
North Carolina Journal of
Mathematics and Statistics
Volume 10, Pages 20–39 (Accepted May 6, 2024, published May 10, 2024)
ISSN 2380-7539

Mathematical Approaches of Modeling Obesity Trends

DANIELLE DASILVA AND KAREN YOKLEY

ABSTRACT. The prevalence of obesity has drastically increased over the past several decades and
has caused strain within the healthcare system, as obesity puts individuals at an increased risk for a
variety of diseases and conditions. This project develops multiple mathematical models for obesity
trends in the United States. We first used linear regression to model how the overall trends of obesity
have changed over time. Linear regressions enabled us to gain insight into the relationship between
obesity and societal factors such as poverty and food insecurity and enabled us to gain insight into
the relationships seen in the data. Further, the rise in obesity levels has been theorized to mimic
the spread of an infectious diseases. Since infectious diseases are often studied using SIR-models,
we next developed an SIR model to study and analyze their effectiveness in modeling obesity. This
enabled us to gain an understanding of the population level dynamics however might be overly
complex. Finally, we used agent-based modeling strategies to create a probabilistic model of obesity
trends. The use of agent-based models is supported by the theory that one’s social community may
also impact the likelihood of becoming obese. The agent-based model was relatively simple but
modeled the population level dynamics well. Developing these and similar models could enable the
investigation of various intervention strategies to reduce obesity levels within the United States.

1. Introduction

Obesity, defined by the CDC (2022b) as having a BMI greater than 30.0, puts people at greater
risk for conditions such as heart disease, stroke, type 2 diabetes, and certain types of cancers
including pancreatic, liver, and kidney cancer. These conditions are among the leading causes
of preventable, premature death in the United States (CDC, 2022a). The United States obesity
prevalence has risen to 42.4% in 2017-2018 from 30.5% in 1999-2000 (Hales et al., 2020). This
increase is putting a strain on the overall healthcare system as the estimated annual medical cost of
obesity in the United States was nearly $173 billion in 2019 dollars. Medical costs for adults who
had obesity were $1,861 higher than medical costs for people with healthy weight (Ward et al.,
2021) Since obesity increases one’s risk of getting severely ill from COVID-19 (Kompaniyets
et al., 2021), the medical cost of obesity has likely increased in the past several years.

Mathematical models that describe the spread of infection in a population are well-established
(Smith et al., 2004). Although obesity is not contagious, how obesity spreads through a popula-
tion might mimic the trend of an infectious disease. Various researchers have looked at how to
model obesity with epidemiological models. Santonja et al. (2010) analyzed the incidence of ex-
cess weight in adults in Valencia, Spain and analyzed how strategies such as healthy advertising
campaigns could be an effective way of controlling the increase of adult obesity. Delavani et al.
(2021) created a differential equation model to investigate how obesity spreads among the human
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population and the impact of media campaigns but did not compare the model to data. Thomas
et al. (2014) aimed to model changes in BMI and the conditions under which obesity prevalence
will plateau. Their model was based on data from 1988 to 1998 in the United States and the United
Kingdom and considered both social and non-social influences on weight gain. However, they do
not consider a wider variety of influences, such as income or education, and they do not com-
pare different regions of the United States. Little research has focused on creating a mathematical
model describing how societal factors influence one’s likelihood to become obese, especially when
looking specifically at adults in the United States. By better understanding the societal factors that
are correlated with higher levels of obesity, healthcare professionals and policymakers can work to
counteract these factors and reverse the increasing prevalence of obesity.

One societal factor that is often connected to obesity is poverty. Researchers theorize that an
increase to access to healthy food for the nation’s poorest would decrease obesity levels in the
country. However, the research regarding the correlation between poverty and obesity have con-
flicting conclusions. Some researchers (such as Levine (2011)) suggest that poverty and obesity
are correlated because individuals who live in impoverished regions have reduced access to fresh
food due to phenomena such as food deserts. They observed that food insecurity along with greater
sedentary behavior is correlated with higher rates of obesity. This could be due to the low cost of
energy-dense foods, the decline in fruit and vegetable consumption or various psychological and
behavioral changes, such as a preoccupation with food, stress, depression, and physical limitations
in adults (Dinour et al., 2007). Ogden et al. (2010) have differing conclusions to their research.
They conclude that among men, obesity prevalence is generally similar at all income levels, with
a tendency to be slightly higher at higher income levels. Among women, higher income women
are less likely to be obese than lower income women, but the majority of obese women are not
low income. Low income was defined as having an income below 130% of the poverty level, and
high income was defined as having an income at or above 350% of the poverty level (Ogden et al.,
2010). Published research also suggests relationships between socioeconomic status and obesity
and between race/ethnicity and obesity (Fryar et al., 2012). Comparing trends between different
demographic factors and obesity levels across the United States over time will enable us to gain
insight into the influence these demographic factors might be having on obesity trends.

