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Abstract 
Slugging percentage (SLG) has been a popular baseball statistic for decades and important today as one of two components of the 
ubiquitous OPS (On-base plus Slugging) statistic.  The traditional SLG used in OPS uses a linear combination of singles, doubles, 
triples and home runs, with the weights equal to the number of bases the batter advances on each type of hit.  A study of the process 
of scoring runs leads us to suggest alternate weightings that more accurately reflect the value of each type of hit.  We present two 
versions of weighted slugging percentage (wSLG) with these redefined weights.  Both versions suggest that in traditional SLG, and 
thus in OPS, singles are undervalued relative to doubles. 
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1 Introduction: A Traditional Statistic and a Rationale for an Alternative 

In Major League Baseball (MLB) today, players’ offensive capabilities are measured by certain key metrics. These include batting 
average (AVG), which has been used for generations, and some relatively new measures like on-base percentage (OBP), which 
gained popularity as interest in analytics grew late in the 20th century.  Another common measure, slugging percentage (SLG) has 
been used even longer than OBP (see [Crashburnalley (2025), Schell (2016), Vanderwerken (2021), Wikipedia (2024)] for a 
history, some issues, and an analysis of the greatest sluggers of all time). Batting average and on-base percentage are commonly 
used metrics, as they show how successful a player is at getting hits or getting on base, both of which are key contributions to a 
team's offense. These statistics, however, do not account for a hitter’s ability to produce extra-base hits. Certainly, a home run 
provides a larger contribution to a team's offense than a single, but both would have the same effect on a player’s batting average 
or on-base percentage. The slugging percentage metric attempts to remedy this by calculating the number of bases per at-bat:  

𝑆𝐿𝐺		 = 		
1 ×	(𝑠𝑖𝑛𝑔𝑙𝑒𝑠) 	+ 	2 × (𝑑𝑜𝑢𝑏𝑙𝑒𝑠) 	+ 	3 × (𝑡𝑟𝑖𝑝𝑙𝑒𝑠) 	+ 	4 × (ℎ𝑜𝑚𝑒	𝑟𝑢𝑛𝑠)

𝑎𝑡 − 𝑏𝑎𝑡𝑠 . 

This statistic has become much better known as hitters are now often judged by their “slash line”, listing their batting average, on-
base percentage and slugging percentage separated by slashes.  As an example, Boston Red Sox outfielder Jarren Duran had a 
2024 slash line of .285/.382/.492.  Many observers like to combine the last two parts of the slash line into a single statistic, the on-
base plus slugging (OPS) metric, so OPS = OBP + SLG, so Duran’s OPS for the season was 0.834.  The OPS formula gives equal 
weighting to the two variables.    

SLG values certain types of hits more than others in order to try to provide a better representation of a player’s offensive 
contributions. Clearly, a home run should carry the most weight, followed by a triple, then a double, then a single. The weights of 
four, three, two, and one certainly make the statistic very easy to calculate and follow the correct intuition for calculating a 
player’s offensive capabilities, with the weights equivalent to the number of bases the batter advances. However, these integer 
weights are too simple to truly provide the best measure of offensive contribution.  While slugging percentage, sometimes called 
“total base percentage”, was cited occasionally for many years, it was in the 1950s that it became most commonly reported.  At 
that time simple integer weighting made sense, but in the 21st century it is possible both to find better weights and then to use 
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them.  In this paper, our suggested alternative weightings will produce measures that are consistently smaller than traditional SLG, 
and this in turn suggests that perhaps SLG is “over valued” in the traditional OPS calculation. 

Small but meaningful tweaks to established statistics are standard practice in baseball analytics.  A well-known example of 
improving a metric by replacing integer values with decimals that give better results involves a modification to the Pythagorean 
winning percentage (PWP) formula.  This formula suggests that a team’s winning percentage should be nearly equal to the ratio of 
their runs scored, squared, to runs scored, squared, plus runs allowed, squared: 

PWP = (runs scored)2 / ((runs scored)2  + (runs allowed)2) 

This formula is a useful predictor of winning percentage, and teams that outperform their expectation through the first half of a 
season are good bets to regress slightly in the second half.  But an even more accurate version is observed by replacing the 
“square” in the formula with a value of about 1.87 [Baseball-Reference (2024)].    

