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A Mixed Finite Element Approximation of pre-Darcy Flows

JIIN CHOI, DENNIS GARCIA, THINH KIEU, ROY KIM, TED PARK, AND TESSICA SELVAGANESAN

ABSTRACT. In this paper, we consider the pre-Darcy flows for slightly compressible fluids. Using
Muskat’s and Ward’s general form of Forchheimer equations, we describe the fluid dynamics by a
nonlinear system of density and momentum. A mixed finite element method is proposed for the ap-
proximation of the solution of the above system. The stability of the approximations are proved; the
error estimates are derived for the numerical approximations for both continuous and discrete time
procedures. Numerical experiments confirm the theoretical analysis regarding convergence rates.

1. Introduction

Fluid flows through porous media are encountered in a wide range of science and engineering
applications, e.g., water resources, geothermal systems, chemical processes, gas and water purifi-
cation, gas storage, oil extraction, and petroleum engineering, chemical engineering, mining and
mineral processing, and oil and gas production. Due to the variety and complexity of the filtra-
tion matrix, they can be very complicated and can be modeled, depending on each situation, by a
number of equations of various types with different parameters. Broadly speaking, they are cate-
gorized into three known regimes, namely, pre-Darcy flow (i.e, pre-linear, non-Darcy), Darcy flow
(linear) and post-Darcy flow (i.e, post-linear, non-Darcy). There is a general consensus that the
Darcy regime is valid as long as the Reynolds number (Re) is in the range of characteristic values
between 1 and 10 (see Bear (1972)). When the Reynolds number is high (Re > 10), there is a
deviation from Darcy’s law, and the Forchheimer equations are usually used to account for it (see
Forchheimer (1901); Muskat (1937); Bear (1972); Nield and Bejan (2013)). At the other end of
the Reynolds number range, when it is very small (Re → 0) (see Boettcher et al. (2022); Farmani
et al. (2018)) the pre-Darcy regime is observed but not fully understood, although it contributes to
the unexpected extraction of crude oil and improved recovery in petroleum reservoirs (see Dud-
geon (1985); Siddiqui et al. (2016); Soni et al. (1978); Bloshanskaya et al. (2017) and references
therein).

We now start to investigate the pre-Darcy fluid flows in porous media. Consider fluid flows with
velocity v ∈ Rd, d ≥ 2 pressure p ∈ R, and density ρ ∈ [0,∞). As the flow rate (Reynolds’s
number) is sufficiently small, Izbash (see Izbash (1931)) presented an equation describing the pre-
Darcy regime of the form:

|v(x, t)|−αv(x, t) = −k(x, t)∇p(x, t) (1.1)
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for some constant power α ∈ (0, 1) and coefficient k(x, t) > 0. For experimental values of α (see
e.g. Siddiqui et al. (2016); Soni et al. (1978)).

In order to take into account the presence of density in the generalized Forchheimer equation,
we modify (1.1) using dimension analysis by Muskat Muskat (1937) and Ward Ward (1964). They
proposed the following equation for both laminar and turbulent flows in porous media:

−∇p(x, t) = G
(
viκ

i−3
2 ρi−1µ2−i

)
, (1.2)

where G is a function of one variable, µ = µ(x, t) is the viscosity of the fluid, κ = κ(x, t) is the
permeability of the medium.

In particular, when i = 1, Ward Ward (1964) established the Darcy’s law to match the experi-
mental data

−∇p(x, t) =
µ(x, t)

κ(x, t)
v(x, t), (1.3)

and when i = 2 for Forchheimer’s law

−∇p(x, t) =
µ(x, t)

κ(x, t)
v(x, t) + cF

ρ(x, t)√
κ(x, t)

|v(x, t)|v(x, t), where cF > 0. (1.4)

Combining (1.1) with the suggestive form (1.2) for the dependence on ρ and v, we propose the
following equation

−∇p(x, t) = a(x, t)ρ(x, t)−α|v(x, t)|−αv(x, t), (1.5)

where a(x, t) is a positive function.
Multiplying both sides of the equation (1.5) by ρ, we find that(

a(x, t)|ρ(x, t)v(x, t)|−α
)
ρ(x, t)v(x, t) = −ρ(x, t)∇p(x, t). (1.6)

Under isothermal conditions, the state equation only relates the density ρ with the pressure p,
that is, ρ = ρ(p). Therefore, the equation of state for slightly compressible fluids is given by

dρ

dp
=

ρ

ω̄
,

where 1/ω̄ > 0 represents the small compressibility.
Hence,

∇ρ =
1

ω̄
ρ∇p, or ρ∇p = ω̄∇ρ. (1.7)

Combining (1.6) and (1.7) implies that

a(x, t)|ρ(x, t)v(x, t)|−αρ(x, t)v(x, t) = −ω̄∇ρ(x, t). (1.8)

The continuity equation is

ϕρt(x, t) + div(ρ(x, t)v(x, t)) = f(x, t), (1.9)

where ϕ ∈ (0, 1) is the constant porosity and f is external mass flow rate.
By combining (1.8) and (1.9), we have

a(x, t)|m(x, t)|−αm(x, t) = −ω̄∇ρ(x, t),

ϕρt(x, t) + div m(x, t) = f(x, t),

where m(x, t) = ρ(x, t)v(x, t).
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By rescaling the variable ρ(x, t) → ϕρ(x, t), a(x, t) → ω̄−1ϕa(x, t), we obtain a system of equa-
tions

a(x, t)|m(x, t)|−αm(x, t) = −∇ρ(x, t),

ρt(x, t) + div m(x, t) = f(x, t).
(1.10)

We are interested in solving equation (1.10) endowed with initial and boundary conditions

a(x, t)|m(x, t)|−αm(x, t) = −∇ρ(x, t) (x, t) ∈ Ω× I,

ρt(x, t) +∇ ·m(x, t) = f(x, t) (x, t) ∈ Ω× I,

ρ(x, t) = 0 (x, t) ∈ ∂Ω× I,

ρ(x, 0) = ρ0(x) x ∈ Ω.

(1.11)

Throughout the paper, we make the following assumptions on the data and coefficients:

(H1) The coefficients a ∈ W 1,∞(I, L∞(Ω)) satisfy 0 < a∗ < a(x, t) < a∗ < ∞, |at(x, t)| <
b∗ < ∞ for almost every (x, t) ∈ Ω̄× I .

(H2) f ∈ W 1,∞(I, L2(Ω)).

It is well known that the mixed finite element methods and related cell-centered finite difference
methods have become popular in recently years for modeling flow in porous media because they
produce the accurate results for both scalar (density) and vector (momentum) functions (see Park
(2005)). An analysis of mixed finite element method to a Darcy-Forchheimer steady state model
was well studied in Pan and Rui (2012); Salas et al. (2013). The mixed methods for a nonde-
generate system modeling flows in porous media were studied in Dawson and Wheeler (1994);
Park (2005); Girault and Wheeler (2008); Kim and Park (1999). The authors in Arbogast et al.
(1996); Woodward and Dawson (2000); Fadimba and Sharpley (1995, 2004) analyzed the mixed
finite element approximations of the non-linear degenerate system modeling the water-gas flow in
porous media. In their analysis, the Kirchhoff transformation is used to move the nonlinearity from
coefficients to the gradient.

