

University of North Carolina Asheville

Journal of Undergraduate Research

Asheville, North Carolina

May 2021

Downstream: An Open-Source Vehicle Routing Solution

Jesse Reeve

Department of Computer Science

The University of North Carolina Asheville

One University Heights

Asheville, North Carolina 28804 USA

Faculty Advisor: Dr. Kevin Sanft

Abstract

Optimizing vehicle routing is an essential problem of the global economy that has engaged computer scientists since

the 1950s. Today, the technology for solving these optimization problems is well established; but algorithm-based

vehicle routing is primarily available through subscription-based “software as a service” models developed for large

organizations. The Downstream project explores the potential of stand-alone, open source software to support smaller

organizations with free or low-cost vehicle routing. FIRST at Blue Ridge is one such small organization: a nonprofit,

residential 12-step recovery center in Ridgecrest, NC. FIRST’s clients depend on reliable transportation scheduling to

engage with the community, but FIRST’s limited budget and technical staff has prevented them from exploring

algorithmic vehicle routing. Downstream is a user friendly, open-source software package that fills the gap revealed

by FIRST’s needs. Using the cut-and-branch algorithm devised by Cordeau (2006), Downstream uses linear

programming techniques to generate daily transportation schedules optimized to reduce wait time and wear and tear

on vehicles. Downstream’s tech stack is accessible for free at a reasonable level of use, including spreadsheet software

such as Microsoft Excel, the Google Cloud API and Google’s OR-Tools optimization suite. The software is designed

to be easy for a first-time computer user to install and run, with a simple step-by-step installation process. Replacing

FIRST’s manual routing process with Downstream saves hours of human effort every week, reduces vehicle mileage,

and prevents unnecessary wait times for clients. We hope that other small organizations can reap similar benefits.

1. Introduction

We undertook the Downstream project on the hypothesis that a software-as-product approach to transportation routing

could provide significant value to small organizations like FIRST. While Downstream draws on a deep pool of existing

research and development, most commercially available routing solutions use a software-as-service approach,

entailing subscription fees that impose a significant financial burden on a small nonprofit like FIRST. Relying on an

outside service also creates potential problems with continuity of service and confidentiality of client information.

Downstream offers a lightweight, mission-focused alternative to these existing services.

At the most general level, vehicle routing problems (VRPs) are computationally intractable. That said, route

optimization is a critical problem in industrial logistics, a multi-trillion dollar global market. Accordingly, many

algorithmic and heuristic approaches have been developed to attack subsets of VRPs defined by constraints. FIRST’s

transportation needs correspond to the Dial-A-Ride Problem (DARP), which is itself well-studied due to its

widespread practical application in real-world scenarios. Downstream builds on the existing body of work on the

DARP to create an approachable software product for a non-technical user.

816

2. Literature Review

Because route optimization is so important to industrial logistics, it is an extremely well-studied field. Most approaches

begin with the Vehicle Routing Problem (VRP) developed by Dantzig and Ramser1 in 1959, one of the first

commercial applications of computers. The VRP is an NP-hard problem2, but can be made more tractable by adding

constraints that further specify the particular problem at hand, creating a taxonomy of problems that admit different

solution procedures. FIRST’s transportation needs closely resemble the Dial-A-Ride Problem, which generates routes

and schedules for users who request pickup at an origin location and dropoff at a destination location. In graph theory

terms, each user’s requested trip represents an edge between an origin and destination node. Vehicle Routing3, a joint

publication of The Society for Industrial and Applied Mathematics and the Mathematical Optimization Society,

provides an overview of the VRP With Time Windows in chapter 5, and the DARP in chapter 7.

 Once the appropriate constraints have been added to the general VRP, the practice originated by Dantzig and

Ramser1 is to solve the resulting problem using linear programming (LP), which finds the optimum value of a linear

function given linear constraints in the form of equations or inequalities. For the sake of the DARP, the function to be

optimized (“objective function”) represents the total travel distance or time by the vehicle fleet; the constraints

describe the parameters of the problem. For instance, a constraint may require a vehicle to drop off a given passenger

only after that passenger is picked up, or require the vehicle that drops off a passenger to be the same vehicle that

picked the passenger up. The resulting LP problem can be solved by any of a variety of open-source or commercially

available LP solvers.