Social influences are also theorized to be connected to obesity levels. Specifically, Christakis and
Fowler (2007) show how obesity spreads through a social network over time. Christakis’s study
shows that having a friend who is obese increases a person’s chance of becoming obese more
than having a spouse who is obese. One’s family environment may also impact one’s likelihood
to become obese in other ways, Hernandez et al. (2015) showed the impact of infant feeding
methods on obesity levels. Additionally, Smith et al. (2020) found that obesity, weight, and dietary
behaviors are influenced by one’s social ties. Theorized mechanisms by which this occurs include
social support, social norms, social comparison, or behavior modeling.

The current research project involved the creation and analysis of various models of obesity
trends. These models incorporated the contribution of different factors, such as poverty, to the
rising obesity trends and can be used to estimate the effectiveness and outcomes of intervention
strategies. First, overall trends and factors were investigated through linear regression models.
Linear regressions between obesity levels and societal factors such as poverty and food insecurity
were conducted over time and by state. Next, compartmental differential equation models were
analyzed to assess their effectiveness in modeling obesity. This project adapted an SIR model
to describe the obesity trends throughout the United States population utilizing a system of three
equations that is subsequently simplified to a system of two equations. Finally, agent-based models
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were investigated to see if population trends within a defined group of individuals can be captured.
The use of agent-based models is supported by the theory that one’s social community may also
impact the likelihood of becoming obese. Ideally, agent-based models could be adapted to reflect
these trends. The goal of creating and analyzing these models is to accurately analyze the factors
contributing to the rise in the prevalence of obesity in the United States, predict future trends, and
develop strategies to minimize the prevalence of obesity.

2. Methods

According to the CDC (2022b), body mass index, or BMI, is a person’s weight in kilograms
divided by the square of height in meters. If a person has a BMI less than 18.5 they are considered
underweight, between 18.5 and 25.0 they are considered healthy weight, between 25.0 and 30.0
they are considered overweight, and if a person’s BMI is 30.0 or higher they are considered obese.

BMI can be used as a screening tool, but does not diagnose health. A trained health care provider
should perform appropriate assessments to evaluate an individual’s health status and risks. BMI
is moderately correlated with more direct measures of body fat obtained from skinfold thickness
measurements, bioelectrical impedance, underwater weighing, dual energy x-ray absorptiometry,
and other methods. However, BMI appears to be strongly correlated with various adverse health
outcomes consistent with more direct measures of body fat (CDC, 2022b). Despite obesity not
being a diagnosis of health, for the duration of this paper, obesity will be compared to a healthy-
weight category as a typical naming convention. This healthy-weight category is assumed to also
include underweight individuals. The healthy weight percentages were calculated based upon the
assumption that the population adds up to 100%, so the healthy weight percentage was assumed to
be 100% minus the reported obesity percentage and the reported overweight percentage. Addition-
ally, unless an overweight category is specified, overweight individuals have also been included in
the healthy-weight category because the levels of overweight individuals have not significantly
changed over the past ten years (CDC, 2023a).

The data used in this project were gathered through the Behavioral Risk Factor Surveillance Sys-
tem (BRFSS) (CDC, 2014). The BRFSS is a national system of health-related telephone surveys
that collect state data about United States residents regarding their health-related risk behaviors,
chronic health conditions and use of preventive services. The BRFSS completes more than 400,000
adult interviews each year. BMI was calculated from self-reported weight and height. Respondents
weighing less than 50 pounds or more than 650 pounds, with height below 3 feet or above 8 feet
and with a BMI less than 12 or greater than 100 were excluded from the obesity data used in this
study. Pregnant respondents were also excluded from the data. Obesity data collection strategies
have changed over time, and hence, for consistency, only data collected for 2011 or later was used.

Various software was used throughout the course of this project. The data were downloaded
from the CDC website and then processed and cleaned into a usable format in Microsoft Excel and
SQL. To perform the correlation analysis, the fit function within and differential equation anal-
ysis, MATLAB, version R2022b, was used (https://mathworks.com). For the multivari-
ate linear regressions, Python through Google Colaboratory (https://colab.research.
google.com) was used and the LinearRegression function was used within the linear model
class of the sklearn module (Pedregosa et al., 2011). To initially develop and visualize the dif-
ferential equation model, Wolfram Mathematica 12 was used (https://wolfram.com). The
numerical ODE solver, ode45, which is is based on an explicit Runge-Kutta (4,5) formula was
used in MATLAB. The optimization toolbox within MATLAB was also utilized for estimating

https://mathworks.com
https://colab.research.google.com
https://colab.research.google.com
https://wolfram.com


Mathematical Model of Obesity Trends 23

parameter values within the differential equation model, specifically fmincon was used. FminCon
finds the minimum of a constrained nonlinear multi-variable function utilizing an interior-point
algorithm and allows the restriction of parameter values to be within a specified range. In order to
develop the agent based model, NetLogo 6.3.0 was utilized (https://ccl.northwestern.
edu/netlogo/).