In this paper, we analyze mixed finite element approximations to the solutions of the system of
equations modeling the flows of a single-phase compressible fluid in porous media subject to the
pre-Darcy law. We mention Cummings et al. (2024); Girault and Wheeler (2008); Kieu (2018);
Park (2005) for a mixed finite element discretization of (1.11). This is a nonlinear system with
coefficients depending on the momentum. The Kirchhoff transformation is not applicable to this
system. For our equations, we combine the techniques developed in our previous work in Hoang
and Kieu (2017, 2019); Hoang et al. (2014); Ibragimov and Kieu (2016); Kieu (2015, 2020) and
utilize the special structures of the equations to obtain the stability of the approximate solution.
The error estimates are derived for the numerical approximations of the density and momentum in
both continuous and discrete time procedures.

The paper is organized as follows. Section 2 introduces the notations and the relevant results.
Section 3 establishes many estimates of the energy type norms for the solution (m, ρ) to the initial
boundary value problem (IBVP) (3.1) in Lebesgue norms, expressed in terms of the boundary
data and the initial data. Section 4 presents a semidiscrete mixed finite element approximation for
the IBVP (1.11). We discuss the existence and uniqueness and derive error estimates. The fully
discrete scheme is considered in section 5, where the error estimates are derived in terms of the
discretization parameters. In section 6, the results of a few numerical experiments using the lowest
Raviart-Thomas mixed finite element in the two dimensions are reported. These results support our
theoretical analysis regarding convergence rates.



MFEM for pre-Darcy flows 43

2. Notations and preliminary results

Throughout this paper, we assume that Ω is an open bounded subset of Rd, with d = 2, 3, . . .,
and has C0-boundary ∂Ω. For s ∈ [0,∞), we denote by Ls(Ω) the set of s-integrable functions
on Ω and (Ls(Ω))d the space of d-dimensional vectors which have all components in Ls(Ω). We
denote ⟨·, ·⟩ the inner product in either Ls(Ω) or (Ls(Ω))d that is ⟨ξ, η⟩ =

∫
Ω
ξηdx or ⟨ξ,η⟩ =∫

Ω
ξ · ηdx and ∥v∥0,s =

(∫
Ω
|v(x)|sdx

)1/s for standard Lebesgue norm of the measurable func-
tion. For m ≥ 0, s ∈ [0,∞], we denote the Sobolev spaces by Wm,s(Ω) = {v ∈ Ls(Ω) :

Dαv ∈ Ls(Ω), |α| ≤ m} and the norm of Wm,s(Ω) by ∥v∥m,s =
(∑

|α|≤m

∫
Ω
|Dαv|sdx

)1/s

,

and ∥v∥Wm,∞(Ω) =
∑

|α|≤m ess supΩ |Dαv|. Let I = [0, T ], we define Ls(I,X) to be the space

of all measurable functions v : I → X with the norm ∥v∥Ls(I,X) =
(∫ T

0
∥v(t)∥sX dt

)1/s

, and
L∞(I;X) to be the space of all measurable functions v : I → X such that v : t → ∥v(t)∥X
is essentially bounded on I with the norm ∥v∥L∞(I,X) = ess supt∈I ∥v(t)∥X . We use short hand
notations, ∥ρ(t)∥ = ∥ρ(·, t)∥0,2 ,∀t ≥ 0 and ρ0(·) = ρ(·, 0).

Our calculations frequently use the following exponents:

s = 2− α, s∗ =
s

s− 1
.

The argument C will represent positive generic constants and their values depend on exponents,
the spatial dimension d and domain Ω, independent of the initial and boundary data and time step.
These constants may be different place by place.

We recall below some more elementary inequalities that will be used in this paper. First, for
z ∈ R, denote z+ = max{0, z}. For x,y ∈ Rd and p > 0, one has

|x|p + |y|p

2
≤ (|x|+ |y|)p ≤ 2(p−1)+(|x|p + |y|p). (2.1)

By the triangle inequality and the second inequality of (2.1), we have

|x− y|p ≥ 2−(p−1)+|x|p − |y|p for all x,y ∈ Rd, p > 0. (2.2)

For any r ≥ 1, x1, x2, . . . , xk ≥ 0,

xr
1 + xr

2 + · · ·+ xr
k ≤ (x1 + x2 + · · ·+ xk)

r ≤ kr−1(xr
1 + xr

2 + · · ·+ xr
k). (2.3)

The following are some commonly used consequences of Young’s inequality. If x, y ≥ 0, γ ≥
β ≥ α > 0, p, q > 1 with 1/p+ 1/q = 1, and ε > 0, then

xα ≤ 1 + xβ, xβ ≤ xα + xγ, xy ≤ εxp + ε−q/pyq. (2.4)

Above and throughout the paper, we conveniently use 00 = 1.

Lemma 2.1. Assume −1 < p ≤ 0, then for all x,y ∈ Rd,

||x|px− |y|py| ≤ 2|x− y|1+p, (2.5)

(|x|px− |y|py) · (x− y) ≥ (1 + p)(|x|+ |y|)p|x− y|2. (2.6)

It is meant, naturally, in (2.5) and (2.6) that

|x|px, |y|py, (|x|+ |y|)p|x− y|2 = 0 for p ∈ (−1, 0) and x = y = 0.
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Proof. Proof of inequality (2.5) Let x,y ∈ Rd. The inequality obviously holds true when x = 0 or
y = 0 or x = y. We consider only x,y ̸= 0 and x ̸= y.

In Scenario 1, we can assume y = −kx for some k ≥ 0. We have

(|x|px− |y|py) = |x|1+p(1 + k1+p).

Since 0 < 1 + p ≤ 1, we have from (2.1) that 1 + k1+p ≤ 2(1 + k)1+p. Hence,

(|x|px− |y|py) ≤ 2|x|1+p(1 + k)1+p = |x− y|1+p,

which proves (2.5).
In Scenario 2, let γ(τ) = τx+ (1− τ)y, τ ∈ [0, 1] and h(τ) = |γ(τ)|pγ(τ). Then,

||x|px− |y|py| =
∣∣∣ ∫ 1

0

h′(τ)dτ
∣∣∣

=
∣∣∣ ∫ 1

0

(
|γ(τ)|p(x− y) + p|γ(τ)|p−1γ(τ) · (x− y)

|γ(τ)|
γ(τ)

)
dτ

∣∣∣
≤ (1 + p)|x− y|

∫ 1

0

|γ(τ)|pdτ.