 After reviewing the discussion of the DARP in Vehicle Routing and “Survey of Dial-A-Ride Problems”4 by Ho et

al., we selected Jean-François Cordeau’s algorithm described in "A Branch-and-Cut Algorithm for the Dial-A-Ride

Problem"5. The next step was to formalize the constraints that defined an acceptable solution. Based on the needs of

FIRST, we decided that minimizing delay was a higher priority than minimizing travel distance. Orda and Rom’s

“Shortest-Path and Minimum-Delay Algorithms in Networks with Time-Dependent Edge-Length”6 provided insight

into the mathematical requirements of balancing those constraints to match FIRST’s priorities. We also reviewed

Schilde and Hartl’s “Metaheuristics for the dynamic stochastic dial-a-ride problem with expected return transports”7

in consideration of possibly providing Downstream with dynamic routing capability; however, we decided not to

implement dynamic routing due to time constraints and the fit to the static routing process FIRST currently has in

place.

3. Project Description

Downstream is an app designed to meet the transportation routing needs of FIRST at Blue Ridge. FIRST is a residential

12-step recovery program with around 150 clients who live on-campus. Almost all of those clients work, and every

day brings many off-campus appointments as well. Without optimization software available, FIRST staff currently do

all transportation routing, scheduling, and planning “by hand.” This is a time-consuming and burdensome task that

must be repeated every day, and due to confidentiality issues must be performed by administration-level staff.

Downstream closes that technological gap with powerful and accessible resources Google’s OR-Tools optimization

suite, Google Cloud services, and familiar office spreadsheet software. The combination of these freely-available

products allows Downstream users to shift the burden of transportation scheduling to a fast, highly accurate software

solution. Downstream’s demonstrable value to FIRST at Blue Ridge indicates the opportunity for open-source

software to provide great value to small organizations, particularly nonprofits and those with a limited budget.

3.1 Requirements/Specifications

Software requirements:

Spreadsheet software (e.g. Microsoft Excel, iWork Numbers, LibreOffice Calc, Google Sheets)

Hardware requirements:

Desktop PC or Mac

Windows 7 64-bit or Mac OS X 10.9.2 or later

Quad-core Intel or AMD processor, 2.5 GHz or faster

817

NVIDIA GeForce 470 GTX or AMD Radeon 6870 HD series card or higher

8 GB RAM

Other requirements:

Internet access (No browser restrictions; Downstream includes its own HTTPS client)

Free Google Cloud account (nonprofit upgrade optional)

3.2 Design

Downstream accepts user data from spreadsheet files and transforms it into an LP problem using Google’s OR-Tools

optimization suite. Once the OR-Tools solver finds a solution, Downstream parses it into a human-readable

spreadsheet file. Because Downstream’s users may have minimal familiarity with technology, operating Downstream

is a matter of running a single executable file, turning input files into a ready-to-use timetable with one double-click.

 In addition to original code, Downstream incorporates several open-source resources. We credit Niels Lohmann for

his JSON for Modern C++ library8; Ben Strasser for his Fast CSV Parser library9; GitHub user Yhirose for cpp-http

lib10; and Google for their OR-Tools suite11, including LP, MIP, and cut-and-branch solvers, as well as the Google

Maps API12.

 The Downstream app incorporates four user input files: .config.csv, settings.csv, vehicles.csv, and appointments.csv.

The .config file includes variables for file paths and the Google Cloud API key. Once the user provides their unique

API key, these parameters need never change. The settings file includes configurable solver parameters such as the

allowable early arrival window and the maximum client wait time, which can be tightened for a timely schedule or

relaxed if no solution is otherwise possible. The vehicles file contains a list of vehicles in the organization’s fleet and

their passenger capacity. The day’s transportation requirements are located in the appointments.csv file; each entry

includes the client or clients served at an appointment, the number of clients being transported, the time window of

the appointment, and the appointment address.

Example config.csv file, viewed in LibreOffice spreadsheet software. API key redacted.

Example settings.csv file, viewed in LibreOffice spreadsheet software.

818

Example vehicles.csv file, viewed in LibreOffice spreadsheet software.

Example appointments.csv file, viewed in LibreOffice spreadsheet software.

 After reading the data provided by the user, the Parser creates a vector of Node data structures representing pickup

or dropoff from a single address. Each Node has data fields for passenger name(s), earliest and latest allowable service

time, service duration, address, load, and a unique ID. A pickup Node has a positive load; a dropoff Node has a

negative load, representing passengers leaving the vehicle. One appointment represents four Nodes: a pickup and

dropoff Node for transportation to the appointment, and a pickup and dropoff Node for the return trip to FIRST. In

order to manage problem size and increasing execution time, the Parser splits the list of Nodes into a series of smaller

problems, each representing a maximum of ten appointments. See section 3.3 for further discussion of the execution

time issue.

