve maximum performance. Some of those parameters include number of neurons,
performance statistics utilized in training (MAE, MSE etc....), number of epochs (iterations through training set),
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number of validation checks, learning rate, and much more. Within the FFE, the number of neurons, the training
algorithm, validation checks, and epochs were all tweaked to achieve maximum performance. The novelty and power
of the FFE is that the ensemble technique utilized is adapting many different training algorithms, training the FFE 50
times per algorithm and pooling each individual training sequence output into a total ensemble. Given such a high
volume of non-linear training sequences, this allowed for far less time to be devoted to hyperparameter tuning as no
appreciable increases (or decreases) in accuracy were observed in changing either the number of neurons, validation
checks, or epochs.

With these small-scale changes of accuracy in mind, the number of epochs initialized within the FFE was 500,
validation checks 500, and generally <5 neurons were used to decrease computational wear and tear. Exact
specifications of each weather parameter and attendant hyperparameters can be seen in Table 1. Special attention is
drawn to the precipitation ensemble hyperparameters as this parameter required the most tweaking due to the highly
non-linear and complex nature of quantitative precipitation forecasts. Thus, a more constrained set of algorithms was
utilized alongside a higher number of epochs and validation checks per train.

Table 1. FFE Hyperparameter Settings

Maximum Quantitative
Maximum Minimum 2-Minute L
. Precipitation
Temperature | Temperature Wind
Forecast
Speed
# Validation checks | 500 500 500 500
# Epochs 500 500 300 300
# Neurons 3 3 10 3

Training algorithms implemented into the FFE are as follows: scaled conjugate gradient backpropagation (trainscg),
Levenberg-Marquardt backpropagation (trainlm), Bayesian regularization backpropagation (trainbr), Conjugate
gradient backpropagation with Powell-Beale restarts (traincgb), gradient descent with momentum backpropagation
(traingdm), gradient descent with momentum and adaptive learning rate backpropagation (traingdx), and Gradient
descent backpropagation (traingd). Specific training algorithms utilized within the different weather parameter batch
trains are included in Table 2. Further, in order to achieve brevity, for in-depth training specifications regarding each
algorithm and supplementary methodology the author refers the reader to MATLAB documentation® for further
reading.

Table 2. Specifications of algorithms utilized within each parameter

. . Maximum 2- | Quantitative
Maximum Minimum . . .
Temperature | Temperature Minute Wind | Precipitation
Speed Forecast
Trainscg X X X X
Trainlm X X X X
Trainbr X X X X
Traincgb X X X X
Traingdm X
Traingdx X X X X
Traingd X
Total Ensemble Members
(NN Retrains) N =250 N =250 N =350 N =250

The FFE was trained on five input predictors and their attendant 24-Hour forecasts from 06z-06z for a 2.5-year
period from January 2018—January 2021. Those input predictors are, the North American Mesoscale Model Output
Statistics (MOS) product (the NAM), the Global Forecast System MOS product (the GFS), the National Blend of
Models MOS product (the NBS), the High-Resolution Rapid Refresh dynamical output (the HRRR)®, and the human
generated Point Forecast Matrix (the PFM) from the National Weather Service. The NAM, GFS, and NBS, all were
obtained from the lowa Environmental Mesonet Model MOS archivel®. The PFM dataset was also obtained from the
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NWS product archive from the lowa Environmental Mesonet and thus had specific forecasts for the desired time range
programmatically mined. The HRRR archive was obtained from the Utah HRRR archive (Blaylock et al. 2017). For
verification/targets, the FFE input was validated using the same model input timespan at the designated Automated
Surface Observation Station (ASOS). Target data are obtained through the National Climatic Environmental
Information Global Historical Climate Network dataset. Finally, the software utilized to produce and design the FFE
was MATLAB version R2020a.

Training of the FFE was implemented on the latest runs of each of the five input predictors prior to the 00z hour in
order to ingest the most recent and up to date data into the ensemble. Therefore, the NAM 12z, the GFS 18z, the NBS
19z, the HRRR 18z, and generally the PFM 21z output (release times of the PFM from each NWS office differs and
would range from 20-22z) were operational runs on all forecasts of the FFE. For each forecast and each parameter,
the ensemble mean was implemented as the deterministic forecast of the FFE. Of all the forecast parameters, as can
be seen in Table 1, QPF is the only parameter with less than half of the models as its input. The decision to only utilize
the HRRR and the NBS was a difficult one but ultimately was a result of data source issues where for the GFS and
NAM bulletin’s, QPF is given as a code and represents a range of precipitation (e.g., 0.00-0.10”) not a deterministic
output and the PFM QPF output had inconsistent forecast ranges for the time range (06z-06z) that was settled upon.
Thus, the available model output dwindles down to the HRRR and the NBS.

3. Results

Two performance metrics were calculated to evaluate the FFE: root mean squared error (RMSE) and bias: (2).

RMSE = /%E{;l(di —f)? @)

1

Bias = (8) = -ZL1(() - 6) )

Where in equation (1), parameter d;, is the predicted model value and parameter f;, is the observed/target value. For
equation (2), parameter (é) is the predicted model value and parameter 9, is the observed target value.

