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Mixed finite element approximations for Darcy flow of isentropic gases

AALIF BISWAS, ARYAN BAVERA, LYNDEN BAEK, SAMHITHA KOVI, THINH KIEU,
AND TESSICA SELVAGANESAN

ABSTRACT. In this paper, the mixed finite element methods are analyzed for the approximation of
the solution of the system of equations that describes the single-phase Darcy flow of isentropic gas
in a porous medium. Our numerical approach is based on the mixed finite element method (MFEM)
in space, and backward-differences in time. The lowest order Raviart-Thomas elements are used.
Within this frame work, we derive error estimates in suitable norms and show the convergence of
the scheme. The features of the MFEM, especially of the lowest order Raviart- Thomas elements,
are now fully exploited in the proof of convergence. Finally, we give the numerical experiments to
confirm the theoretical analysis regarding convergence rates.

1. Introduction

We consider a fluid in porous medium occupying a bounded domain Q@ C R% d > 1 with
sufficiently smooth boundary 9. Let x € R%, 0 < T' < oo and t € (0,7 be the spatial and time
variables respectively. The fluid flow has velocity v(x,t) € R?, pressure p(x,t) € R and density
p(x,t) € R, . Ward (1964) established from experimental data that

K(X)
v(x,t) = — Vp(x,t). (1.1)

p(x)

where 1, k are, respectively (resp.) absolute viscosity and permeability.
Multiplying both sides of the equation (1.1)) to p, we find that

K(X)

p(x,t)v(x,t) = ———=p(x,t)Vp(x,t). (1.2)
(x,1)v(x,1) ) (x, 1) Vp(x,1)

For isentropic gases, the constitutive law is
p(x,t) = cp?(x,t) forsomec,vy > 1. (1.3)
Then, from (1.2 and (1.3)), follows

+1

p(x,t)v(x,t) = —%p(x, t)Vp(x,t) = —%Vu(x, t) withu(x,t) = wpé%?” (1.4)
The continuity equation is

¢(x)Iup(x, 1) + div(p(x, 1) v(x, 1)) = f(x,1), (1.5)

where ¢ is the porosity, f is the external mass flow rate.
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Rewrite R
v+ 1 A . 1
1) = b thA=——¢€ (0,1). 1.6
pxt) = () ux o with A= — € (0.) 16)
Combining (1.5)) with relation (1.6), we have
+1\* .
o(x) (7—7) 0 (x,) + div(p(x, )v(x, 1)) = f(,1). (.7

Then from (1.4) and (1.7)) we obtain
B(x)m(x,t) = —=Vu(x,1),

A 1.8
o) (120) Buut 0 + div mix.0) = flx.), 49
where m(x,t) = p(x,t)v(x,t), B(x) = %
By rescaling the variable ¢(x) — (”:;1 ) é(x), we obtain system of equations
f(x)m(x,t) = —Vu(x,t), (1.9)
o(x)Ou(x, 1) + div m(x,t) = f(x,1). (1.10)

Substituting the equation (1.9) into the equation (1.10)), we obtain a scalar partial differential
equation (PDE) for the density:

P(x)Opu(x, 1) — div (B(x)"'Vu(x,t)) = f(x,t), (x,t) € Qx(0,T]. (1.11)

The numerical analysis of the degenerate parabolic equation arising in flow in porous media
using mixed finite element approximations was first studied in Arbogast et al. (1996). Shortly
thereafter, Woodward and Dawson| (2000) studied the expanded mixed finite element methods for
a nonlinear parabolic equation modeling flow into variably saturated porous media. Galerkin finite
element method for a coupled nonlinear degenerate system of advection-diffusion equations were
studied in Fadimba and Sharpley| (2004); [Fadimba (2007) and references therein.

The popular numerical method for modeling flow in porous media is the mixed finite element
approximations (e.g., Dawson and Wheeler (1994); Kim and Park (1999); Girault and Wheeler
(2008); |Pan and Rui (2012))). This method is widely used because of its inherent conservation
properties and because it produces accurate flux even for highly homogeneous media with large
jumps in the conductivity (permeability) tensor Ewing et al.| (1996). Since the pioneering work
of Raviart and Thomas| (1977), the method has become a standard way of deriving high order
conservative approximations. We recommend to the reader Brezzi and Fortin| (2012) for general
accounts of the mixed method.