In order to investigate the relationship between poverty and obesity, national and state level
poverty data were retrieved and reformatted from the CDC’s Chronic Disease Indicator website
(CDC, 2024) for each of the years between 2011 and 2019. Obesity data were also gathered from
the CDC’s obesity data (CDC, 2023a) website for each state for each year between 2011 and 2019.
Data for the poverty levels and the obesity levels for each of the 50 states in 2019 were gathered.
Data for other societal factors were cleaned and prepared for analysis. One of these societal factors
was the percentage of people meeting aerobic physical activity guidelines for substantial health
benefits among adults aged 18 or older. The CDC further define this measure as the percentage
of adults who reported at least 150 minutes per week of moderate-intensity physical activity, or at
least 75 minutes per week of vigorous-intensity physical activity, or a combination of moderate-
intensity and vigorous-intensity physical activity (multiplied by two) totaling at least 150 minutes
per week (CDC, 2024). Data were also gathered from the USDA regarding food insecurity for
each state in 2019 (USDA, 2023). Food insecurity was defined as households that were uncertain
of having or unable to acquire enough food to meet the needs to all their members at times during
the year because they had insufficient money or other resources for food. Next, the prevalence of
sufficient sleep among adults aged 18 years or older was retrieved from the CDC (CDC, 2024).
Sufficient sleep was defined as getting 8 hours or more sleep for those aged 18 to 21 and getting 7
hours or more sleep for those above 22 years old on average during a 24-hour period.

For each income bracket, obesity data were gathered. The CDC separates income brackets into
less than $15,000, between $15,000 and $24,999, between $25,000 and $34,999, between $50,000
and $74,999, and finally as $75,000 and above. These income levels were self-reported and par-
ticipants were asked for their annual household income from all sources (CDC, 2023a). Since the
data were divided into income level instead of above and below the poverty line, categories of hav-
ing an income less than $15,000 and having an income of more than $15,000 were used to define
those in poverty and those not in poverty. However, since this is annual household income and the
poverty line varies based upon household size, this designation is not completely accurate. Those
with income not reported were excluded from the analysis. The reasons for unreported income
were not specified. Among people with an income level less than $15,000, 32.3% of people were
obese in 2011 and 38.7% of people were obese in 2021. Among people with an income of more
than $15,000, 27.5% of people were obese in 2011, and 35.7% of people were obese in 2021.
In the sample, the number of people with an income of less than $15,000 decreased from 49,598
to 19,516 from 2011 to 2021. This raw data supports Levine (2011)’s conclusion that poverty is
correlated to higher obesity levels.

3. Models

3.1. Correlation Analysis

Poverty has decreased over the past ten years in the United States. Obesity has increased over
the same time period. The percentage of people in poverty in the United States was plotted in
MATLAB for each of the years from 2011 to 2019, and then the percentage of people in the
United States classified as obese was also plotted on the same graph over the same time interval.

https://ccl.northwestern.edu/netlogo/
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These trends are illustrated in Figure 3.1. The inverse relationship that is seen in the data implies
that either the decrease in poverty has a delayed impact on obesity, or the correlation between
poverty and obesity is not as straightforward on a national level as researchers such as Levine
(2011) suggest. The lack of correlation is potentially due to the fact that less than 20% of obese
adults are at or below the poverty line. Thus, relatively small decreases in poverty would not lead
to any significant changes in overall obesity levels because the vast majority of obese individuals
are not in poverty (CDC, 2023a).
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Comparing Poverty and Obesity over Time

FIGURE 3.1. Comparison of poverty (CDC, 2024) and obesity (CDC, 2023a)
trends from 2011 to 2019

For each of the states in 2019, the data were plotted with obesity levels on the x-axis and poverty
levels on the y-axis. A linear regression between these factors was conducted and the strength and
direction of the correlation was analyzed. In Figure 3.2, a weak correlation between poverty and
obesity is observed when obesity levels and poverty levels in 2019 are compared across states. The
R2 value of this relationship is 0.283, implying that 28.3% percent of variance in obesity levels
can be explained by the variance in poverty levels. This supports the claim that poverty is not the
main or only driving factor of rising obesity levels across the United States.

The influence of other factors, such as exercise levels, food insecurity, and sufficient sleep on
obesity trends was also explored on a state-by-state basis. A linear regression was then conducted
and analyzed for each of these societal factors. These factors have R2 values of 0.434, 0.318, and
0.2276 respectively. Thus, these factors do not have a very strong correlation with obesity levels
on a population scale either.

A multivariate linear regression was then conducted in Python to further explore the relationship
between various societal factors and obesity levels. In the multivariate regression, the explanatory
factors that were analyzed included the percentage of people meeting exercise standards, experi-
encing food insecurity, meeting sleep guidelines, in poverty, and with sufficient health insurance.
This multivariate linear regression specifically analyzed these factors in 2019 compared with the
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FIGURE 3.2. Comparison of poverty (CDC, 2024) and obesity (CDC, 2023a) lev-
els in 2019 for each state

percentage of people with obesity. An R2 value of 0.33 was discovered for this relationship mean-
ing that 33% of the variation in obesity can be explained by the variation in these five factors.