We derive two versions of an augmented slugging percentage metric, weighted slugging, which we will denote as wSLG.  Each 
version provides weights that better capture the relative value of singles, doubles, triples, and home runs and, in future work, these 
weights can be tailored to a team’s particular tendencies.  We do this by considering how much each type of hit impacts the team’s 
expected runs scored in a game.  Since runs scored are the defining characteristic of whether a team wins or loses, we will use the 
change in expected runs to define the value of a particular hit.  

Our first version is computed under the assumption that base runners advance as many bases as the batter, and then we allow for 
additional base runner advances, for instance a runner on first scoring on a double.  Our key result is that in either version, under 
reasonable assumptions, a home-run is worth a bit more relative to a triple than the standard slugging suggests, while a double is 
not worth quite as much relative to a single. As triples are rare, the consequences of the first result are minor; however, as singles 
and doubles occur frequently, even a small improvement can have significant impacts on the run production of a team and the 
evaluation of a player’s production.   

These small improvements can be especially valuable now that all major league teams have analysts who understand the 
fundamentals of making good decisions with data. Organizations use increasingly sophisticated approaches as they try to gain 
modest but potentially important competitive advantages.  Our approach is similar to the work done on weighted on-base average 
as seen in Slowinski (2024). 

 

2 Mathematical tools:  Expected values and Markov chains 

Baseball games are readily modeled using Markov processes [Bukiet (1997), Statshacker (2023)].  We use two key tools to derive 
appropriate weights for our wSLG statistic.  The first is a run expectancy matrix with values of the expected runs in the rest of the 
inning from any possible base runner configurations, and a game state probability matrix that includes probability of being in each 
configuration. Both matrices are based on data from the 2010-2015 MLB seasons. From this, we calculated the effect of each type 
of hit on a team’s expected runs in a given inning in order to calculate how each type of hit should be weighted.   

The run expectancy matrix (Table 1a) measures the change in the expected number of runs scored from the beginning of a batter’s 
at-bat to the end of it. Run Expectancy (RE) is the number of runs a typical team scores in the remainder of the inning based on 
the number of outs and location of baserunners.   For example, at the beginning of an inning with 0 outs and no one on base, 
denoted by “000”, we would expect the total number of runs scored to be 0.481.  If a team has already scored one or more runs in 
an inning, we add the runs scored to the expected runs to get an updated value.  For example, if a player leads off an inning with a 
home run then we remain in the same state, but the expected runs increases to 1.481. 

As expected, these estimates generally decrease as the number of outs increase but increase as the number of baserunners increase. 
The game state probability matrix (Table 1b) shows the probability of the 24 different scenarios of a standard 9-inning MLB 
game. To give an interpretation, the probability of being in the game state “nobody out, nobody on” is 0.244.  It is not surprising 
that this is the most likely state as it is the only one that must occur in each inning. The run expectancy and game state probability 
matrices will be used to calculate the relative values of a single, double, triple and home run and are fundamental to our analysis. 
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Tables 1a and 1b:  Table 1a (left) shows run expectancy based on base/out state; and table 1b (right) shows the probability of 
being in that state at any given time. 

 
Our initial inspiration for the development of a model that seeks to understand the true value of a single, double, triple, and home 
run arose from the fact that baseball can be modeled as a Markov chain.  The Markov model uses the transition probabilities that 
represent the chance of moving from any one of 24 possible game states (eight possible base runner configurations, each with one, 
two or three outs).  A 25th state can be considered as the “three outs, inning over” state. The Markov model has been applied in the 
analysis of run distributions and the predictive modeling of the number of games that a team should win.  The run expectancy 
matrix generated from the 24 game states provides the basis to analyze the weights of slugging percentage. The simplified nature 
of the slugging percentage weights suggests a more detailed analysis could provide a more accurate measurement of the true value 
of a single, double, triple, and home run. In our review of previous literature, we have yet to find an event-based approach that 
explicitly seeks to analyze the true value of various hits. Thus, this paper presents our approach to modifying slugging percentage 
with alternative weights to more accurately represent the value of a single, double, triple, and home run. 