(2.7)

We claim ∫ 1

0

|γ(τ)|pdτ ≤ 2

1 + p
|x− y|p. (2.8)

The inequality (2.5) follows by substituting (2.8) into (2.7).
Proof of claim (2.8)

Consider |x| ≥ |x− y|, then

||x| − (1− τ)|x− y|| ≤ |x− (1− τ)(x− y)| = |τx+ (1− τ)y|

and note that p < 0,

|τx+ (1− τ)y|p ≤ ||x| − (1− τ)|x− y||p ≤ ||x− y| − (1− τ)|x− y||p = τ p|x− y|p.

This shows that ∫ 1

0

|γ(τ)pdτ ≤ |x− y|p
∫ 1

0

τ pdτ ≤ 2

1 + p
|x− y|p.

Consider |x| < |x− y|. Let τ∗ ∈ (0, 1) be defined by (1− τ∗)|x− y| = |x|∫ 1

0

|γ(τ)|pdτ ≤
∫ 1

0

||x| − (1− τ)|x− y||pdτ = |x− y|p
∫ 1

0

|τ − τ∗|pdτ

=
1

1 + p
|x− y|p(τ 1+p

∗ + (1− τ∗)
1+p) ≤ 2

1 + p
|x− y|p.

Proof of inequality (2.6). Let x,y ∈ Rd. Consider Scenario 1 and define the function

ℓ(t) = |γ(t)|pγ(t) · (x− y) for t ∈ [0, 1].
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Then,

(|x|px− |y|py) · (x− y) =

∫ 1

0

ℓ′(t)dt

=

∫ 1

0

|γ(t)|p|x− y|2 + p|γ(t)|p−2|γ(t) · (x− y)|2dt

≥ (1 + p)|x− y|2
∫ 1

0

|γ(t)|pdt.

Note that −p ∈ (0, 1], and hence |γ(t)|−p ≤ (|x|+ |y|)−p. Therefore, we obtain (2.6).
In Scenario 2, we can assume y = −kx for some k ≥ 0. We have

(|x|px− |y|py) · (x− y) = |x|2+p(1 + k1+p)(1 + k).

Since 0 < 1 + p < 1, we have from (2.1) that 1 + k1+p ≥ (1 + k)1+p. Hence,

(|x|px− |y|py) · (x− y) ≥ |x|2+p(1 + k)2+p = |x− y|2(|x|+ |y|)p,

which proves (2.6) again. □

We recall a discrete version of the Grönwall Lemma in backward difference form, which will be
useful later.

Lemma 2.2. Assume the nonnegative sequences {an}∞n=0, {bn}∞n=0 ,{gn}∞n=0 satisfying

an − an−1

τ
− an + bn ≤ gn, n = 1, 2, 3 . . .

then for a sufficiently small τ ,

an + τ
n∑

i=1

bi ≤ e
nτ
1−τ

(
a0 + τ

n∑
i=1

gi

)
. (2.9)

Proof. Let ān = (1− τ)nan. A simple calculation shows that

ān − ān−1

τ
= (1− τ)n−1

(an − an−1

τ
− an

)
≤ (1− τ)n−1(gn − bn).

Summation over n leads to

ān − ā0
τ

≤
n∑

i=1

(1− τ)i−1gi −
n∑

i=1

(1− τ)i−1bi,

which gives

ān + τ

n∑
i=1

(1− τ)i−1bi ≤ ā0 + τ
n∑

i=1

(1− τ)i−1gi,

and therefore,

an + τ

n∑
i=1

(1− τ)i−1−nbi ≤ (1− τ)−n
(
a0 + τ

n∑
i=1

(1− τ)i−1gi

)
.

Since (1− τ)i−1−n = 1
(1−τ)n−i+1 > 1 and (1− τ)−n ≤ e

nτ
1−τ .

Therefore, (2.9) holds true. □
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3. The mixed finite element approximation

In order to derive the mixed formulation of the problem (1.11), we define the following spaces:

Q = L2(Ω), and V =
{
v ∈ (Ls(Ω))d,∇ · v ∈ L2(Ω)

}
.

The norm of V is defined by ∥v∥V = ∥v∥0,s + ∥∇ · v∥ .
Setting

A(v) = a|v|−αv.

The mixed formulation of (1.11) reads as follows: Find (m, ρ) : I → V ×Q such that

⟨A(m),v⟩ − ⟨ρ,∇ · v⟩ = 0 for all v ∈ V,

⟨ρt, q⟩+ ⟨∇ ·m, q⟩ = ⟨f, q⟩ for all q ∈ Q.
(3.1)

The existence and uniqueness of weak solutions of (3.1) can be treated by the theory of nonlinear
monotone operators, see in Lions (1969); Showalter (1997); Zeidler (1990); Knabner and Summ
(2017), and also see in Kieu (2015, 2020) for our proof in the case of the Dirichlet boundary
condition. The regularity of weak solutions is treated in Ladyženskaja et al. (1968); Ivanov (1982).
For the priori estimates, we consider weak solutions with enough regularities in both x and t
variables, but not necessarily classical, so that our calculations can be applied.

Lemma 3.1. Let (m, ρ) be a solution to the problem (3.1). There exists a positive constant C such
that

∥ρ∥2L∞(I,L2(Ω)) + ∥m∥sLs(I,Ls(Ω)) ≤ CA, (3.2)

where A = ∥ρ0∥2 + ∥f∥2L∞(I,L2(Ω)) . (3.3)

Proof. Choosing (v, q) = (m, ρ) in (3.1) and adding the resultant equations yield
1

2

d

dt
∥ρ∥2 + ⟨A(m),m⟩ = ⟨f, ρ⟩ . (3.4)

By (2.6), the second term of (3.4) is bounded from below by

⟨A(m),m⟩ =
〈
a|m|−αm,m

〉
≥ a∗ ∥m∥s0,s . (3.5)

We bound the right hand side of (3.4) by using Young’s inequality to obtain

⟨f, ρ⟩ ≤ 1

2
∥f∥2 + 1

2
∥ρ∥2 . (3.6)

Combining (3.4), (3.5) and (3.6) yield
d

dt
∥ρ∥2 + 2a∗ ∥m∥s0,s ≤ ∥ρ∥2 + ∥f∥2 .

By Grönwall’s inequality, we find that

∥ρ∥2L∞(I,L2) + ∥mh∥sLs(I,Ls) ≤ ∥ρ(0)∥2 + C ∥f∥2L∞(I,L2) .

Thus, the inequality (3.2) holds. □

Lemma 3.2. Let (m, ρ) be a solution to the problem (3.1). Then, there exists a positive constant C
such that

∥ρt∥2L∞(I,L2(Ω)) + ∥m∥sL∞(I,Ls(Ω)) + ∥∇ ·m∥2L∞(I,L2(Ω)) ≤ CB, (3.7)

where B = ∥ρ0∥2 + ∥ρt(0)∥2 + ∥f∥2L∞(I,L2(Ω)) + ∥ft∥2L∞(I,L2(Ω)) . (3.8)
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Proof. Differentiate (3.1) in time to see that〈
a|m|−αmt − αa|m|−α−1m ·mt

|m|
m+ at|m|−αm,v

〉
− ⟨ρt,∇ · v⟩ = 0,

⟨ρtt, q⟩+ ⟨∇ ·mt, q⟩ = ⟨ft, q⟩ .
Taking (v, q) = (mt, ρt) and adding two resultant equations, we obtain

1

2

d

dt
∥ρt∥2 +

∥∥∥a 1
2 |m|−

α
2 mt

∥∥∥2

= α

〈
a|m|−α−1m ·mt

|m|
m,mt

〉
−
〈
at|m|−αm,mt

〉
+ ⟨ft, ρt⟩ .

