University of North Carolina Asheville
Journal of Undergraduate Research
Asheville, North Carolina

May 2021

Downstream: An Open-Source Vehicle Routing Solution

Jesse Reeve
Department of Computer Science
The University of North Carolina Asheville
One University Heights
Asheville, North Carolina 28804 USA

Faculty Advisor: Dr. Kevin Sanft
Abstract

Optimizing vehicle routing is an essential problem of the global economy that has engaged computer scientists since
the 1950s. Today, the technology for solving these optimization problems is well established; but algorithm-based
vehicle routing is primarily available through subscription-based “software as a service” models developed for large
organizations. The Downstream project explores the potential of stand-alone, open source software to support smaller
organizations with free or low-cost vehicle routing. FIRST at Blue Ridge is one such small organization: a nonprofit,
residential 12-step recovery center in Ridgecrest, NC. FIRST’s clients depend on reliable transportation scheduling to
engage with the community, but FIRST’s limited budget and technical staff has prevented them from exploring
algorithmic vehicle routing. Downstream is a user friendly, open-source software package that fills the gap revealed
by FIRST’s needs. Using the cut-and-branch algorithm devised by Cordeau (2006), Downstream uses linear
programming techniques to generate daily transportation schedules optimized to reduce wait time and wear and tear
on vehicles. Downstream’s tech stack is accessible for free at a reasonable level of use, including spreadsheet software
such as Microsoft Excel, the Google Cloud API and Google’s OR-Tools optimization suite. The software is designed
to be easy for a first-time computer user to install and run, with a simple step-by-step installation process. Replacing
FIRST’s manual routing process with Downstream saves hours of human effort every week, reduces vehicle mileage,
and prevents unnecessary wait times for clients. We hope that other small organizations can reap similar benefits.

1. Introduction

We undertook the Downstream project on the hypothesis that a software-as-product approach to transportation routing
could provide significant value to small organizations like FIRST. While Downstream draws on a deep pool of existing
research and development, most commercially available routing solutions use a software-as-service approach,
entailing subscription fees that impose a significant financial burden on a small nonprofit like FIRST. Relying on an
outside service also creates potential problems with continuity of service and confidentiality of client information.
Downstream offers a lightweight, mission-focused alternative to these existing services.

At the most general level, vehicle routing problems (VRPs) are computationally intractable. That said, route
optimization is a critical problem in industrial logistics, a multi-trillion dollar global market. Accordingly, many
algorithmic and heuristic approaches have been developed to attack subsets of VRPs defined by constraints. FIRST’s
transportation needs correspond to the Dial-A-Ride Problem (DARP), which is itself well-studied due to its
widespread practical application in real-world scenarios. Downstream builds on the existing body of work on the
DARRP to create an approachable software product for a non-technical user.

2. Literature Review

Because route optimization is so important to industrial logistics, it is an extremely well-studied field. Most approaches
begin with the Vehicle Routing Problem (VRP) developed by Dantzig and Ramser! in 1959, one of the first
commercial applications of computers. The VRP is an NP-hard problem?, but can be made more tractable by adding
constraints that further specify the particular problem at hand, creating a taxonomy of problems that admit different
solution procedures. FIRST’s transportation needs closely resemble the Dial-A-Ride Problem, which generates routes
and schedules for users who request pickup at an origin location and dropoff at a destination location. In graph theory
terms, each user’s requested trip represents an edge between an origin and destination node. Vehicle Routing?, a joint
publication of The Society for Industrial and Applied Mathematics and the Mathematical Optimization Society,
provides an overview of the VRP With Time Windows in chapter 5, and the DARP in chapter 7.

Once the appropriate constraints have been added to the general VRP, the practice originated by Dantzig and
Ramser? is to solve the resulting problem using linear programming (LP), which finds the optimum value of a linear
function given linear constraints in the form of equations or inequalities. For the sake of the DARP, the function to be
optimized (“objective function™) represents the total travel distance or time by the vehicle fleet; the constraints
describe the parameters of the problem. For instance, a constraint may require a vehicle to drop off a given passenger
only after that passenger is picked up, or require the vehicle that drops off a passenger to be the same vehicle that
picked the passenger up. The resulting LP problem can be solved by any of a variety of open-source or commercially
available LP solvers.