 

3  Derivation of appropriate weights: Fixed baserunning 

Yet our analysis begins by first comparing the relative value of a triple versus a home run. This comparison provides the simplest 
starting point for beginning to evaluate the relative weights of all types of hits.  For both hits, every runner currently on base will 
score. Therefore, we know exactly how many runs will score every time a triple or home run is hit. Additionally, we also know the 
exact game state that will result from a triple and a home run. A triple will clear all the bases and leave the batter at third base, 
resulting in a “003” game state, meaning one runner on third base. A home run will clear all the bases, including the batter, which 
results in a “000” game state, meaning no one on base. This example means we do not have to make any assumptions about 
baserunning, avoiding the need for adjustments required when there may be multiple resulting game states. Finally, in all the 
analyses below we ignore the effects of errors so we do not worry about a triple with say a throwing error, allowing the batter to 
score, which is rare at the major league level. 

From this basic understanding of how the triple and home run interact with the run expectancy matrix, we can then use this to 
provide the relative gain from a triple and a home run from each of the 24 game states. This calculation uses what we call the 
RE24 statistic, which is a run expectancy-based measure that uses the 24 game states. The calculation is as follows: 
 

RE24  :=  RE End State − RE Beginning State + Runs Scored 
 
As described previously, the RE End State will remain fixed for a triple with the values 1.350 (0 outs), 0.950 (1 out), and 0.353 (2 
outs), and similarly for a home run with the values 0.481 (0 outs), 0.254 (1 out), and 0.098 (2 outs), but with an additional run 
scored compared to the triple. This calculation will be done for beginning state run expectancy for each of the 24 game states in 
the matrix for both home runs and triples resulting in the average contribution for a triple and a home run from each game state.  
We then normalize the values above depending on the probability of being in each of the game states to begin with, which we 
obtain from the game state probability matrix.  Tables 2 and 3 show the results. 
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Tables 2a (left) and Table 2b (right): The gain from in run expectancy for each game state for triples and home runs. 

 

 
Tables 3a (left) and 3b (right):  The gain metrics multiplied by the probability that a game is in the corresponding state.  The 
sum of all entries is the expected gain for each type of hit. 
 

 
 
The result we find is a normalized “Expected Triple Gain” of 1.033 and a normalized “Expected HR Gain” of 1.420. The meaning 
of these values is that on average, accounting for the probabilities of the 24 game states, over time we can expect a triple to 
contribute 1.033 runs and a home run to contribute 1.420 to any given inning. The more important results are in how our model 
values the triple relative to the home run versus how SLG values this ratio below. 
 
Table 4: The difference in value of a triple and home from the probability model, compared to the standard slugging 
percentage formula 
 

 
. 

Clearly a triple is less valuable than a home run; the question we are addressing is how much less? Based on these results in Table 
4, we find that SLG overvalues the triple relative to the home run since our model ratio is smaller than 0.750, representing a 3.08% 
overvaluation of the triple relative to SLG’s value.  A difference on the order of 3% is not particularly large and, since there are 
few triples, relatively unimportant in explaining run production.  But what is important is the general principle of trying to find the 
correct relative values. When we compare the standard integer weights of a single versus double, a similar analysis yields a much 
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larger difference.  Since these are the two most common hits, having correct relative weights will help us evaluate both scoring 
potential and, eventually, player contributions. 

In our second level of analysis, we used the run expectancy matrix and game state probabilities to examine the relative value of a 
single and a double. Unlike a triple and homerun, a single or double does not clear all the baserunners, therefore, we need to 
account for the movement of baserunners. To simplify the analysis, we make the assumption that a single moves a baserunner one 
base, while a double moves a baserunner two bases. Of course, this assumption does not match the realities of baseball, as a single 
or a double can advance a runner multiple bases. We will adjust for the dynamic running of baserunners in section four. 

For this analysis, we will have a beginning game state and a resulting game state and determine the number of runs scored after a 
single or double is hit. The resulting game state and number of runs scored for both types of hits is shown in Table 5. 