(3.9)

Applying Hölder’s inequality and Young’s inequality, it follows that

α

〈
a|m|−α−1m ·mt

|m|
m,mt

〉
−

〈
at|m|−αm,mt

〉
≤ α

∥∥∥a 1
2 |m|−

α
2 mt

∥∥∥2

+ b∗
〈
|m|−α|m|, |mt|

〉
≤ (α + ε)

∥∥∥a 1
2 |m|−

α
2 mt

∥∥∥2

+ (b∗)2a−1
∗ ε−1 ∥m∥s0,s , (3.10)

and
⟨ft, ρt⟩ ≤

1

2
∥ft∥2 +

1

2
∥ρt∥2 . (3.11)

Inserting (3.10)–(3.11) into (3.9) and taking ε = (1− α)/2 yield
d

dt
∥ρt∥2 + (1− α)

∥∥∥a 1
2 |m|−

α
2 mt

∥∥∥2

≤ ∥ft∥2 + ∥ρt∥2 + C ∥m∥s0,s ,

where C = (b∗)2(a∗(1− α)/2)−1.

Neglecting the nonegative term (1 − α)
∥∥∥a 1

2 |m|−α
2 mt

∥∥∥2

, and applying Grönwall’s inequality,
we find that

∥ρt∥2L∞(I,L2) ≤ C
(
∥ρt(0)∥2 + ∥ft∥2L∞(I,L2) + ∥m∥sLs(I,Ls)

)
.

Combining this fact with estimate (3.2), we obtain the first part of estimate (3.7).
To verify the last part of (3.7), we choose q = ∇ ·m in (3.1), yielding

∥∇ ·m∥2 = −⟨ρt,∇ ·m⟩+ ⟨f,∇ ·m⟩ .
Then, by the Young inequality,

∥∇ ·m∥2 ≤ 2(∥ρt∥2 + ∥f∥2).
Using the first part of (3.7) to bound ∥ρt∥2, we find that ∥∇ ·m∥2 holds (3.7).

To verify the second part of (3.7), we take (v, q) = (m, ρ) in (3.1), and adding the resultant
equations yield

⟨A(m),m⟩ = −⟨ρt, ρ⟩+ ⟨f, ρ⟩ . (3.12)
By (2.6) and the boundedness of the function a(x, t) shows that

⟨A(m),m⟩ ≥ a∗ ∥m∥s0,s . (3.13)

By the Young inequality,

−⟨ρt, ρ⟩+ ⟨f, ρ⟩ ≤ ∥ρt∥2 + ∥ρ∥2 + ∥f∥2 . (3.14)

Combining (3.13)–(3.14) leads to

∥m∥s0,s ≤ a−1
∗ (∥ρt∥2 + ∥ρ∥2 + ∥f∥2).
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Using estimates (3.2) and (3.7) gives

∥m∥sL∞(I,Ls) ≤ C(∥ρt∥2 + ∥ρ∥2 + ∥f∥2)

≤ C(∥ρ0∥2 + ∥ρt(0)∥2 + ∥f∥2L∞(I,L2) + ∥ft∥2L∞(I,L2)),
(3.15)

which completes the proof. □

4. The semidiscrete problem and error analysis

We assume that the boundary ∂Ω of Ω is polygonal or polyhedral. Let {Th}h be a regular trian-
gulation of Ω with maxτ∈Th diam τ ≤ h. The discrete subspaces Vh × Qh ⊂ V × Q are defined
as

Qh = {ρh ∈ L2(Ω),∀τ ∈ Th, ρh|τ ∈ P0(τ)},
Vh = {mh ∈ V, ∀τ ∈ Th,mh|τ ∈ RT0(τ)},

with P0(τ) denoting the space of constants and

RT0(τ) = (P0(τ))
d + xP0(τ).

So Qh denotes the space of piecewise constant functions, while Vh is the lowest degree Raviart–
Thomas space, (cf. Brezzi and Fortin (1991); Johnson and Thomée (1981); Bramble et al. (2002)).
In what follows, we make use of the standard L2-projection operator, see Ciarlet (1978), π : Q →
Qh, satisfying

⟨πρ− ρ, q⟩ = 0, for all ρ ∈ Q, q ∈ Qh,

⟨πρ− ρ,∇ ·mh⟩ = 0, for all mh ∈ Vh, ρ ∈ Q.
(4.1)

Furthermore, a projector Π can be defined on V mapping into Vh such that

Π : V → Vh, ⟨∇ · (Πm−m), q⟩ = 0, for all m ∈ V, q ∈ Qh. (4.2)

These projections have well-known approximation properties, e.g. Brezzi and Fortin (1991); John-
son and Thomée (1981); Bramble et al. (2002).

∥Πm∥0,q ≤ C
(
∥m∥0,q + h ∥∇ ·m∥

)
, ∀m ∈ V ∩ (W 1,q(Ω))d. (4.3)

∥Πm−m∥0,q ≤ Ch ∥m∥1,q , ∀m ∈ V ∩ (W 1,q(Ω))d. (4.4)

∥πρ∥ ≤ C ∥ρ∥ , ∀ρ ∈ L2(Ω). (4.5)

∥πρ− ρ∥0,q ≤ Ch ∥ρ∥1,q , q ∈ [1,∞],∀ρ ∈ W 1,q(Ω). (4.6)

The two projections π and Π preserve the commutative property div ◦ Π = π ◦ div : V → Qh.
Our finite element approximation of the problem (3.1) is defined as follows: Find a pair (mh, ρh) :
I → Vh ×Qh such that

⟨A(mh),v⟩ − ⟨ρh,∇ · v⟩ = 0 for all v ∈ Vh,

⟨ρht, q⟩+ ⟨∇ ·mh, q⟩ = ⟨f, q⟩ for all q ∈ Qh

(4.7)

with initial data ρ0h = πρ(x, 0).
In the same manner to problem (3.1), we have the following:



MFEM for pre-Darcy flows 49

Theorem 4.1. Suppose (mh, ρh) be a solution of the problem (4.7). Then, there exists a positive
constant C independence of h such that

(i) ∥ρh∥2L∞(I,L2(Ω)) + ∥mh∥sLs(I,Ls(Ω)) ≤ CA, (4.8)

(ii) ∥ρht∥2L∞(I,L2(Ω)) + ∥mh∥sL∞(I,Ls(Ω)) + ∥∇ ·mh∥2L∞(I,L2(Ω)) ≤ CB, (4.9)

where A and B are defined as (3.3) and (3.8), respectively.