Performance metrics were constrained to the two based on the following criterion: 1) RMSE and its correlation and
power within assessing a given models predictive accuracy, and 2) average bias and its simplicity in evaluating the
normal tendency of model’s predictive behaviors across an entire dataset

3.1 Maximum Temperature

Figures 2-3 compare the average RMSE and bias of each input model over the course of the 9 different ASOS locations
against the FFE. Analyzing these results provides insight to the true power of a NN and the significant ability at
reducing systematic bias and error within a forecast model output for any given location. Figure 2, the average RMSE,
shows promising results with the FFE besting all input models. It’s imperative to note the close RMSE score between
the FFE and the NAM and then the NBS. Looking at the architecture of these two model inputs, the NAM is a product
generated from an already sophisticated model output. With a horizontal grid spacing of 3 km and filtering such high-
resolution output through advanced linear statistics (MOS techniques), the NAM thus, on average, is comparable to
the FFE with an RMSE of 2.74 and the FFE with 2.13. Similarly, the NBS is a product composed of several different
high-resolution model outputs and also filtered through the same MOS techniques as the NAM, making it as well
comparable to the NAM and FFE with an RMSE of 3.45.
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Figure 2. Average RMSE of maximum temperature forecasts.
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Figure 3. Average bias of maximum temperature forecasts

Figure 3, the average bias, allows for a different look at the resolving and bias reduction of the FFE’s architecture.
With a positive bias of .31, the FFE successfully removed all negative bias from the model input. With the closest
competitor being the GFS at -.46 and the worst competitor being the PFM at -2.15, these results are promising and
display a powerful post-processing technique for temperature output.
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3.2 Minimum Temperature
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Figure 4. Average RMSE of minimum temperature forecasts.

Figure 4 shows the average RMSE for minimum temperature of all model input versus the FFE. It’s clear that the FFE
has an edge on its competitors though only with a small reduction in error, again, over the NAM. With the NAM
versus the FFE being 2.6 and 2.54, respectively. Though when analyzing all inputs against the FFE, the error reduction
of the ensemble is clearly superior.
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Figure 5. Average bias of minimum temperature forecasts.

Figure 5 displays the average bias of all of the models” minimum temperature. Looking over this performance metric
illustrates a new story in which all guidance showed to have a positive bias. While the FFE, again, was able to almost
completely remove all bias it was able to stay within the confines of a positive bias at .04 or, in other terms, not over-
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correct for the significant biases within the model input. This is a significantly promising result as it shows both the
powerful bias reduction and the stability of the model to not overcorrect and thus unintentionally underperform.

3.3 Maximum 2-Minute Wind
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Figure 6. Average RMSE of maximum 2-minute wind speed forecasts.

Without a doubt one of the most promising results seen in the FFE’s performance is the significant error reducing and
bias removal of wind speed forecasts of all the input models. Figure 6 shows the true power of the FFE in this light
with an RMSE of 2.95 and the closest competitor being the GFS at 5.19. The FFE’s error reduction in wind speed
forecasts, with respect to RMSE, very clearly shows a powerful post processing output technique.
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Figure 7. Average RMSE of maximum 2-minute wind speed forecasts.

Analyzing the average bias in Figure 7, the same story as RMSE comes to light. With a slight overcorrection in bias
at a positive .71 and all model input being <-4.75, it is important to note the power of the FFE with regards wind
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speed forecasts. Results of this magnitude bring to light the need for either far better post processing techniques of
wind speed or a much larger in-depth review of attendant physics packages utilized in wind speed forecasts.

3.4 Quantitative Precipitation Forecasts
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Figure 8. Average RMSE of QPF.
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Figure 9. Average bias of QPF.

Possibly one of the most challenging parameters to tune a forecast model to is QPF. Due to the highly nonlinear and
non-normal distributions of QPF datasets, QPF forecasting of the FFE and most certainly other output, is far from
perfect. Displayed in Figure 8 and figure 9, a slight reduction in overall error and bias compared to the NBS is seen.
Although the FFE does achieve marginally better error reduction than the NBS, the HRRR is noted to have narrowly
better metrics with an RMSE of .08 and a bias of .01. With these results comes the necessity to highlight the deficiency
in model input and training data—the HRRR’s dataset begins in September 2019 and the NBS in November 2019.
The shortened training dataset coupled with only two models as input, puts the FFE’s QPF forecasts at a disadvantage.
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Thus, author notes that these results should be taken with a grain of sand and will refine datasets and predictors in
future work.

4. Conclusions

In this study, a novel ensemble weather forecast model composed of 950 individually trained NNs was utilized to
produce point forecasts for maximum and minimum temperature, maximum 2-minute wind speed, and total
accumulated precipitation across nine different US cities.

Results of this study, proved to be significant and overall, successful. With respect to developing postprocessing
techniques for operational model output, results from this study show the necessity of implementing similar techniques
to those found in this study.

In regard to future work many avenues are planned to refine and increase overall ensemble accuracy. This includes
higher order ensemble filtering techniques!! the implementation of a multimodel superensemble technique?? for each
algorithm, and finally in the later stages, a graphical timeseries FFE forecast.
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