After reviewing the discussion of the DARP in Vehicle Routing and “Survey of Dial-A-Ride Problems™ by Ho et
al., we selected Jean-Frangois Cordeau’s algorithm described in "A Branch-and-Cut Algorithm for the Dial-A-Ride
Problem™s. The next step was to formalize the constraints that defined an acceptable solution. Based on the needs of
FIRST, we decided that minimizing delay was a higher priority than minimizing travel distance. Orda and Rom’s
“Shortest-Path and Minimum-Delay Algorithms in Networks with Time-Dependent Edge-Length™® provided insight
into the mathematical requirements of balancing those constraints to match FIRST’s priorities. We also reviewed
Schilde and Hartl’s “Metaheuristics for the dynamic stochastic dial-a-ride problem with expected return transports™’
in consideration of possibly providing Downstream with dynamic routing capability; however, we decided not to
implement dynamic routing due to time constraints and the fit to the static routing process FIRST currently has in
place.

3. Project Description

Downstream is an app designed to meet the transportation routing needs of FIRST at Blue Ridge. FIRST is a residential
12-step recovery program with around 150 clients who live on-campus. Almost all of those clients work, and every
day brings many off-campus appointments as well. Without optimization software available, FIRST staff currently do
all transportation routing, scheduling, and planning “by hand.” This is a time-consuming and burdensome task that
must be repeated every day, and due to confidentiality issues must be performed by administration-level staff.

Downstream closes that technological gap with powerful and accessible resources Google’s OR-Tools optimization
suite, Google Cloud services, and familiar office spreadsheet software. The combination of these freely-available
products allows Downstream users to shift the burden of transportation scheduling to a fast, highly accurate software
solution. Downstream’s demonstrable value to FIRST at Blue Ridge indicates the opportunity for open-source
software to provide great value to small organizations, particularly nonprofits and those with a limited budget.

3.1 Requirements/Specifications

Software requirements:
Spreadsheet software (e.g. Microsoft Excel, iwWork Numbers, LibreOffice Calc, Google Sheets)

Hardware requirements:

Desktop PC or Mac

Windows 7 64-bit or Mac OS X 10.9.2 or later
Quad-core Intel or AMD processor, 2.5 GHz or faster

816

NVIDIA GeForce 470 GTX or AMD Radeon 6870 HD series card or higher
8 GB RAM

Other requirements:
Internet access (No browser restrictions; Downstream includes its own HTTPS client)
Free Google Cloud account (nonprofit upgrade optional)

3.2 Design

Downstream accepts user data from spreadsheet files and transforms it into an LP problem using Google’s OR-Tools
optimization suite. Once the OR-Tools solver finds a solution, Downstream parses it into a human-readable
spreadsheet file. Because Downstream’s users may have minimal familiarity with technology, operating Downstream
is a matter of running a single executable file, turning input files into a ready-to-use timetable with one double-click.

In addition to original code, Downstream incorporates several open-source resources. We credit Niels Lohmann for
his JSON for Modern C++ library®; Ben Strasser for his Fast CSV Parser library®; GitHub user Yhirose for cpp-http
lib%; and Google for their OR-Tools suite?, including LP, MIP, and cut-and-branch solvers, as well as the Google
Maps API%2,

The Downstream app incorporates four user input files: .config.csv, settings.csv, vehicles.csv, and appointments.csv.
The .config file includes variables for file paths and the Google Cloud API key. Once the user provides their unique
API key, these parameters need never change. The settings file includes configurable solver parameters such as the
allowable early arrival window and the maximum client wait time, which can be tightened for a timely schedule or
relaxed if no solution is otherwise possible. The vehicles file contains a list of vehicles in the organization’s fleet and
their passenger capacity. The day’s transportation requirements are located in the appointments.csv file; each entry
includes the client or clients served at an appointment, the number of clients being transported, the time window of
the appointment, and the appointment address.

| B | c | D |
[solverSettingsFilePath]settings.csv
2 |requirementsFilePath appointments.csv
3 |vehiclesFilePath vehicles.csv
4 |IpFilePath requirements.|p
__5 |spyglassDataPath spyglass_data
|6 |spyglassAPIKey]
7 |solutionFilePath solution.sol
8 |scheduleFilePath schedule.csv
IEN
10

Example config.csv file, viewed in LibreOffice spreadsheet software. AP key redacted.

| B |

|vehicle Depot Address |32 Knox Rd Ridgecrest NC 28770
2 |Early Arrival Window 300
3 |Late Arrival Window 100
__4 |Service Duration 0
|5 |Max Wait 300

Example settings.csv file, viewed in LibreOffice spreadsheet software.