 
Table 5:  For each game state, the runs scored and resulting game state after a single, under the assumption that all 
baserunners advance exactly one base. 
 

 
 
 

The calculation of RE24 is straightforward and can be repeated with a double. Starting with a single, we find the difference 
between the run expectancy in the initial game state and the resulting game state and add the number of runs scored, if any. For 
example, the run expectancy for an initial game state of 0 outs and no runners on, denoted as “000”, is 0.481. After a single is hit, 
which results in a game state of “100”, the run expectancy shifts to 0.859. In this situation, no runners will score, so the relative 
value of a single will be the difference between the two, 0.378. We then make this calculation for each of the 24 game states that 
exist, projected in the matrix below. 

Table 6: The increase in run expectancy after a single in each game state under the assumption that all baserunners advance 
exactly one base. 

 
 

Under the assumption that baserunners can only advance one base on a single, the gain from hitting a single will never exceed one, 
as the maximum number of runs scored is one, which is only when the initial game state has a runner on third base. Interpreting 
the results, the value of a single is generally higher when there are fewer outs and when a runner advances into a more likely 
scoring position. 

 The corresponding analysis for doubles is summarized in Table 7. 
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Table 7: The increase in run expectancy after a double in each game state under the assumption that all baserunners advance 
exactly two bases. 

 

 
 
The gain from a double exceeds one in most circumstances, as a double will bring in a run every time a base runner is on second 
or further and leave another runner in a dangerous scoring position.  After calculating the relative gains for a single and double, we 
then normalize these values based on the probability of being in each game state, as seen in Table 8. 

Tables 8a (left) and 8b (right):  The gain metrics multiplied by the probability that a game is in the corresponding state.  The 
sum of all entries is the expected gain for each type of hit. 

 
As seen in Table 8, we find that the expected gain from a single and a double are 0.379 and 0.701, respectively. We again compare 
how these values relate to the SLG statistic. Within the slugging percentage formula used by the MLB, the relative value of a 
single over a double is 0.5. However, our analysis shows that relative value should be 0.541. Therefore, the SLG statistic is 
undervaluing the single over the double by 7.53%. These values, in the context of slugging percentage, are shown in Table 9. 

Table 9: The difference in value of between a single and a double from the probability model, compared to the standard 
slugging percentage formula. 
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This is not to say that a single is more valuable than a double, but that it may be important for managers to think about which 
statistics to value when assessing the quality of a hitter. 

 

4  Derivation of appropriate weights:  Variable baserunning 

In this section, we include the possibility that runners on base could progress more bases than the batter. It is important to note that 
the main simplifying assumption here is that each person on base will still progress the same number of bases. For example, we 
have not yet modeled the case where after a single, one runner goes from first to second base while another runner progresses from 
second base to home. Likewise, we do not allow for the possibility that the runners on base advance fewer bases than the batter, an 
infrequent but not unheard of play. For example, a slow runner on second base and a speedy hitter could change our game state 
from “020” to “023” after a double if the runner on second has to delay leaving to see if the ball is caught.   

To do this analysis, we found probabilities of runners advancing different numbers of bases on singles or doubles. These 
probabilities indicate that on a single, there is a 59% chance that each runner advances one base, a 40% chance that each runner on 
base will advance two bases and a 1% chance that each runner on base advances three bases. For doubles, the probabilities are 
about 75% for two bases and 25% for three bases.  Note that in each case, if a runner “advances” more bases than it would take for 
them to get home, they will simply make it to home plate and earn their team a run. So, for example, there would be no difference 
in the outcome if each runner “advanced” two or three bases if the at-bat started with only a runner on second.  

Using the probabilities in the paragraph above, we calculate the resulting game state for each type of hit depending on how many 
bases the runners advanced, as well as how many runs would be scored in each case.  Table 10 lists all of the possible results. 

Table 10a (top, for singles) and 10b (bottom, for doubles): The game states resulting from each type of baserunner advance. 