In this paper, we analyze the order of convergence for a mixed finite element spatial discretiza-
tion combined with an implicit Euler discretization in time for the Eq. (I.11). We mention |Ar-
bogast et al. (1996); [Yotov (1997); Radu et al.| (2004)); |Schneid et al. (2004) for a mixed finite
element discretization of (I.TT]). Specifically, the lowest order Raviart-Thomas finite elements are
used, whereas the time discretization is achieved by an Euler implicit scheme. For the spatial dis-
cretization, optimal error estimates are obtained in Jager and Kacur| (1995); Arbogast et al.|(1996);
Schneid et al. (2004). For proving the convergence of the fully discrete scheme, the solution is
assumed sufficiently regular. Similar results are obtained in Woodward and Dawson (2000) for
an expanded MFEM, where three variables are considered explicitly: the pressure, its gradient
and the flux.We also mention the combined finite volume - MFEM approach analyzed in Eymard
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et al.| (2006). There are many results on the convergence analysis of the conformal finite element
discretization combined with a one step time discretization. Due to the low global regularity of
the solutions of degenerate parabolic problems, (see in|Alt Hans W.|(1983); Woodward and Daw-
son (2000)), low order discretization methods are well suited for the numerical approximation of
the solution. A similar situation appears for the MFEM. The convergence results for the scalar
unknowns obtained by both conformal and mixed methods are comparable. While for conformal
approaches also estimates that are pointwise in time are available, the mixed approach is providing
valuable information on the approximation of the flux. This is due to the specific nature of the
method. For the numerical analysis of conformal discretizations of the Richard’s equation in the
pressure formulation we refer to Nochetto and Verdi|(1988)) and in the saturation based formulation
to [Pop| (2002), where both type of degeneracy are allowed but the results do not apply to the fully
saturated flow regime. We mention Ebmeyer| (1998); Pop and Yong (2002) for the porous medium
equation.

The outline of this paper is as follows. In section[2] the mixed continuous variational formulation
is stated and the regularity of the solution is discussed. The error estimates for the time discrete
scheme are obtained in the next section. The fully discrete scheme is considered in section [,
where error estimates are derived in terms of the discretization parameters. We point out that all
these estimates are obtained under minimal regularity of the solution of the problem (2.1)). In
section [5] the results of a numerical experiment using the Raviart-Thomas elements of order 0 in
the two-dimensions are reported and the conclusions.

Notations: Suppose that {2 is an open, bounded subset of R¢, with d > 1, and has C''-boundary
0€). Let LP(£2) be a space of functions for which the p-th power of their absolute value is Lebesgue
integrable and (LP(£2))? the space of d-dimensional vectors which have all components in LP(S2).
By (-, -) we mean the product of duality pairing between L”(Q2) and L4(Q2) with 1/p+ 1/q = 1
that is

€= [ ende vee @).ne L@ or 6m) = [ ende Ve € (@) 0 € (LIQ)
Q Q
(1.12)
The notation |||, is used to denote both norms ||-| ., and [|*[| 1> (q))a-
We denote |||, 7.r4(0))» 1 < P,g < oo means the mixed Lebesgue norm for a function u
while [|ul[ 150 7.5a(q)) s 1 < P.g < oo stand for the mixed Sobolev-Lebesgue norm of a func-
tion u. For 1 < ¢ < +oo and m any nonnegative integer, let W"4(Q)) = {u € LYQ), D €

1

L1(2), |a| < m} denote a Sobolev space endowed with the norm ull,,, = ( > jal<m ||D°‘u||qu(Q) > .

Finally we define H™(Q2) = W™2(Q).
Throughout this paper, we use short hand notations, I = (0,7, and ug(-) = u(-,0).
Our calculations frequently use the following exponents

A+1 1

r=14+Xe(1,2), s T:1+X€(2,oo). (1.13)

Throughout this paper, we use C', C'1, Cy, . . . to denote a generic positive constant whose value may
change from place to place but are independent of the parameters of the discretization.

We recall some elementary inequalities that will be used in this paper.