For each of the CDC defined income brackets, a line was plotted in Matlab showing the obesity
percentages for individuals in that income bracket over the years from 2011 to 2019. The trends
for each income bracket were compared and analyzed. On a national level, the percentage of
people who are obese and in poverty was compared to the percentage of people who are obese
and not in poverty. Figure 3.3 shows that people in lower income brackets have higher levels
of obesity (CDC, 2023a). However, this data also tells us that the average yearly increase in
obesity is 0.64% for those in poverty (or with an income of less than $15,000) and the average
yearly increase is 0.82% for those with an income of greater than $15,000. Thus, higher income
individuals are becoming obese at a slightly higher rate. Additionally, those with an income not
reported are greatly impacting the yearly increase of obesity levels, as the average yearly increase
in obesity levels of the entire population is 0.56% which is lower than either of the two categories
independently.

3.2. SIR Model

3.2.1. Methods

Previous researchers have attempted to mathematically model obesity utilizing an SIR-type model
to capture obesity trends (Santonja et al., 2010; Delavani et al., 2021; Thomas et al., 2014). Thus,
the next model developed in the current investigation was a three compartment differential equa-
tion model which incorporates societal factors. The impact of factors such as decreasing poverty
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FIGURE 3.3. Obesity levels over time by income bracket

on obesity trends could potentially be analyzed. The three compartments are healthy weight, over-
weight, and obese. As in previous research, both transition and interaction terms were incorporated
into the model. The model was defined by the following system of differential equations:

s′(t) = −β1 ∗ s(t) ∗ ov(t)− β2 ∗ s(t) ∗ ob(t) + r1 ∗ ov(t) (3.1)

o′v(t) = β1 ∗ s(t) ∗ ov(t) + β2 ∗ s(t) ∗ ob(t)− k ∗ ov(t) + r2 ∗ ob(t)− r1 ∗ ov(t) (3.2)

o′b(t) = k ∗ ov(t)− r2 ∗ ob(t) (3.3)

where s is the healthy weight category, ov is the overweight category, and ob is the obese category
and the parameters are defined in Table 3.1. This model is a simplification of the models by
Delavani et al. (2021) and Thomas et al. (2014) which had systems of four and six equations
respectively. The system is also a simplification of the model by Santonja et al. (2010) as it does not
account for the movement of people in and out of the system and assumes one recovery parameter
from obesity to overweight and the same recovery parameter from overweight to healthy weight.
Previous researchers (Christakis and Fowler, 2007) have theorized that social interaction influences
someone’s likelihood to gain weight due to common shared behaviors and norms. People are
assumed to transition in and out of obesity based on a transition term. This transition could result
from two potential interactions that could cause someone to transition into the overweight class:
(1) an interaction between a healthy weight person and an overweight person which is governed
by a transition rate of β1, and (2) an interaction between a healthy weight person and an obese
person which is governed by a transition rate of β2. Based upon simulations, it was theorized that
β2 would be approximately four times greater than β1 in order to minimize our error functional.
Two recovery rates, r1 and r2 were used in the creation of the model. However, when the model
was optimized to the data, the resulting values of r1 and r2 were equal. Parameter optimization
and sensitivity analyses were then conducted. During parameter optimization, β1, β2, and k were
constrained to be optimized between 0 and 1 and r1 and r2 were constrained to be optimized
between 0.00001 and 0.1.

Preliminary analysis suggested that the three compartment differential equation model was an
over-complication of the data and the information available about obesity dynamics. The differ-
ential equation model was then simplified to have only two categories. The system of equations
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TABLE 3.1. Table of States and Parameters

State Description

s healthy weight (percentage of population)
ov overweight (percentage of population)
ob obesity (percentage of a population)
o combined overweight and obesity

Parameter Description

β1 transition rate due to interaction between s and ov population
β2 transition rate due to interaction between s and ob populations
β transition rate due to interaction between s and o populations
k transition rate from overweight to obese
r1 recovery rate from ov to s
r2 recovery rate from ob to ov
r recovery rate from o to s
t time (years)
N total population

governing the model were defined as follows:

s′(t) = −β ∗ s(t) ∗ o(t) + r ∗ o(t) (3.4)

o′(t) = β ∗ s(t) ∗ o(t)− r ∗ o(t) (3.5)

where s is the healthy weight category, and o is encompassing of an overweight and obese category.
Additionally, β is the rate of transition between healthy weight and overweight due to interaction,
and r is a recovery rate, or the rate at which people transition from overweight to healthy weight.
The interaction term is theorized to be a result of shared genetics with early life relationships,
learned behaviors, and shared social norms.