Proposition 4.2. We have for all u,v ∈ V ,(
∥u∥0,s + ∥v∥0,s

)α ⟨A(u)− A(v),u− v⟩ ≥ a∗(1− α) ∥u− v∥20,s . (4.10)

Proof. We have from (2.6) that

(1− α)s/2 ∥u− v∥s0,s =
∫
Ω

((1− α)|u− v|2)s/2dx

≤
∫
Ω

((|u|−αu− |v|−αv) · (u− v))s/2(|u|+ |v|)αs/2dx.

Note that (|u|+ |v|)αs/2 ∈ L2/α(Ω) and (|u|−αu− |v|−αv) · (u− v))s/2 ∈ L2/s(Ω).
By Hölder’s inequality,

(1− α)s/2 ∥u− v∥s0,s ≤
〈
|u|−αu− |v|−αv,u− v

〉s/2 ∥|u|+ |v|∥αs/20,s

≤ a−s/2
∗ ⟨A(u)− A(v),u− v⟩s/2 ∥|u|+ |v|∥αs/20,s ,

or

a∗(1− α) ∥u− v∥20,s ≤ ⟨A(u)− A(v),u− v⟩ ∥|u|+ |v|∥α0,s
≤ ⟨A(u)− A(v),u− v⟩

(
∥u∥0,s + ∥v∥0,s

)α
.

The proof is complete. □

Theorem 4.3. There is a unique solution of the problem (4.7) satisfying (4.8) and (4.9).

Proof. Equation (4.7) can be interpreted as the finite system of ordinary differential equations in
the coefficients of (mh, ρh) with respect to the basis of Vh × Qh. The stability estimates (4.8)
suffice to establish the local existence of (mh(t), ρh(t)) for all t ∈ I. The proof of this statement
is essentially identical to that of Park (2005); Kim et al. (1996) for generalized Forchheimer flows.
We will omit this.

Assume that (m(i)
h , ρ

(i)
h ), i = 1, 2 are two solutions of (4.7). Let mh = m

(1)
h − m

(2)
h , ρh =

ρ
(1)
h − ρ

(2)
h . Then, 〈

A(m
(1)
h )− A(m

(2)
h ),v

〉
− ⟨ρh,∇ · v⟩ = 0 for all v ∈ Vh,

⟨ρht, q⟩+ ⟨∇ ·mh, q⟩ = 0 for all q ∈ Qh.
(4.11)

It is easy to see that with v = mh and q = ρh in (4.11), adding the two resultant equations, one has
1

2

d

dt
∥ρh∥2 +

〈
A(m

(1)
h )− A(m

(2)
h ),mh

〉
= 0.

Thanks to the monotonicity (2.6), we see that

∥ρh∥2 +
〈
A(m

(1)
h )− A(m

(2)
h ),mh

〉
= ∥ρh(0)∥2 = 0.
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Hence, ρh = 0 and
〈
A(m

(1)
h )− A(m

(2)
h ),mh

〉
= 0 a.e.

Due to (4.10), the boundedness of the functions a(x, t),
∥∥∥m(1)

h

∥∥∥
0,s

and
∥∥∥m(2)

h

∥∥∥
0,s

, we have

∥mh∥20,s ≤ a−1
∗ (1− α)−1

〈
A(m

(1)
h )− A(m

(2)
h ),mh

〉(∥∥∥m(1)
h

∥∥∥
0,s

+
∥∥∥m(2)

h

∥∥∥
0,s

)α

= 0.

Thus, mh = 0 a.e. □

4.1. Error estimates

In this subsection, we will give the error estimate between the analytical solution and approxi-
mate solution. We define the new variables:

m−mh = m− Πm− (mh − Πm) = η − ζh,

ρ− ρh = ρ− πρ− (ρh − πρ) = θ − ϑh.

Theorem 4.4. Let (m, ρ) be the solution of (3.1) and (mh, ρh) be the solution of (4.7). Suppose
that (m, ρ) ∈ V ×Q, and ρt ∈ L2(I, L2(Ω)). Then, there exists a positive constant C independent
of h such that

∥ρ− ρh∥2L∞(I,L2(Ω)) +

∫ T

0

∥m−mh∥20,s dt ≤ Ch2(1−α). (4.12)

Proof. By (3.1) and (4.7), we have the error equations

⟨A(m)− A(mh),v⟩ − ⟨ρ− ρh,∇ · v⟩ = 0 for all v ∈ Vh,

⟨ρt − ρht, q⟩+ ⟨∇ · (m−mh), q⟩ = 0 for all q ∈ Qh.
(4.13)

Using L2-project(4.1) and the Raviar–Thomas projection (4.2), we rewrite (4.13) as form

⟨A(m)− A(Πm),v⟩+ ⟨A(Πm)− A(mh),v⟩+ ⟨ϑh,∇ · v⟩ = 0 for all v ∈ Vh

⟨θt, q⟩ − ⟨ϑht, q⟩ − ⟨∇ · ζh, q⟩ = 0 for all q ∈ Qh.

Taking q = −ϑh ∈ Qh and v = −ζh ∈ Vh, and adding these two equations together, we get

1

2

d

dt
∥ϑh∥2 + ⟨A(Πm)− A(mh),Πm−mh⟩ = ⟨A(m)− A(Πm), ζh⟩+ ⟨θt, ϑh⟩ .

Using Young’s and Hölder’s inequality, we find that

⟨θt, ϑh⟩ ≤
1

2ε
∥θt∥2 +

ε

2
∥ϑh∥2 ,

and by (2.5) with note that (1 − α)s∗ = s, applying Hölder’s inequality and Young’s inequality
shows that

⟨A(m)− A(Πm), ζh⟩ ≤ 2
〈
|η|1−α, |ζh|

〉
≤ 2 ∥η∥1−α

0,s ∥ζh∥0,s

≤ 1

2
a∗(1− α)(∥Πm∥0,s + ∥mh∥0,s)

−α ∥ζh∥20,s

+ 2(a∗(1− α))−1(∥Πm∥0,s + ∥mh∥0,s)
α ∥η∥2(1−α)

0,s .
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Then, by Proposition 4.10,

⟨A(m)− A(Πm), ζh⟩ ≤
1

2
⟨A(|Πm|)− A(mh),Πm−mh⟩

+ 2(a∗(1− α))−1(∥Πm∥0,s + ∥mh∥0,s)
α ∥η∥2(1−α)

0,s . (4.14)

We find that
d

dt
∥ϑh∥2 + ⟨A(Πm)− A(mh),Πm−mh⟩

≤ ε ∥ϑh∥2 + 4(a∗(1− α))−1
(
∥Πm∥0,s + ∥mh∥0,s

)α

∥η∥2(1−α)
0,s + ε−1 ∥θt∥2 .

Integrating in time from 0 to t and taking the sup-norm,

sup
t∈[0,T ]

∥ϑh∥2 +
∫ T

0

⟨A(Πm)− A(mh),Πm−mh⟩ dt ≤ εT sup
t∈[0,T ]

∥ϑh∥2

+ ε−1

∫ T

0

∥θt∥2 dt+ 4(a∗(1− α))−1

∫ T

0

(∥Πm∥0,s + ∥mh∥0,s)
α ∥η∥2(1−α)

0,s dt.