Forany p > 0, z1,29,..., 2, > 0,

xﬁ’+x§+~--+xz<

- (21 +@g + - ap)? <EPV (@) 4 ah - ab), (1.14)
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where 2zt = max{z, 0}.
2. The mixed finite element method

In this section, we study a mixed finite element approximation to the initial- boundary value
problem (IBVP):

f(x)m(x,t) = —Vu(x,t) (x,t) € QA x I,
o(x)Ou(x,t)* + V- m(x,t) = f(x,1) (x,t) € Q x I, o0
u(x,t) =0  (x,t) € 90 x I, '
u(x,0) = up(x) x € (L

Noting that we make assumption that u(x, 0) = ug(x) = 0 for all x € 99Q.
From now on the following assumptions will be needed

(H1) ¢,8 € L>(Q2) and 0 < ¢, < ¢(x) < ¢* < 00,0 < B, < B(x) < B* < o0.
(H3) f € L>(I,H Y(Q)) N L>(I,L*(%)), the function || f]os to be Lipschitz continuous in
time, i.e., there exists a constant .2 > 0 such that, for every 0 < t; <ty < T,

[f(t) = f(E2)llos < Lt —ta. (2.2)

Remark 2.1. Due to the maximum principle, the solution of the problem (2.1)) is great or equal to
zero (see in [Pop and Yong (2002); Radu et al.|(2004)); Ivanov and Jager (2000)).

The existence, uniqueness and essential bounded for weak solution of (2.1) is studied in many
papers Alt Hans W.| (1983)); Kieu (2020alb); [Otto (1996); Raviart (1970); Raviart and Thomas
(1983); Schweizer| (2007)) and the references therein. In particular the following regularity is proven
in |Alt Hans W.[(1983)); Raviart| (1970)); Kieu (2020a.b)

we L¥(1, HY(Q) N L=(1, L(9),

u € L®(I, LY Q) N L(Q)),

ot € L>*(I, H (), (2.3)

m = —Vu € L*(I,(L*(Q))%),

V-m e L*(I, L5 (Q)).
Since d;u? is only in L>°(I, H='(2)) in the variation formulation of (2.1)), this require that the test
functions belong to H} (). However, the mixed formulation requires the test functions are only in
L?(Q). To overcome this difficulty we use an idea first proposed by [Nochetto| (1985)( also see in

Arbogast et al.| (1996))), we are justified now in integrating the second equation in time from 0 to ¢
and using the last equation in (2.1)) to obtain the equivalent distributional equation

t t
gbu)‘(x,t)—l—v-/de:/de—i—qbuS, (x,t) e Q@ x I 2.4
0 0
Note that from (2.3)) and (2.4) we conclude that

/ t mdr € H'(I,(L*(Q)%) n L*(1, W (div, Q)), (2.5)
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where W (div, Q) = {v € (L*(Q))4,V - v € L*(Q)} C H(div, Q). We denote the norm of W (div, 2)
bY [V llwaiv.y = IVllga + IV - Vg - Since W (div, ©2) is a closed subspace of (L*(€2))**, it fol-
lows that V is a reflexive Banach space; the boundary v - 1|5 exist and belong to W*/™(9)) and
we have the Green’s formula

/ vVdr + / YV - vdxr = Vv - vdo (2.6)
Q Q o0

hold for every v € W(div, ) and ¢ € (W(div,))’ (see Lemma 3 in Brezzi and Fortin| (2012)).
We have a variational form for almost each time ¢ € I as follows:
Find (m, ) € L*(I, W (div,2)) x L>(I, H}(Q)) N L>(I, L"(€2)) such that

(fm,v) — (u,V-v) =0 forall ve W(div,Q), (2.7)

<¢u’\(t),q> + <V . / mdr, q> = </ de,q> + <¢u(’)\,q> forall g € L"(92). (2.8)
0 0

In fact (2.8)) holds for every ¢ € I, since u is defined for each time ¢. Moreover we can define m
for each time ¢ by (2.7).

3. The time discretization

We now proceed with the time discretization for problem (2.7)—(2.8]), which is achieved by using
backward Euler for time-difference discretization. Let /N be the positive integer, {) = 0 < ¢; <

. < ty = T be partition interval [0,7] of N sub-intervals, and let 7 = t; — t,_y = T/N
be the " time step size, t; = i7. For any function ¢ of time let o; denote ((t;). For a given
1 =1,..., N, we define the time discrete mixed variational problem as follow: Let u;_; be given.
Find (m;, u;) € W(div; Q) x L"(Q) =V x @ such that

(Pm;,v) — (u;, V-v) =0 forallv eV, 3.1
(p(u} —u}y),q) +7(V -my,q) =7(f;,q) forallgeQ, (32)

_ 1 [h _
where f, = — f(t)dt, wheneveri = 1,... N.Fori = 0, we take f, = f(0).
T

ti—1
Initially we take ug = ug(z), and (fmyg, v) = (up, V- v), forallv € V.