817

B |
ehicle Depot Address]32 Knox Rd Ridgecrest NC 28770

2 |Early Arrival Window 300
__3 |Late Arrival Window 100
__4 |Service Duration 0

5 [Max Wait 300

Example vehicles.csv file, viewed in LibreOffice spreadsheet software.

[Bl ¢ | D | E
F.S. and M.B. 1 2 0 900900 Riverside Dr
2 L 1 0 630550 NC-9, Black Mountain
3 |B.B. 1 0 800875 Warren Wilson Rd
4 [K.H. 1 600 1630116 N Woodfin Ave
| 5 [R.C. 1 700 17002913 Hwy 70, Black Mountain
B [K.T. 1 730 1030257 Biltmore Ave, Asheville, NC 28801
T |R.E. 1 745 9451445 Tunnel Rd
8 D.R. 1 800 16301100 Tunnel Rd, Asheville, NC 28805
| 9 [J.C 1 800 1630251 Charlotte Hwy
| 10 |E.G. and J.L. 2 800 1600875 Warren Wilson Rd
| 11 JAD and G.K. and N.J. | 3 800 1000600 Patton Ave
| 12 [K.B. 1 800 10007 McDowell St
|| 13 |C.D. and T.R. 2 800 2000900 Riverside Dr
| 14 [R.J. 1 900 15001616 Patton Ave
| | 15 |C.5. 1 S00 1100300W. State St, Black Mountain
|16 (1.1 1 900 110075 Victoria Rd, Asheville 28801
|| 17 |B.F. 1 1000 18301616 Patton Ave
|| 18 |D.B. 1 1000 1500191 Tunnel Rd
|19 MW 1 1100/ 1600856 Sweeten Creek Rd
| 20 |AS. 1 1100 1400Buncombe County Courthouse
| 21 |R.E. 1 12000 1630 Goodwill Retail Store, Black Mountain
| 22 |D.M. 1 1230 2030550 NC-9, Black Mountain
| 23 [J.P. 1 1230 200086 Tunnel Rd
| 24 HR. 1 1600 2000875 Warren Wilson Rd
| 25 |R.E. 1 1600 1800 A-B Tech
|| 26 [E.M. and T.B. 2| 2100 22308900 Riverside Dr
|| 27 |B.B. and R.H. 2 1845 2335875 Warren Wilson Rd
a

Example appointments.csv file, viewed in LibreOffice spreadsheet software.

After reading the data provided by the user, the Parser creates a vector of Node data structures representing pickup
or dropoff from a single address. Each Node has data fields for passenger name(s), earliest and latest allowable service
time, service duration, address, load, and a unique I1D. A pickup Node has a positive load; a dropoff Node has a
negative load, representing passengers leaving the vehicle. One appointment represents four Nodes: a pickup and
dropoff Node for transportation to the appointment, and a pickup and dropoff Node for the return trip to FIRST. In
order to manage problem size and increasing execution time, the Parser splits the list of Nodes into a series of smaller
problems, each representing a maximum of ten appointments. See section 3.3 for further discussion of the execution
time issue.

Once Downstream parses this information, its Spyglass module uses the Google Cloud API and an integrated HTTPS
client to automatically and securely collect travel information. Spyglass uses the free Google Places API to standardize
addresses and locations so that Downstream can recognize addresses despite minor changes in entry. For instance, the
address “Karpen Hall, Asheville, NC” and “Karpen Hall, Asheville, North Carolina, 28804” are correctly identified
as the same address. This reduces billed API calls and local storage.

818

After standardizing addresses, Spyglass acquires the travel time and distance for each pair of addresses using the
Google Maps API. In order to adhere to the software-as-product model, Spyglass limits API calls to Google’s free
allotment by default. After downloading information from an API call, Spyglass stores it locally in JSON-formatted
files so that the same call need not be made again. Thanks to Downstream’s careful budgeting of billed API calls, it
can acquire information for hundreds of addresses using the $200 monthly budget for free API calls that Google
provides.