Now taking ε = 1/(2T ), we find that

sup
t∈[0,T ]

∥ϑh∥2 + 2

∫ T

0

⟨A(Πm)− A(mh),Πm−mh⟩ dt

≤ (4T + 8(a∗(1− α))−1)
(∫ T

0

∥θt∥2 dt+
∫ T

0

(∥Πm∥0,s + ∥mh∥0,s)
α ∥η∥2(1−α)

0,s dt
)
.

Thus,

∥ϑh∥2L∞(I,L2) + 2

∫ T

0

⟨A(Πm)− A(mh),Πm−mh⟩ dt

≤ (4T + 8(a∗(1− α))−1)
(∫ T

0

∥θt∥2 dt+
∫ T

0

(∥Πm∥0,s + ∥mh∥0,s)
α ∥η∥2(1−α)

0,s dt
)
.

Then, by (4.3), (3.7) and (4.9),

∥ϑh∥2L∞(I,L2) + 2

∫ T

0

⟨A(Πm)− A(mh),Πm−mh⟩ dt

≤ C1

(∫ T

0

∥θt∥2 dτ +

∫ T

0

∥η∥2(1−α)
0,s dτ

)
,

(4.15)

where C1 = C2αBα/s(4T + 8(a∗(1− α))−1).
Dropping the nonnegative term

∫ T

0
⟨A(Πm)− A(mh),Πm−mh⟩ dt, we find that

∥ϑh∥2L∞(I,L2) ≤ C1

(∫ T

0

∥θt∥2 dτ +

∫ T

0

∥η∥2(1−α)
0,s dτ

)
. (4.16)

Using (2.3) and (4.16), we obtain

∥ρ− ρh∥2L∞(I,L2) ≤ 2
(
∥θ∥2L∞(I,L2) + ∥ϑh∥2L∞(I,L2)

)
≤ 2C1

(
∥θ∥2L∞(I,L2) +

∫ T

0

∥θt∥2 dτ +

∫ T

0

∥η∥2(1−α)
0,s dτ

)
.
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Applying estimates (4.4) and (4.6) imply that

∥ρ− ρh∥2L∞(I,L2) ≤ Ch2
(
∥ρ∥21,2 +

∫ T

0

∥ρt∥21,2 dτ
)
+ Ch2(1−α)

∫ T

0

∥m∥2(1−α)
1,s dτ. (4.17)

By (4.10) and the triangle inequality,∫ T

0

∥m−mh∥20,s dτ ≤ 2

∫ T

0

∥η∥20,s + ∥ζh∥20,s dτ

≤ C2

(∫ T

0

∥η∥20,s dτ +

∫ T

0

(∥Πm∥0,s + ∥mh∥0,s)
α ⟨A(Πm)− A(mh),Πm−mh⟩ dt

)
≤ C3

(∫ T

0

∥η∥20,s dt+
∫ T

0

⟨A(Πm)− A(mh),Πm−mh⟩ dt
)
,

where C2 = 2 + (a∗(1− α))−1, C3 = CC2(2
αBα/s + 1).

According to (4.15), we get∫ T

0

∥m−mh∥20,s dt ≤ C1C3

(∫ T

0

∥η∥20,s dτ +

∫ T

0

∥θt∥2 dτ +

∫ T

0

∥η∥2(1−α)
0,s dτ

)
≤ Ch2

(∫ T

0

∥m∥21,s dτ +

∫ T

0

∥ρt∥21,2 dτ
)
+ Ch2(1−α)

∫ T

0

∥m∥2(1−α)
1,s dτ.

(4.18)

The result follows directly from (4.17) and (4.18), concluding the proof. □

5. The fully discrete mixed discretization and error analysis

We now proceed with time discretization for problem (4.7), which is achieved by the backward
Euler scheme. Let N ≥ 1 give the time step τ = T/N . For a given n = 1, 2, . . . , N , with
tn = nτ . For any function φ of time, we denote φn = φ(·, tn). We also use the notation A(φn)
in place of A(·, tn, φn). The discrete time mixed finite element approximation to (4.7) is defined
as follows: For given ρ0h(x) = πρ0(x) and

{
fn

}N

n=1
∈ L2(Ω). Find a pair (mn

h, ρ
n
h) in Vh × Qh,

n = 0, 1, 2, . . . , N such that

⟨A(mn
h),v⟩ − ⟨ρnh,∇ · v⟩ = 0 for all v ∈ Vh,〈

ρnh − ρn−1
h

τ
, q

〉
+ ⟨∇ ·mn

h, q⟩ = ⟨fn, q⟩ for all q ∈ Qh.
(5.1)

Lemma 5.1 (Stability). Let (mn
h, ρ

n
h) solve the fully discrete finite element approximation (5.1) for

each time step n = 1, 2, . . . , N . There exists a positive constant C independent of n, τ such that
for a τ sufficiently small

∥ρnh∥
2 +

n∑
i=1

τ
∥∥mi

h

∥∥s

0,s
≤ C

(
∥ρ0∥2 +

n∑
i=1

τ
∥∥f i

∥∥2
)
. (5.2)

Proof. Selecting (v, q) = 2(mn
h, ρ

n
h) in (5.1), we find that

2 ⟨A(mn
h),m

n
h⟩ − 2 ⟨ρnh,∇ ·mn

h⟩ = 0,

2

〈
ρnh − ρn−1

h

τ
, ρnh

〉
+ 2 ⟨∇ ·mn

h, ρ
n
h⟩ = 2 ⟨fn, ρnh⟩ .

(5.3)
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Adding the two above equations, and using the identity,

2

〈
ρnh − ρn−1

h

τ
, ρnh

〉
=

1

τ
(∥ρnh∥

2 −
∥∥ρn−1

h

∥∥2
+
∥∥ρnh − ρn−1

h

∥∥2
),

we obtain

1

τ
(∥ρnh∥

2 −
∥∥ρn−1

h

∥∥2
+
∥∥ρnh − ρn−1

h

∥∥2
) + 2 ⟨A(mn

h),m
n
h⟩ = 2 ⟨fn, ρnh⟩ . (5.4)

It follows from (2.6) that

⟨A(mn
h),m

n
h⟩ ≥ a∗(1− α) ∥mn

h∥
s
0,s . (5.5)

Using Hölder’s inequality to the RHS of (5.4) shows that

2 ⟨fn, ρnh⟩ ≤ ∥fn∥2 + ∥ρnh∥
2 . (5.6)

Combining (5.4)–(5.6) and dropping the nonnegative term
∥∥ρnh − ρn−1

h

∥∥2 yields

∥ρnh∥
2 −

∥∥ρn−1
h

∥∥2

τ
− ∥ρnh∥

2 + a∗(1− α) ∥mn
h∥

s
0,s ≤ C ∥fn∥2 .