3.1. Stability for the time-discrete mixed formulation

In this section we investigate the stability of the time discrete approach

Theorem 3.1. Let (m,u) € V' x Q solve the problem (3.1)-(3.2). Suppose that (HI1)—(H3). Then,
there exists a positive constant C independent of T, N such that for T sufficiently small such that
foranyi=20,..., N,

||Ui||0,r + HU’Z\HQS + ||Uz||12 + ||mi||o,2 <C. (3.3)

Proof. Choosing v = m;, and ¢ = w; in (3.1)), respectively in (3.2)), adding the resultant equations

yields
A

_ _
(fmy, m;) + <¢%7Ui> = <fi?ui> : (3.4)
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By virtue of (A.4)), we have

A
<¢M,ui> = ((6,up) = (d,ui_y)) (3.5)

T

Using Young’s inequality and the boundedness of the function ¢ gives

Forws) < S ATlls, + > il <~ [Tl + 5 (000 (3.6)

Owing to the fact that (fm,;, mi) >0, @ (3.5) and @) it follows that
(0, ul) = (@ uiy) < 7|[Filly, + - (6,7 (3.7)

If 7 sufficient small so that /7 = ¢—S ¢ - < 1, which gives 7 < ¢. A, then
0. < = () +775,) - (38)

By induction we find that
(p,uf) < (1—b7)” Z<¢,u0 +Z (1—tr) ¢||f||05>. (3.9)

Note that (1 — (1)~ < i < 2T forall 7 < 1/(2() = 0., it follows from above inequality
that

O lully, < (8,05} < (& uollg, +T 1 l3e(r.zey ) < 7@ +T) (Itollg, 1 s )

(3.10)
This leads to
[willg, < Ch, (3.11)
1/r
where Cy = [ (6" + ) (ually, + 1 Feiri)] -
It follows easily that
[y, = lluilly, < €7 (3.12)
Using the test function ¢ = u; — u;_1 in (3.2), we obtain
uwd —u _
<¢%H, U; — U,Z‘_1> + <V 1My, U — Ui_1> = <fZ,UZ — U,i_1> . (313)

Now taking v = m,; at time step ¢ and 7 — 1 in (3.1)), we have
(fm;,m;) —(V-mj,u;) =0, and  (fm;_y,my) —(V-my, u;q) =0, (3.14)
which implies that

(B(m; —m; 1), m;) = (V- -my,u; —u;_q) . (3.15)
Combining (3.13) and (3.13) shows that
ud — u _
<¢%, U; — ui_1> + <ﬁ(mz — mi_l), m,,> = <f“uz — Uz‘—1> . (316)

Summing up this equation for k = 1,2, ...,4,7 < N yields

A A
Z<¢w,uk—uk_l>+(ﬂ(mk me_1). Z<fk,uk—uk SNCRL)

k=1
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We will estimate (3.17) term by term.
The term on the right hand side of (3.17) are bounded by using Holder’s inequality

7 i—1
S (Frowe —wr) = (Fows) = (Frouo) + > (Fr = Fron )
k=1 k=1

1—1
— — — — 3.18
< | Fillo Nello, + [Fllo. ol + 3 1Fs = Fesnllos Il
k=1

<201 (I llpeir + 27)

For the last term on the left hand side of (3.17)), we use Cauchy’s inequality and the boundedness
of the function 3 to obtain

> (B(my — my_y),my) = > (Bmy, my) — (Bmy_y, my)

k=l = (3.19)
> ﬁ* 2 2 B* 2 2
=5 Z ”mk“o,z - Hmkfluo,z = ?(Hmzuoz - HmOHO,Q)'
k=1
Due to (A.3), the first term on the left hand side of (3.17) is nonnegative that is
i W —
> <¢—k’ Ly, — uk1> > 0. (3.20)
k=1 T
Substituting (3.18), (3.19) and (3.20) into (3.17) yields
2 2 _
HmiHO,z < ”mOHO,z + 20, ' <Hf”Loo(1,Ls) +$T> : (3.21)
Since the choice of initial value of my satisfies
(Bmgy,v) = (up, V-v) = = (Vug,v) forallveV. (3.22)
Let choose v = mg € VV we have
2
Bi lmollgo < [(Vuo, mo)| < [[Vuo|lg 5 [[mollg - (3.23)
which shows
”m0||(2),2 < 5;2 ||VU0H3,2 : (3.24)
Inserting (3.24)) to (3.21) leads to
[myfy, < Co, (3.25)

1/2
where O = [ﬁ;? IVuol2, +26,1C) (H Fllpmqrzo + .,%Tﬂ .
Again from (3.1)), we find that