 

 

For example, if a batter comes to the plate with a runner on first and second, the batter hits a single, and the runners each advance 
two bases, the resulting game state would be “103” (runners on first and third), and one run would be scored. If the batter were to 
hit a double, with the runners advancing two bases, the resulting game state would be “023”, and one run would be scored. From 
this, we took the run expectancy in the resulting game state, in addition to the number of runs scored, for each possibility given a 
starting game state for both singles and doubles. Then, we took a weighted average of these resulting game states based on the 



wSLG Cardonick et. al. 

Mathematics and Sports  2025 |Volume 7(1) | page 8 
   

probabilities described above and subtracted the original run expectancy to determine the average contribution of a single and 
double from each game state, and we present these in Table 11: 

Table 11a (left, singles) and 11b (right, doubles): Expected runs gained on each type of hit for singles and doubles for each 
possible game state. 

 
 
As in the case for triples and home runs, we normalize these values based on the probability of being in each game state.  Table 12 
shows the expected gain in runs for each hit type: 
 
Table 12a (left, singles) and 12b (right, doubles): Overall expected runs gained on each type of hit for singles and doubles, 
normalizing across probabilities of the game states. 

 

 

 

From Table 12, we see that a single adds 0.442 expected runs to an inning, and a double adds 0.736 expected runs to an inning. 

4    Conclusion 
Based on our analysis of the four types of hits, we created two possible equations for wSLG; one that consolidates our findings for 
the analysis with fixed base movements for singles and doubles, and another that consolidates our findings for the analysis 
incorporating probabilities of advancing. The equations and corresponding weights are based on the relative values of the expected 
gains of each hit type: 

Fixed baserunning:    𝑤𝑆𝐿𝐺(f) = 1𝐵 + 1.849 × 2𝐵 + 2.725 × 3𝐵 + 3.745 × 𝐻𝑅. 

Variable Baserunning:   𝑤𝑆𝐿𝐺(v) = 1𝐵 + 1.665 × 2𝐵 + 2.336 × 3𝐵 + 3.211 × 𝐻𝑅. 

Any team with some data about the tendencies of their baserunners could weight these two values to produce a team specific value 
of wSLG for their own purposes.  But the key point is reinforced in either case:  Doubles are not worth twice as much as singles, 
and extra base hits are in general not quite as much as the traditional slugging percentage gives them credit for.  Because our 
findings indicate that the traditional SLG metric undervalues singles relative to other types of hits, using wSLG as an alternative 
metric will provide a more accurate measure of how many runs a batter can be expected to produce over a season.  A full 
comparison of how our models’ relative weights compare to the traditional SLG model’s weights is illustrated in Table 13. 
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Table 13:  Relative weights of hits in traditional and proposed weighted slugging averages. 

 

To examine how these alternative measures look when applied to actual players, we looked at the statistics for the top twenty 
leaders in slugging percentage for the 2023 MLB season.  In Table 14, we report the traditional slugging percentage (SLG) and 
the reweighted slugging percentages for each play under both fixed and variable baserunning.  The reweighted versions have 
lower values, and the version with variable base running has a larger difference than the fixed base running approach.  This makes 
sense, as the reweighted versions are essentially transferring some credit from the batter to the baserunners.  Note also that the 
difference (SLG - wSLG(v)) is smaller for Ronald Acuña Jr. than it is for teammate Matt Olson.  This makes sense as Acuña Jr. 
has many more singles and doubles than Olson, and those ‘keep the line moving’ hits are worth relatively more in this 
reformulation. Also observe that the relative ordering of players by SLG, wSLG(f) and wSLG(v) are almost identical. There are 
only three instances where the order would change, all for wSLG(v); we have highlighted those players in the table. Thus our new 
statistics align with existing metrics as to the relative value of the hitters, but differ slightly in estimating their worth. 

Table 14:  Traditional and proposed weighted slugging averages for 2023 MLB leaders in traditional SLG.  Reversals of 
position occur for players marked **. 