 Once Downstream parses this information, its Spyglass module uses the Google Cloud API and an integrated HTTPS

client to automatically and securely collect travel information. Spyglass uses the free Google Places API to standardize

addresses and locations so that Downstream can recognize addresses despite minor changes in entry. For instance, the

address “Karpen Hall, Asheville, NC” and “Karpen Hall, Asheville, North Carolina, 28804” are correctly identified

as the same address. This reduces billed API calls and local storage.

819

 After standardizing addresses, Spyglass acquires the travel time and distance for each pair of addresses using the

Google Maps API. In order to adhere to the software-as-product model, Spyglass limits API calls to Google’s free

allotment by default. After downloading information from an API call, Spyglass stores it locally in JSON-formatted

files so that the same call need not be made again. Thanks to Downstream’s careful budgeting of billed API calls, it

can acquire information for hundreds of addresses using the $200 monthly budget for free API calls that Google

provides.

 Using the client’s requirements and route data provided by Spyglass, Downstream creates an ORSolver object that

applies Cordeau's constraints to transform the collected information into a LP problem. The ORSolver object uses the

OR Tools library’s linear solver to solve the LP problem, then converts the numerical solution to addresses, vehicle

IDs, and travel times, formatting a human-readable schedule in the file schedule.csv.

820

Process flow diagram for Downstream.

3.3 Testing, Validation, and Verification

To ensure that it yields accurate, efficient solutions, Downstream has been tested on edge cases, examples, and

anonymized scheduling data provided by FIRST. We have also scheduled a “phase-in” period during which it will be

821

used in tandem with FIRST’s existing scheduling process to identify opportunities for improvement to both its

algorithm and its user experience.

 During the testing phase we encountered a significant issue with Cordeau’s DARP algorithm: exponential growth.

Cordeau’s algorithm incorporates an objective function and several constraints that grow in O(n2) relative to the

number of nodes, where each appointment represents four nodes or two edges. Our original design used the COIN-

OR optimization suite and wrote the optimization problem in .lp file format; however, we found that reproducing

realistic transportation schedules as LP problems in .lp file format resulted in files too large for COIN-OR’s interpreter

to correctly parse. We then pivoted to using Google’s OR Tools API to create the problem in memory. This

circumvented the issue with COIN-OR’s .lp interpreter, but the problem of exponential growth remained.

 Cordeau’s test cases go up to 32 “users” (64 nodes, or 16 appointments) in size, and five of his 30 test cases could

not be solved to optimality in 12 hours of CPU time (21). A typical day at FIRST represents 20-30 appointments, each

consisting of two edges (outgoing and ingoing), for an average of over 80 nodes. None of the one-day schedules

provided by FIRST represented a problem small enough to be solved by Cordeau’s algorithm in a feasible length of

time.

 In order to keep solution time within reasonable bounds, we incorporated a function into the parser that splits the

appointments into “bite-sized” chunks of at most ten appointments. We then developed an automated script to run 20

tests on appointments.csv files randomly generated from FIRST input. Due to the rapid growth of execution time

without the splitter function, we were unable to test problems larger than 14 appointments on the original Downstream

algorithm; however, the execution time shows a clear exponential curve as appointments increase. The splitter

algorithm keeps execution time under seven minutes in test cases up to 20 nodes in size.

Downstream problem size (appointments) vs. execution time. Each data point is the average execution time of 20

randomly generated problems.

4. Future Work

Our original testing plan included the development of a schedule evaluator, which would sum the travel time, vehicle

mileage, and client wait time for a given schedule to allow quantitative comparison between multiple solutions for a

given problem. Unfortunately the time allocated for the schedule developer was unexpectedly taken up by the pivot

from COIN-OR’s .lp interface to OR-Tools API.

822

 The schedule evaluator software would also allow side-by-side testing of a wide variety of other solvers, solver

parameters, heuristic approaches, and possibly even other LP formalizations of the DARP. The field of mathematical

optimization is both wide and deep, and while we believe our research is well-targeted, it is limited by time and

background knowledge.

 In the shorter term, we do not intend to lose sight of our customer’s interests. We will remain in contact with FIRST

at Blue Ridge, helping them master Downstream and using their feedback to improve future versions of the software.

Once FIRST has incorporated Downstream into their workflow, we will be able to produce non-technical written

documentation and a short series of instructional videos for training and reference purposes.