By the discrete Grönwall inequality in Lemma 2.2,

∥ρnh∥
2 + C3

n∑
i=1

τ
∥∥mi

h

∥∥s

0,s
≤ Ce

nτ
1−τ

∥∥ρ0h∥∥2
+ Ce

nτ
1−τ

n∑
i=1

τ
∥∥f i

∥∥2
. (5.7)

Note that ∥ρ0h∥
2 ≤ ∥ρ0∥2 and e

nτ
1−τ ≤ e

Nτ
1−τ = e

T
1−τ imply (5.2). The proof is complete. □

5.1. Error analysis

As in the semidiscrete case, we use η = m−Πm, ζh = mh −Πm, θ = ρ− πρ, ϑh = ρh − πρ
and ηn, θn, ζnh , ϑ

n
h by evaluating η, θ, ζh, ϑh at the discrete time levels. We also define

∂φn =
φn − φn−1

τ
.

First, we establish some results that are crucial in getting the convergent results.

Lemma 5.2. For n ≥ 1 if ρt, ρtt ∈ L2(0, T ;L2(Ω)), then

(i) ∥∂ρn∥2 ≤ τ−1

∫ tn

tn−1

∥ρt∥2 dt. (5.8)

(ii) ∥ρnt − ∂ρn∥2 ≤ τ

3

∫ tn

tn−1

∥ρtt∥2 dt. (5.9)

Proof. Proof of (i) By the Fundamental Theorem of Calculus, we have

ρn − ρn−1

τ
=

1

τ

∫ tn

tn−1

ρtdt.
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By means of Hölder’s inequality, we find that

∥∂ρn∥2 = τ−2

∫
Ω

(∫ tn

tn−1

ρtdt

)2

dx

≤ τ−2

∫
Ω

(

∫ tn

tn−1

dt)(

∫ tn

tn−1

|ρt|2dt)dx (Hölder’s inequality)

= τ−1

∫ tn

tn−1

∥ρt∥2 dt.

This proves (5.8).
Proof of (ii) By Taylor expansion with integral remainder,

ρn−1 = ρn − τρnt +

∫ tn

tn−1

ρtt(t)(t− tn−1)dt.

This implies that

∥ρnt − ∂ρn∥2 = τ−2

∫
Ω

∣∣∣ ∫ tn

tn−1

ρtt(t)(tn − t)dt
∣∣∣2dx. (5.10)

We estimate the right hand side of (5.10) by Hölder’s inequality∫
Ω

∣∣∣ ∫ tn

tn−1

ρtt(t)(tn − t)dt
∣∣∣2 ≤ ∫

Ω

(∫ tn

tn−1

|ρtt|2dt
∫ tn

tn−1

(tn − t)2dt
)
dx

≤ τ 3

3

(∫
Ω

∫ tn

tn−1

|ρtt|2dtdx
)
=

τ 3

3

∫ tn

tn−1

∥ρtt∥2 dt.
(5.11)

Then, (5.9) follows directly from inserting (5.11) into (5.10). □

Theorem 5.3. Let (mn, ρn) solve problem (3.1) and (mn
h, ρ

n
h) solve the fully discrete finite element

approximation (5.1) for each time step n, n = 1, . . . , N . Suppose that (m, ρ) ∈ V × Q and
ρtt ∈ L2(I, L2(Ω)). Then, there exists a positive constant C independent of h and τ such that for a
sufficiently small τ ,

∥ρn − ρnh∥
2 + ∥mn −mn

h∥
s
0,s ≤ C

(
h2(1−α) + τ 2

)
. (5.12)

Proof. Evaluating equation (3.1) at t = tn gives
⟨A(mn),v⟩ − ⟨ρn,∇ · v⟩ = 0 for all v ∈ Vh,

⟨ρnt , q⟩+ ⟨∇ ·mn, q⟩ = ⟨fn, q⟩ for all q ∈ Qh.
(5.13)

Subtracting (5.1) from (5.13), we obtain

⟨A(mn)− A(mn
h),v⟩ − ⟨πρn − ρnh,∇ · v⟩ = 0, for all v ∈ Vh, (5.14)〈

ρnt −
ρnh − ρn−1

h

τ
, q

〉
+ ⟨∇ · (Πmn −mn

h), q⟩ = 0 for all q ∈ Qh. (5.15)

Choosing v = −ζnh , q = −ϑn
h, and adding the two equations, we obtain

⟨ρnt − ∂ρnh, ϑ
n
h⟩ − ⟨A(mn)− A(mn

h),Πm
n −mn

h⟩ = 0. (5.16)

Since ρnt − ∂ρnh = ρnt − ∂ρn + ∂θn − ∂ϑn
h, we rewrite (5.16) in the form

⟨∂ϑn
h, ϑ

n
h⟩+ ⟨A(Πmn)− A(mn

h),Πm
n −mn

h⟩
= ⟨A(mn)− A(Πmn), ζnh ⟩+ ⟨ρnt − ∂ρn, ϑn

h⟩+ ⟨∂θn, ϑn
h⟩ .

(5.17)
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We estimate (5.17) term by term.
For the first term, we use the identity

⟨∂ϑn
h, ϑ

n
h⟩ =

∥ϑn
h∥

2 −
∥∥ϑn−1

h

∥∥2

2τ
+

τ

2
∥∂ϑn

h∥
2 . (5.18)

For the third term, by (2.5), using Hölder’s ineqiality and the Young inequality gives

⟨A(mn)− A(Πmn), ζnh ⟩ ≤
a∗(1− α)

2
(∥Πmn∥0,s + ∥mn

h∥0,s)
−α ∥ζnh∥

2
0,s

+ 2(a∗(1− α))−1(∥Πmn∥0,s + ∥mn
h∥0,s)

α ∥ηn∥2(1−α)
0,s

≤ 1

2
⟨A(|Πmn|)− A(mn

h),Πm
n −mn

h⟩

+ 2(a∗(1− α))−1(∥Πmn∥0,s + ∥mn
h∥0,s)

α ∥ηn∥2(1−α)
0,s .

(5.19)

Using Young’s inequalities, (5.8) and (5.9), we obtain

⟨ρnt − ∂ρn, ϑn
h⟩+ ⟨∂θn, ϑn

h⟩ ≤ ∥ρnt − ∂ρn∥2 + 1

2
∥ϑn

h∥
2 + ∥∂θn∥2

≤ τ

3

∫ tn

tn−1

∥ρtt∥2 dτ + τ−1

∫ tn

tn−1

∥θt∥2 dτ +
1

2
∥ϑn

h∥
2 .

(5.20)

In view of (5.18)–(5.20), (5.17) yields

∥ϑn
h∥

2 −
∥∥ϑn−1

h

∥∥2

τ
− ∥ϑn

h∥
2 + ⟨A(Πmn)− A(mn

h),Πm
n −mn

h⟩

≤ 2

3
τ

∫ tn

tn−1

∥ρtt∥2 dτ + 2τ−1

∫ tn

tn−1

∥θt∥2 dτ

+ 4(a∗(1− α))−1(∥Πmn∥0,s + ∥mn
h∥0,s)

α ∥ηn∥2(1−α)
0,s .