In order to gain a proper understanding of the whole population, it was assumed that

N = s+ o = 1 (3.6)

where N is the total population as a percentage, s is the proportion of healthy weight individuals
and o is the proportion of overweight and obese individuals. The o category is defined by adding
the ov and ob categories in the previous system of three differential equations. This assumption
enabled the utilization of overweight and obesity data from the CDC to compare to the model, as
the data was in percentages that add up to 100%. It was assumed that the healthy weight population
is equal to 1−(ov+ob). Published literature guided the ranges for the parameters. Previous research
enabled us estimate r, or the rate at which people lose weight and transition from obesity to healthy
weight, to be between 1

124
and 1

210
because researchers estimated that for people classified as obese,

the probability of attaining a normal weight was 1 in 210 for men and 1 in 124 for women (Fildes
et al., 2015).

The parameters in equations 3.4 and 3.5 were optimized for this model based upon the limited
data and information available. An error functional was utilized which calculated the sum of the
squared distance between the model prediction and the CDC data for each year. Values for both β
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and r were optimized. First, we restricted r between 0.0048 and 0.0081, and then we optimized
for β assuming that r is constant at 0.005.

Parameter values were then estimated separately for 49 states and the District of Columbia. New
Jersey was excluded due to the fact that there was data missing for 2019 for New Jersey. For each
state, β values were optimized for both variable r values and constant r values. The optimized β
values for each state were then plotted against the previously mentioned societal factors in 2019,
such as percentage of people in food insecurity, meeting exercise standards, in poverty, and meeting
sleep guidelines. Both linear regressions and a multivariate linear regression were conducted to
understand the correlation between β values and the societal factors on a state-wide level with the
goal of being able to create an equation to estimate β based upon knowledge of societal factors.

3.2.2. Results

For the three compartment model, the data from the CDC were used to optimize the model param-
eters. On a national level, Figure 3.4 implies that the data aligns relatively well to the optimized
model. The model adequately takes into account the trends of the data and how various categories
are changing over time. The overweight population remains relatively constant while the obese
population increases and the healthy weight population decreases. With the further optimization
of parameters, the model could become better aligned to the data. Since the model only captures
a small time frame for a slow progressing trend, the typical shape of an SIR-type model is not
captured within the time frame shown. However, the parameter values were difficult to optimize
based upon the data alone and the model was not sensitive to certain parameter values. This lack
of sensitivity can be seen in Figure 3.5. It is seen that when varying β1 and β2 by up to 10 times the
original values there is little impact to the obesity curve of the graph. However, for parameters that
the model is sensitive to, such as k, varying those parameters by up to 10 times results in almost
double the obesity values over the 10 years modeled.

FIGURE 3.4. Solution curves for equations (3.1) - (3.3) compared to United States
data (CDC, 2023a) with a β1 = 0.01, β2 = 0.045, k = 0.02, and r = 0.005.

When the model was simplified from a three compartment to a two compartment model, the
model was still able to fit the data (CDC, 2023a) extremely well between 2011 and 2019 as seen
in Figure 3.6. The following optimal parameters were found with the specified error value when
considering national data:
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• β = 0.0305
• r = 0.0049
• error: 8.9623× 10−5

When r was restricted to be equal 0.005, the following optimal parameter was found with the
specified error value:

• β = 0.0307
• error: 8.9814× 10−5

Thus, on the national level, keeping r constant can produce almost as low of error as letting r
vary. These error values can be compared to the minimum error achieved on a national level for
the system of three differential equations which was 8.5592× 10−4. These low error values imply
that the model fits the data well with minimal error. These results imply that accuracy has been
maintained with the simplification of the model.

0 2 4 6 8 10
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0.6

0.7

FIGURE 3.6. Solution curves for equations 3.4 and 3.5 optimized to United States
data (CDC, 2023a) with a β = 0.03 and r = 0.005.

The two compartment model was optimized over both β and r and then optimized over just β
keeping r constant at 0.005. The difference between these approaches was minimal as the mean
squared difference for the β values was 3.7711 × 10−5 and the mean difference in the error was
1.73534 × 10−7. Because of the similarity of the determined errors, for the remainder of the
analysis, r was assumed to be equal to 0.005. Keeping r constant is consistent with the assumption
that the rate at which people are able to lose weight is not dependent upon what state they live
in. Additionally, r is likely on the lower end of the estimated range because the model does not
take into account different obesity classifications such as morbid obesity for which the theorized r
values can be as low as 1 in 1290 for men and 1 in 677 for women. (Fildes et al., 2015).

The results from optimizing β values for each state based upon data available were then plotted
versus the mean percentage of overweight and obese individuals over 10 years in Figure 3.7. There
was a strong inverse correlation (R2 = 0.911) between these two values, meaning that states with
a lower combined overweight and obese percentage had higher β values. This relationship could
imply that states with higher overweight percentages could be approaching a hypothetical steady
state where the limited healthy weight population is slowing down the transition to an overweight
class, as there are fewer healthy weight individuals.

The β values for each state were then compared to other societal factors for each state. A cor-
relation between various parameter values and the respective β value for each state was expected.
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FIGURE 3.7. Comparison of optimized β values for each state versus the mean
percentage of overweight and obese individuals from 2011-2021.