Name Team              SLG        wSLG(f)       wSLG(v) 
Matt Olson ATL 0.604 0.573 0.515 
**Ronald Acuña Jr. ATL 0.596 0.569 0.523 
Mookie Betts LAD 0.579 0.551 0.502 
Freddie Freeman LAD 0.567 0.540 0.498 
Juan Soto SDP 0.519 0.495 0.451 
Austin Riley ATL 0.516 0.492 0.450 
Bobby Witt Jr. KCR 0.495 0.471 0.432 
Julio Rodríguez SEA 0.485 0.463 0.425 
Marcus Semien TEX 0.478 0.456 0.419 
José Ramírez CLE 0.475 0.453 0.418 
**Kyle Schwarber PHI 0.474 0.448 0.398 
Francisco Lindor NYM 0.470 0.448 0.409 
Trea Turner PHI 0.459 0.438 0.403 
Paul Goldschmidt STL 0.447 0.428 0.396 
Alex Bregman HOU 0.441 0.422 0.389 
Ian Happ# CHC 0.431 0.411 0.378 
Nathaniel Lowe TEX 0.414 0.397 0.369 
**Eugenio Suárez SEA 0.391 0.375 0.346 
Nico Hoerner CHC 0.383 0.371 0.353 
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5    Future Work 
In creating a baseline model to examine the relative values of a single, double, triple, and home run, we instituted several 
simplifying assumptions.  Natural extension of this work would result from relaxing these assumptions and doing the more 
sophisticated modeling required to understand these.  By using a standardized run expectancy matrix, we assumed that each batter 
was a league-average hitter. However, some hitters can be more or less likely to move their team from one game state to another 
depending on their power, speed, and handedness. For example, a left-handed hitter who pulls the ball will be more likely to move 
a runner from first base to third base than a similarly-skilled right-handed hitter. In further considerations, it would also be prudent 
to examine the distribution of game states for hitters in the 3rd or 4th spot. Batters in the 3rd or 4th spot in the lineup have 
stronger hitters in front of them, and they are more likely to step to the plate with runners on base. In the model designed to 
account for the varying probabilities of how many bases a runner might advance on a single or double, our operating assumption 
was that all runners would advance the same number of bases. For example, on a single the probability of going from first to third 
is the same as going from second to home. Further studies could give a more accurate prediction of these probabilities of how 
many bases the runners advance given more data such as where the ball is hit. Surely there is a greater chance of going second to 
home on a single to the left fielder than there is of going first to third. Furthermore, the current model uses probabilities that are 
independent of the number of outs. With 2 outs and a full count the runners are off with the pitch; however, if there are 0 or 1 
out(s), and a line drive single through the infield is hit, the runners must freeze to see the ball down. This will halt the runner’s 
momentum and diminish their probability of advancing multiple bases. Further efforts could be made to study the implications of 
the fact that our analysis deems singles to be undervalued. Our analysis doesn’t account for the speed of the baserunners, but an 
initial observation would be that the faster your team the more you are undervaluing the single. This offers the question of whether 
teams should then consider sacrificing some offensive production in the traditional sense for more speed on the basepaths. This is 
increasingly relevant in the current state of the MLB with the rule changes that went into effect for the 2023 season. The bases are 
larger, effectively shortening the distance between bases, and pitchers are now only allowed two disengagements from the mound 
per batter. Results from the 2023 season show increases in the number of stolen bases and the success rate, further indicating that 
the running game may be inching its way back into a more prevalent role (or a role that can be capitalized upon). 
 
This analysis can be generalized by replacing our assumptions with variables. For a single or double, let p1 be the probability that 
all runners advance one base, p2 is the probability that all runners advance two bases, and p3 is the probability that all runners 
advance three bases. Note that for singles, p1 + p2 + p3 = 1, and for doubles, p2 + p3 = 1 and p1 = 0. The corresponding 
coefficients in the generalized analysis are computed below: 
 
Table 15:  Coefficients  
 

 

Using these formulas, one can compute the expected gain of a single or double taking into account the speed of their baserunners. 
This offers much more flexibility than the basic model, as it allows for teams to take their runners’ speed into account and 
calculate their own wSLG. For example, teams with faster players will see relatively higher wSLG weights for singles and doubles 
compared to triples and home runs, which accurately reflects the fact that fast teams benefit more from singles and doubles than 
slow teams.  Also note that for players who get most of their at-bats with slower runners on base, wSLG (or even traditional 
unweighted SLG) are more fair than RBIs since it is hard to drive in a slow runner from second with a single. 
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