Using (4.3), (4.8) and (4.9), we find that

∥ϑn
h∥

2 −
∥∥ϑn−1

h

∥∥2

τ
− ∥ϑn

h∥
2 + ⟨A(Πmn)− A(mn

h),Πm
n −mn

h⟩

≤ τ

∫ tn

tn−1

∥ρtt∥2 dτ + 2τ−1

∫ tn

tn−1

∥θt∥2 dτ + 4(a∗(1− α))−12αBα/s ∥ηn∥2(1−α)
0,s . (5.21)

By means of the discrete form of Grönwall’s inequality in Lemma 2.2 and the fact ϑ0
h = 0, we find

that

∥ϑn
h∥

2 +
n∑

i=1

τ
〈
A(Πmi)− A(mi

h),Πm
i −mi

h

〉
≤ C1

(
τ 2

∫ T

0

∥ρtt∥2 dτ +

∫ T

0

∥θt∥2 dτ + τ

n∑
i=1

∥∥ηi∥∥2(1−α)

0,s

)
, (5.22)

where C1 = (2 + 4(a∗(1− α))−12αBα/s)e
T

1−τ .
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Using (2.3) and (4.10), we find that

∥ρn − ρnh∥
2 +

n∑
i=1

τ
∥∥mi −mi

h

∥∥2

0,s
≤ 2

(
∥θn∥2 +

n∑
i=1

τ
∥∥ηi∥∥2

0,s
+ ∥ϑn

h∥
2 +

n∑
i=1

τ
∥∥ζ ih∥∥2

0,s

)
≤ (2 + (a∗(1− α))−1)

(
∥θn∥2 +

n∑
i=1

τ
∥∥ηi∥∥2

0,s
+ ∥ϑn

h∥
2

+
n∑

i=1

τ(
∥∥Πmi

∥∥
0,s

+
∥∥mi

h

∥∥
0,s
)α

〈
A(Πmi)− A(mi

h),Πm
i −mi

h

〉 )
≤ C2

(
∥θn∥2 +

n∑
i=1

τ
∥∥ηi∥∥2

0,s
+ ∥ϑn

h∥
2 +

n∑
i=1

τ
〈
A(Πmi)− A(mi

h),Πm
i −mi

h

〉
),

where C2 = C(2 + (a∗(1− α))−1)(2αBα/s + 1).
Then, by (5.22),

∥ρn − ρnh∥
2 +

n∑
i=1

τ
∥∥mi −mi

h

∥∥2

0,s
≤ (C1 + 1)C2

(
∥θn∥2 +

n∑
i=1

τ
∥∥ηi∥∥2

0,s

+ τ 2
∫ T

0

∥ρtt∥2 dτ +

∫ T

0

∥θt∥2 dτ +
N∑
i=1

τ
∥∥ηi∥∥2(1−α)

0,s

)
.

Applying (4.4) and (4.6) gives

∥ρn − ρnh∥
2 +

n∑
i=1

τ
∥∥mi −mi

h

∥∥2

0,s
≤ C

(
h2 ∥ρn∥21,2 + h2

n∑
i=1

τ
∥∥mi

∥∥2

1,s

+ τ 2
∫ T

0

∥ρtt∥2L2 dτ + h2(1−α)

n∑
i=1

τ
∥∥mi

∥∥2(1−α)

1,s

)
.

This completes the proof. □

6. Numerical results

In this section, we carry out numerical simulations using mixed finite element approximation
to solve problem (5.1) in two dimensions to validate our theoretical estimates. For simplicity,
the region of examples are unit square Ω = [0, 1]2. We use the piecewise constant elements for
the density variable and lowest order Raviart–Thomas for momentum variable. We divided the
unit square into an N × N mesh of squares, each of them subdivided into two right triangles.
The triangularization in the region Ω is a uniform subdivision in each dimension. The calcula-
tions are performed for T = 2. For each mesh, we solve the problem (5.1) numerically. Our
problem is solved at each time level starting at t = 0 until the given final time T . The rela-
tive error control in each nonlinear solve is tol = 10−6. At time T , we measure the error in the
L2-norm for the density and the Ls -norm for the vector momentum. We obtain the convergence
rates ri = ln ei−1−ln ei

lnhi−1−lnhi
of finite approximation at seven levels with the discretization parameters

h ∈ {1/4, 1/8, 1/16, 1/32, 1/64, 1/128, 1/256}(the mesh size is actually h
√
2), respectively. In

view of Theorem 5.3, the time step is taken ∆t = 0.5h1−α (equating the exponents in the error
bound of (5.12)) to ensure that the terms τ 2 and h(1−α) are of the same order. We compute the
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errors as given in (5.12). We test the convergence of our method with α = 1
2
, s = 3

2
. To test the

convergence rates, we choose the analytical solution

ρ(x, t) = e−t sin(πx1) sin(πx2).

m(x, t) = −(πe−t)2
√
cos2(πx1) sin

2(πx2) + sin2(πx1) cos2(πx2)

[
cos(πx1) sin(πx2)
sin(πx1) cos(πx2)

]
.

For simplicity, we take a(x, t) = 1 on Ω × I . The forcing term f is determined from equation
ρt +∇ ·m = f . Explicitly,

f(x, t) = −e−t sin(πx1) sin(πx2)

− 2π3e−2t sin(πx1) sin(πx2)[2 cos(2πx1) cos(2πx2) + cos π(x1 + x2) cosπ(x1 − x2)− 1]√
2− 2 cos(2πx1) cos(2πx2)

.

The initial condition and boundary condition are determined according to the analytical solution
as follows:

ρ0(x) = sin πx1 sin πx2 x ∈ Ω,

ρ(x) = 0 on ∂Ω.

The numerical results are listed below in Table 6.1.

N h τ Error τ 2 + h2(1−α) Conv. order
4 3.536E-01 2.973E-01 4.176E-02 4.419E-01 –
8 1.768E-01 2.102E-01 1.828E-02 2.210E-01 1.192
16 8.838E-02 1.487E-01 6.063E-03 1.105E-01 1.592
32 4.419E-02 1.051E-01 2.024E-03 5.524E-02 1.583
64 2.210E-02 7.433E-02 6.753E-04 2.762E-02 1.584
128 1.105E-02 5.256E-02 2.250E-04 1.381E-02 1.586
256 5.524E-03 3.176E-02 7.500E-05 6.905E-03 1.585

TABLE 6.1. Numerical results (final time T = 2, τ = 0.5
√
h).

As shown in table 6.1, the numerical results confirm the theoretically estimated convergence order
of τ 2 + h.

7. Conclusions

In this paper, we have analysed a numerical scheme for slightly incomprehensible pre-Darcy
flows. The spatial discretization is mixed and based on the lowest order Raviart–Thomas finite
elements, whereas the time step is performed by the backward Euler method. We have proven the
convergence of the scheme by estimating the error in terms of the discretization parameters. The
numerical experiment agrees with the estimates derived theoretically.
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