This correlation was expected to be of a similar strength as the correlation that existed between
these societal factors and the raw data. These β values were compared to factors such as the
percentage of people in poverty, the percentage of people meeting exercise standards, and the per-
centage of people getting sufficient sleep. Other societal influences such as mental health, food
insecurity, health insurance, and average cost per meal were also analyzed but the previously men-
tioned factors resulted in the strongest correlations. For each of these parameters, there was a weak
correlation between the parameter value and β, if there was any correlation at all. The states with
higher poverty percentages have lower β values, states with higher percentages of people meet-
ing exercise standards have higher β values, and states with more people meeting sufficient sleep
standards have higher β values. However, when the β values were compared with the change in
poverty levels over time for each state, the R2 value for this comparison is lower than the R2 value
for the correlation between β and poverty levels in 2019. For the correlation between R2 and the
change in poverty levels, the R2 value was 0.0504, whereas the correlation between β and poverty
levels in 2019, the R2 value is 0.2254. Thus, less of the variation in β values can be explained
by the variation in the rate of change in poverty levels than the variation in poverty levels in 2019
alone.

A multivariate linear regression was conducted to estimate β values. When the inputs to this
multivariate regression model are health insurance, exercise, food insecurity, poverty and sleep,
after 1000 model runs, the average R2 value is approximately 16%. A substantial amount of the
variation in these beta values are likely not able to be accounted for with only the variation in these
demographic values or these relationships are not able to be captured by linear trends.
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3.3. Agent-based Model

3.3.1. Methods

Agent-based models are comprised of interacting, autonomous “agents” whose behaviors are gov-
erned by simple rules, and interactions with other agents, which in turn influence their behaviors
(Macal and North, 2005). NetLogo (Wilensky, 1999) is a programmable modeling environment for
simulating natural and social phenomenon. It models complex systems developing over time. Us-
ing NetLogo (Wilensky, 1999), an agent-based model of obesity was developed. This model was
inspired by previously published infection models in NetLogo (Stonedahl and Wilensky, 2008).
However, most of the code was developed from scratch in order to account for the differing model
dynamics and the ability of nodes to die and reproduce.

The goal of the initial model was to capture the dynamics seen in the system of two differential
equations utilizing an agent-based model. Thus, the population was divided into two categories,
obese and then healthy-weight which in this model is inclusive of the overweight population. Ide-
ally, this model could match the trends seen in the data well with minimal error. Eventually, the
goal is to be able to differentiate the probability of becoming obese in different nodes based upon
their demographic characteristics, such as income or education.

In NetLogo, each agent is referred to as a turtle. In the model, there were 1000 agents or turtles.
Each turtle is created at a random x, y coordinate on the grid. A random number between 0
and 100 is assigned to each turtle. If this number is greater than the 100 minus the initial obese
population percentage, than this turtle will be designated as obese to start. This platform enables
us to randomly generate a population with approximately the same number of obese individuals
as would be present in our population. Otherwise, the turtle will be designated as healthy weight
because we are assuming that those who are not obese are in the healthy weight population. After
the population is initialized, each turtle goes through a series of commands, which are governed
by certain probabilities. For each time step, each turtle moves around the board with a random
probability. Each turtle is then assessed to see if it will die during that time step. Again, a random
number between 0 and 100 is assigned to each turtle and if that number is less than the death rate,
than the turtle dies and a new turtle is “born”. This designation keeps the population at a constant
number of people, as was also assumed in the ODE model. This new turtle is always born to
be healthy weight. Finally, the healthy weight turtles in the population are each given a random
number and if this random number is less than the likelihood that a given turtle will become obese
in the time step, the turtle will become obese. These commands are repeated for every time step in
the simulation.

For our model of the United States population, the following assumptions were held:

• Death rate of 1% per year (CDC, 2023b).
• Birth rate of 1% per year. Birth rates were assumed to match death rates of keep population

constant.
• All births are classified as health-weight.
• The rate of becoming obese for any given health-weight node was 0.56% per year which

was determined based upon trends for the past ten years (CDC, 2023a).
• A population of 1000 is sufficiently large. This assumption could be analyzed through

convergence testing.
• 27% of the population was assumed to be initially obese because that was the national

obesity percentage in 2011 (CDC, 2023a).
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However, when the agent based model was ran with these parameters, after ten years, the obesity
level was only around 28%. This result does not seem to correspond to the 33% obesity rate
seen in 2021, which is the year the model is trying to replicate. Thus, the probability that any
healthy-weight node becomes obese was changed to 1.56%. This necessary increase is to account
for the fact that each baby is born healthy-weight. After this change was made, for one run of the
simulation after ten years, 35% of the population is obese, which is much closer to what the data
indicates it should be. These transition percentages are displayed in a flow chart indicating the
logic behind the model in Figure 3.8.

Simulations of these dynamics were run for 10 years. Each simulation resulted in a time-series
that depicted the levels of obesity, overweight, and healthy weight at each of the years. The error
value between the data and the model results was computed for both singular runs and the average
of 5000 runs. Then, the dynamics were run 5000 times for 100 years to predict what obesity
dynamics might look like in the distant future.