Using the client’s requirements and route data provided by Spyglass, Downstream creates an ORSolver object that
applies Cordeau's constraints to transform the collected information into a LP problem. The ORSolver object uses the
OR Tools library’s linear solver to solve the LP problem, then converts the numerical solution to addresses, vehicle
IDs, and travel times, formatting a human-readable schedule in the file schedule.csv.

819

Executable /
/ Parser creates vector of

Launched — settings.csv. = | » h)
[f Vehicle objects
. .config.csv . Parser creates appointments.csv
Settings object f
main() creates f [Parser creates vector
Config object vehicles.csv = — of Node objects
Parser splits Node
main() creates vector into smaller

Parser object subproblems

main() creates ORSolver generates
ORSolver obiect E— LP model from settings,
) Node vector, Vehicle vector

|

ORSolver solves model
using SCIP solver

|

ORSolver converts
numeric solution results
to Node and Vehicle
vector indices

ORSolver uses Node
and Vehicle solution
results to produce
human-readable file
schedule.csv

Execution complete

Process flow diagram for Downstream.

3.3 Testing, Validation, and Verification

To ensure that it yields accurate, efficient solutions, Downstream has been tested on edge cases, examples, and
anonymized scheduling data provided by FIRST. We have also scheduled a “phase-in” period during which it will be

820

used in tandem with FIRST’s existing scheduling process to identify opportunities for improvement to both its
algorithm and its user experience.

During the testing phase we encountered a significant issue with Cordeau’s DARP algorithm: exponential growth.
Cordeau’s algorithm incorporates an objective function and several constraints that grow in O(n?) relative to the
number of nodes, where each appointment represents four nodes or two edges. Our original design used the COIN-
OR optimization suite and wrote the optimization problem in .lp file format; however, we found that reproducing
realistic transportation schedules as LP problems in .Ip file format resulted in files too large for COIN-OR’s interpreter
to correctly parse. We then pivoted to using Google’s OR Tools API to create the problem in memory. This
circumvented the issue with COIN-OR’s .Ip interpreter, but the problem of exponential growth remained.

Cordeau’s test cases go up to 32 “users” (64 nodes, or 16 appointments) in size, and five of his 30 test cases could
not be solved to optimality in 12 hours of CPU time (21). A typical day at FIRST represents 20-30 appointments, each
consisting of two edges (outgoing and ingoing), for an average of over 80 nodes. None of the one-day schedules
provided by FIRST represented a problem small enough to be solved by Cordeau’s algorithm in a feasible length of
time.

In order to keep solution time within reasonable bounds, we incorporated a function into the parser that splits the
appointments into “bite-sized” chunks of at most ten appointments. We then developed an automated script to run 20
tests on appointments.csv files randomly generated from FIRST input. Due to the rapid growth of execution time
without the splitter function, we were unable to test problems larger than 14 appointments on the original Downstream
algorithm; however, the execution time shows a clear exponential curve as appointments increase. The splitter
algorithm keeps execution time under seven minutes in test cases up to 20 nodes in size.

Downstream Execution Time
== Without Splitter == With Splitter

2000

1500

1000

Seconds

500

0 5 10 15 20

Appointments

Downstream problem size (appointments) vs. execution time. Each data point is the average execution time of 20
randomly generated problems.

4. Future Work

Our original testing plan included the development of a schedule evaluator, which would sum the travel time, vehicle
mileage, and client wait time for a given schedule to allow quantitative comparison between multiple solutions for a
given problem. Unfortunately the time allocated for the schedule developer was unexpectedly taken up by the pivot
from COIN-OR’s .lIp interface to OR-Tools API.

821

The schedule evaluator software would also allow side-by-side testing of a wide variety of other solvers, solver
parameters, heuristic approaches, and possibly even other LP formalizations of the DARP. The field of mathematical
optimization is both wide and deep, and while we believe our research is well-targeted, it is limited by time and
background knowledge.

In the shorter term, we do not intend to lose sight of our customer’s interests. We will remain in contact with FIRST
at Blue Ridge, helping them master Downstream and using their feedback to improve future versions of the software.
Once FIRST has incorporated Downstream into their workflow, we will be able to produce non-technical written
documentation and a short series of instructional videos for training and reference purposes.

While Downstream was developed according to the needs of FIRST at Blue Ridge, it was never intended to be solely
for their benefit. We have elected to make Downstream available as open-source software in hopes that other
organizations can make use of its capabilities or use it as a template for software that serves their differing needs.