 While Downstream was developed according to the needs of FIRST at Blue Ridge, it was never intended to be solely

for their benefit. We have elected to make Downstream available as open-source software in hopes that other

organizations can make use of its capabilities or use it as a template for software that serves their differing needs.

5. Results and Reflection

Development of Downstream includes industry-wide best practices of requirements elicitation, goal-oriented

development documents, utilization of third-party libraries, end-to-end testing, clean code style, and documentation

for both maintenance and use. In creating Downstream, we focus on quality from the beginning of development to the

last stages of deployment, from the standards of code creation to the rigor and customer value of the solvers’ solutions.

The resulting application is not only functional, but accessible to code improvement, customization, and additional

features.

 Downstream’s business value is evidence-based and easy to demonstrate based on its software-as-product model

and impact on the scheduling workload of FIRST administrative staff. With the ability to use multiple solvers, optimize

solutions based on client requirements, and produce a printable list via a maximally user-friendly process, it is

pinpointed to the needs of our client. Downstream evanesces a lengthy, burdensome process into a press of a virtual

button.

 One possible avenue for future work is developing Downstream as a web app. Downstream already requires and

uses the internet to gather essential data, and all the required software to offer Downstream online is available in a

variety of formats, both proprietary and open-source. Our choice to make Downstream a local app was driven by the

priority that it be readily available and best serve FIRST, not any technical infeasibility of presenting it on the web.

 We would particularly add that, given that Google offers not only Maps and Sheets spreadsheet software, but even

its own open-source optimization suite and solver, OR-Tools and GLOP, all the pieces are in place for Google to

develop a vehicle routing product like Downstream. We believe that such a product, backed by Google’s technical

expertise and support, could be a source of revenue or an invaluable contribution to the open-source software

community.

 However, the Downstream project itself demonstrates an opportunity for that open-source community to rise to the

occasion, regardless of what for-profit corporations like Google may decide. Downstream is a single point in a vast

space of optimization solver options, software dependencies, input and output configurations, and client preferences.

From that vantage point, we are convinced that transportation scheduling is properly the work of software, not human

effort. We hope that in the future, Downstream and other products like it will carry that load.

6. References

1. Dantzig, G. B., & Ramser, J. H. (1959). The truck dispatching problem. Management Science, 6(1),

pp. 80–92.

2. Toth, P. and Vigo, Daniele., eds. The Vehicle Routing Problem. Monographs on Discrete Mathematics and

Applications. 9. Philadelphia: Society for Industrial and Applied Mathematics. 2002.

3. Society for Industrial and Applied Mathematics and Mathematical Optimization Society. Vehicle Routing:

Problems, Methods, and Applications, edited by Toth, Paolo and Daniel Vigo. 2nd ed., Society for Industrial and

Applied Mathematics, 2014.

4. Ho, Sin C., W.Y. Szeto, Yong-Hong Kuo, Janny M.Y. Leung, Matthew Petering, and Terence W.H. Tou. "A

survey of dial-a-ride problems: Literature review and recent developments." Transportation Research, vol. 111, part

B, 2018, pp. 395-421.

823

5. Cordeau, Jean-François. "A Branch-and-Cut Algorithm for the Dial-A-Ride Problem." Operations

Research,vol. 54, no. 3, 2006, pp. 573-586.

6. Orda, Ariel and Raphael Rom. “Shortest-Path and Minimum-Delay Algorithms in Networks with Time-

Dependent Edge-Length.” Journal of the ACM, vol. 37, no. 3, 1990, pp. 607-625.

7. Schilde, M. K.F. Doerner, and R.F. Hartl. “Metaheuristics for the dynamic stochastic dial-a-ride problem with

expected return transports.” Computers & Operations Research, vol. 38, 2011, pp. 1719-1730.

8. Lohmann, Niels. JSON for Modern C++ version 3.9.1. GitHub, 6 August 2020.

https://github.com/nlohmann/json/

9. Strasser, Ben. Fast C++ CSV Parser. GitHub, 3 January 2021. https://github.com/ben-strasser/fast-cpp-csv-

parser

10. Yhirose. Cpp-httplib. GitHub, 6 April 2021. https://github.com/yhirose/cpp-httplib

11. Google. Cloud Maps Platform. Google, 6 April 2021. https://developers.google.com/maps

12. Google. OR-Tools. Google, 6 April 2021. https://developers.google.com/optimization

https://github.com/ben-strasser/fast-cpp-csv-parser
https://github.com/ben-strasser/fast-cpp-csv-parser