Next, the NetLogo model was generalized to other areas and regions of the United States. Levine
(2011) studied obesity on a county level. Thus, obesity trends were forecasted with the NetLogo
model on a county level. Counties in North Carolina were analyzed, more specifically Buncombe
and Robeson counties. These counties were analyzed because they had the lowest and highest
levels of obesity respectively in 2022 (Johnson, 2023). Robeson county has a poverty rate of
27.9% whereas Buncombe county has a poverty rate of 11.7% (U.S. Census Bureau, 2022). It
was seen that Buncombe county had an obesity level of 22% in 2011 and 28% in 2022 with an
average yearly rate of change of 0.55%. Robeson county had an obesity level of 39% in 2011 and
44% in 2022 with an average yearly rate of change of 0.45% (Johnson, 2023). Similar trends are
seen that counties with higher levels of poverty had higher levels of obesity. However, again, those
with higher rates of poverty are seeing lower average annual rates of change in obesity levels. For
Buncombe county, the initial obese population was 22% and that the yearly increase in obesity
levels which was calculated based upon data from the last 10 years was 0.55% which was changed
to 1.55% to account for the births. For Robeson county, the initial obese population was 39% and
that the yearly increase in obesity levels which was calculated based upon data from the last 10
years was 0.45% which was changed to 1.45% to account for the births (Johnson, 2023).

3.3.2. Results

Simulations were first ran in NetLogo for 10 years at a time, modeling obesity trends from 2011
to 2021. Visually, the data aligned with the agent based model well as seen in Figure 3.9. In order
to quantify the accuracy of the model to the data, the mean square error was calculated. The mean
square error was calculated by taking the square of the quantity which is the data obesity level for a
given year minus the model estimation for that year. Then, we averaged these quantities over each
year that we had data. The results of one Netlogo run was compared to the data by calculating
the mean square error, which was 0.218% for one run. After 5000 NetLogo simulations, the mean
square error was 2.06%. The variation between errors for subsequent runs is due to the inherent
randomness of the agent-based model. These error percentages indicate that the model is a good
indication of trends in the data. This error seems relatively low considering the simplicity of the
model which could imply that perhaps obesity trends are not as complex as previous researchers
have theorized.

When run for 100 years, the long term obesity trends are able to be forecasted as seen in Figure
3.10. These trends predicted by the model result in obesity levels leveling out to approximately
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FIGURE 3.8. Flowchart of decisions made in agent based model
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FIGURE 3.9. Comparing NetLogo Results out 10 years with data.

58% after 100 years (post 2011) after 5000 runs. This percentage only includes the obese popu-
lation, not the overweight population. If the overweight population is assumed to stay consistent
around 30%, that would mean that around 2090-2100, approximately 60% of the population will
be obese, 30% of the population will be overweight and only 10% of the population will be healthy
weight by current definitions. The predicted levels of obesity would result in an increase in related
diseases that obesity puts people at an increased risk for such as Type 2 diabetes and heart dis-
ease. The increase in these diseases would cause greater strain on the healthcare system within the
United States than is currently occurring.
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FIGURE 3.11. NetLogo predictions for Buncombe and Robeson counties.

Simulations were then ran for two different counties in North Carolina. Predictions of these
counties were plotted in NetLogo as seen in Figure 3.11. Obesity levels in both of these counties
eventually level out, or reach what appears to be a steady state, if a constant annual rate of change
of obesity levels is assumed. Robeson obesity levels reach a steady state of slightly more than 60%
and Buncombe obesity levels reach a steady state of slightly less than 60%. Robeson’s point of
intersection of obesity percentages and non-obesity percentages occurs about 30 years earlier.

4. Conclusion and Discussion

During this project, three different types of modeling techniques were explored. Linear regres-
sion models, an SIR-type differential equation model and agent based models were developed.
These models all attempted to incorporate societal factors such as poverty into the model predic-
tions and analysis. These models had varying levels of success.

First, a linear regression model was developed. The benefit of starting with this model is it
provided a baseline of what trends could be expected while developing more complex models.
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However, the issue with just looking at linear correlations is they are unable to capture the long-
term trends of obesity levels within the United States. Obesity is unlikely to continue to grow at the
same linear rate in the next ten years as it did in the previous ten years. Obesity trends have proven
not to be linear, and they also cannot be explained by just one societal factor. Rather, obesity
trends are likely explained by a combination of environmental, demographic, social and biological
influences. Various aspects of weight gain and loss that are not fully understood by the medical and
public health communities adds some randomnesses to who becomes obese. This weak correlation
between these factors and obesity could be due to the genetic component of obesity. Bouchard
(2021) suggests that the genetics account for 40% to 50% of the variability in body weight status.
This influence is lower amongst normal weight individuals (30%) and substantially higher amongst
individuals with obesity and severe obesity (about 60% - 80%). Perhaps, since the model does
not directly take genetics into account, we can not expect to get significantly higher correlations
between the social determinants of health and the obesity levels in a specific year.