5. Results and Reflection

Development of Downstream includes industry-wide best practices of requirements elicitation, goal-oriented
development documents, utilization of third-party libraries, end-to-end testing, clean code style, and documentation
for both maintenance and use. In creating Downstream, we focus on quality from the beginning of development to the
last stages of deployment, from the standards of code creation to the rigor and customer value of the solvers’ solutions.
The resulting application is not only functional, but accessible to code improvement, customization, and additional
features.

Downstream’s business value is evidence-based and easy to demonstrate based on its software-as-product model
and impact on the scheduling workload of FIRST administrative staff. With the ability to use multiple solvers, optimize
solutions based on client requirements, and produce a printable list via a maximally user-friendly process, it is
pinpointed to the needs of our client. Downstream evanesces a lengthy, burdensome process into a press of a virtual
button.

One possible avenue for future work is developing Downstream as a web app. Downstream already requires and
uses the internet to gather essential data, and all the required software to offer Downstream online is available in a
variety of formats, both proprietary and open-source. Our choice to make Downstream a local app was driven by the
priority that it be readily available and best serve FIRST, not any technical infeasibility of presenting it on the web.

We would particularly add that, given that Google offers not only Maps and Sheets spreadsheet software, but even
its own open-source optimization suite and solver, OR-Tools and GLOP, all the pieces are in place for Google to
develop a vehicle routing product like Downstream. We believe that such a product, backed by Google’s technical
expertise and support, could be a source of revenue or an invaluable contribution to the open-source software
community.

However, the Downstream project itself demonstrates an opportunity for that open-source community to rise to the
occasion, regardless of what for-profit corporations like Google may decide. Downstream is a single point in a vast
space of optimization solver options, software dependencies, input and output configurations, and client preferences.
From that vantage point, we are convinced that transportation scheduling is properly the work of software, not human
effort. We hope that in the future, Downstream and other products like it will carry that load.

6. References

1. Dantzig, G. B., & Ramser, J. H. (1959). The truck dispatching problem. Management Science, 6(1),
pp. 80-92.

2. Toth, P. and Vigo, Daniele., eds. The Vehicle Routing Problem. Monographs on Discrete Mathematics and
Applications. 9. Philadelphia: Society for Industrial and Applied Mathematics. 2002.

3. Society for Industrial and Applied Mathematics and Mathematical Optimization Society. Vehicle Routing:
Problems, Methods, and Applications, edited by Toth, Paolo and Daniel Vigo. 2nd ed., Society for Industrial and
Applied Mathematics, 2014.

4. Ho, Sin C., W.Y. Szeto, Yong-Hong Kuo, Janny M.Y. Leung, Matthew Petering, and Terence W.H. Tou. "A
survey of dial-a-ride problems: Literature review and recent developments." Transportation Research, vol. 111, part
B, 2018, pp. 395-421.

822

5. Cordeau, Jean-Francois. "A Branch-and-Cut Algorithm for the Dial-A-Ride Problem.” Operations
Research,vol. 54, no. 3, 2006, pp. 573-586.

6. Orda, Ariel and Raphael Rom. “Shortest-Path and Minimum-Delay Algorithms in Networks with Time-
Dependent Edge-Length.” Journal of the ACM, vol. 37, no. 3, 1990, pp. 607-625.

7. Schilde, M. K.F. Doerner, and R.F. Hartl. “Metaheuristics for the dynamic stochastic dial-a-ride problem with
expected return transports.” Computers & Operations Research, vol. 38, 2011, pp. 1719-1730.

8. Lohmann, Niels. JSON for Modern C++ version 3.9.1. GitHub, 6 August 2020.

https://github.com/nlohmann/json/
9. Strasser, Ben. Fast C++ CSV Parser. GitHub, 3 January 2021. https://github.com/ben-strasser/fast-cpp-csv-

parser
10. Yhirose. Cpp-httplib. GitHub, 6 April 2021. https://github.com/yhirose/cpp-httplib
11. Google. Cloud Maps Platform. Google, 6 April 2021. https://developers.google.com/maps
12. Google. OR-Tools. Google, 6 April 2021. https://developers.google.com/optimization

823

https://github.com/ben-strasser/fast-cpp-csv-parser
https://github.com/ben-strasser/fast-cpp-csv-parser