Next, a differential equation model was explored. First, a three compartment SIR-type model
was developed. This model was very difficult to create an accurate parametrization for as there
were some parameters that seemed to have little to no impact on the model output. Then, the
differential equation model was simplified to a two-compartment model that had a more logical and
seemingly accurate parametrization. However, the differential equation model still had issues. One
of which is that the model assumes that interaction with an overweight or obese person is necessary
in order to become overweight or obese which is not based in evidence. Even Christakis and Fowler
(2007) only claim that interaction, especially close interactions, change the likelihood of obesity,
but does not claim that interaction is necessary for someone to become obese. Additionally, the
remaining lack of sensitivity to the r parameter indicates that the differential equation model might
be making the problem more complex than required. Especially because the scientific community
has little to no confidence about what long term trends will look like. Since the causes of the
dramatic increase in obesity levels are not well understood, many assumptions with limited factual
support have to be made in order to simplify obesity trends into a model. Finally, the multivariate
linear regression between β and the different societal factors indicate that perhaps there might be
more at play. The trends between these parameters and the obesity data itself are significantly
stronger. Perhaps instead of just looking at the rates of poverty, food insecurity, or exercise, deeper
insight might be gained if the analysis took into consideration how these factors change over time
with respect to obesity. However, the issue with this suggested analysis is that many of these
factors are only measured once every couple of years. Over the past ten years, data is limited
and conclusions are difficult to make based upon limited data. Either the relationship between the
obesity model and these societal factors is not being accurately measured, the obesity model is not
properly taking into account the various societal factors at play or the societal factors have little
impact on population obesity models. In order to analyze these factors properly, the model must
be adapted so that these factors influence the obesity model projections.

Finally, an agent-based model was created to model obesity levels. The benefit of the agent-
based model over the differential equation model is that it was able to accurately portray the trends
in the available data with a relatively simple model. This accuracy is reflected by the relatively
small error seen in the results of the model compared to the data. However, the strengths of
agent-based modeling could be additionally taken advantage of through a further investigation of
individual interactions and their influence on obesity trends. One possibility is to network nodes
to determine the social influence of other nodes. However, this possibility becomes difficult to
do in the current software due to nodes constantly being deleted and regenerated throughout the
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time span of the model to reflect deaths and births respectively. Additionally, the probabilities of
change for each node could be governed by different environmental factors, with each region of
the model representing different environments. These environments could take into consideration
the difference between living in a poverty-stricken, rural, food desert, and living in a wealthy,
suburban neighborhood with easy access to healthy foods and opportunities for exercise. The
preliminary investigation into agent based modeling shows the potential of agent based modeling
further expanding the knowledge surrounding the dynamics of obesity trends. The agent based
model also supports the idea that perhaps poverty and different societal factors just change the
starting point, but the overall trends between locations are very similar or that higher levels of
obesity have lower transition rates. This idea of delayed trends could be investigated further with
more access to historical data.

One thing of note that was discovered during the investigation into North Carolina counties
was that Wake County had very unusual obesity trends within the state. Wake County’s obesity
level was 27% in 2011 and 28% in 2022. Wake County has been able to keep their obesity levels
relatively constant while most other places have had increases of approximately 10% in the last
ten years. Perhaps this is indicative of prevention strategies working or other larger factors at play,
such as gentrification.

The linear regression models did not seem sufficient enough to predict obesity trends into the
future since obesity trends have proven not to follow a linear trend. However, the linear regressions
gave insight into what demographic factors likely have the greatest impact on obesity levels, and
enabled the focus to be narrowed down to poverty for future investigations. An SIR based model
captured data well, but a complex model is not needed to establish trends. The 2-equation system
of ODEs appeared to fit data as well as the 3-equation system. Additionally, when the ODE model
was simplified down to two equations, it was able to be more reflective of population dynamics.
However, the ODE model is limited in its predictive potential because the β values seem relatively
arbitrary when compared to population demographics. Finally, the agent-based model seemed to
be able to capture the population dynamics accurately with a relatively simple probabilistic model.

A potential path of future research would be to investigate how different intervention strategies
influence obesity trends. Various intervention strategies that could be considered include weight
loss drugs, healthy eating initiatives, exercise initiatives, and poverty reduction strategies. Most
notably, it would be interesting to conduct a cost-benefit analysis of the newly approved GLP-
1 class of weight loss drugs that include Wegovy and Ozempic. This research could include an
investigation of what percentage of the obese population would need to take these drugs in order
to substantially reduce the related medical and other related costs of obesity. Additionally, the
overall cost of these drugs could be taken into consideration, especially because they are currently
theorized to have to be taken indefinitely and they are currently advertised to have a monthly
cost of greater than $1,000. Another source of future research could be to investigate the impact
of reductions in obesity levels on medical costs and the rates of other diagnosable diseases that
obesity influences, such as type 2 diabetes and heart disease.
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