(Vu;,v) = —(u;, V-v) = = (fm;,v) forallveV.
Consequently,
||Vui||0’2 < p ||mi||0,2'
Thanks to Poincaré inequality,
||ui||1,2 < ||Vui||072 < CpB° ||mi||0,2' (3.26)

The assertion (3.3)) follows straighforwardly from (3.11)), (3.12), (3.25)) and (3.26). d
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To prove the convergence of the semidiscrete scheme (3.1)-(3.2) we use the following stability
estimates:

Lemma 3.2. Let (m,u) € V x Q solve the problem R.T)—2.8). Suppose that (HI)—(H3). There
exists C' > 0 independent of T, N such that foranyn =1,..., N,

(4) Z Jui =iy, + TZ lm; — m,_,[[5, < CT. (3.27)

(i) TZIIV mif, <O (3.28)

Proof. Proof of (i). We rewrite (3.17) as the form

n n

u) —udy -
Z <¢7,Ui - Ui—1> = Z (B(m;_; — m;), m;) + <f1;,ui - Uz‘—1> . (3.29)

i=1 i=1
Using Young’s inequality and (3.3)), we have

n

Z (B(m;_1 —m;), m;) <

=1

> (Jmenff - [vom

(Ihmol|” + [m, |*) < B7C2.

1 )
23 (3.30)
5

2
Combining (3.29), (3.30) and (3.18)) we find that

n A

A )
3 <¢w ui — u1> < Gy, (331)
T

=1

<

where C3 <L 2 1l poe,ne) + XT) + B*C2.
It follows from and (3.31)) that

DA A up — 1‘ A 1/A
72 Huz _ui—IHOS Z }u i—l‘
=1

(3.32)
< ; <¢@7Uz‘ - Uz‘—1> < Cj,
We rewrite (3.29) using (A.TT)) as follows
_Z< U —U u.—ui1>+<7i,ui—ui1>:Z<\/B(mi—mi1), ﬁmz>
i=1
- YA+ 35 - a2
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From (3.33), (3.31), (3.18)), (3.3) we find that
B Z Jmy; — m; 5, < Z H\/B(mz‘ —m; )
i—1 i—1

2

0,2

n

: N R ;
§H\/Emn 072—|—H\/Em0‘072+2 ;<¢ - I,Ui—ui—1> +2 ;<fivui_ui—l>
* 2 2 - u) —up —~ =
<p (Hmn||o,2+ Hm0”o,2) +2 Z be?%—ui—l + 2 Z<fi7ui_ui—1> < Cy,
- - (3.34)

where Cy 2L 8 [3°C + Oy (|1 fllyogy 1) + 2T + 572,

The assertion (3.27)) follows from (3.32)) and (3.34)).
Proof of (ii). Since 7 < 2 < s, L*(Q2) C L*(Q) C L"(Q). Using test function ¢ = V - m; €
L#(Q) C L™(Q) in (3.2), we find that

(p(u} = u} ),V mg) + 7|V -myg, =7 (f, V-m;). (3.35)
Thanks to the use of Holder’s inequality yields
IV mily < (7 Filly, + ¢

<O ([Filly, + ¢

ui\ - u;\leo’s> HV ’ mi”o,r

U;\ - Uz/‘\—1H075> |V - mi”o,z-

This gives
IV miflg, < 7t (7 [y, + 0t = wlaly,) (3.36)
Summing the above overi = 1,...,n,n < N leads to
n n N 2
P IV mlly < Y (7 Fillg + ol = ]y )

i=1 i=1

. (3.37)
- — 2 2
<2040 3 (PTG, + =il )
=1
Furthermore, with w = 2(s —2)/s = 2(2 —r)/r, we use the Young inequality with p = s/(s — 2),
p’ = s/2 to estimate the last term of (3.37)

n n

A A2 —w w ], A A2
ZH% _“z‘—lHo,s =7 ZT H“z _“z‘—lﬂo,s
i=1 =1

_wn S=2 o 20 5 A s
=T ;( — 4 | ui_lHoﬁ) (3.38)
max{s — 2,2} " i
<=2 (1 S - ).

Due to (3.32),

Z Hu;\ — uj_1||§78 < MT‘“’ (TT + ngb*_lT) < Ortv, (3.39)
i=1

S
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Substituting (3.39) to (3.37) gives

Y IV-my|f, <214 ¢7)r! (Z 7| Fillo. + Tl—w> (3.40)

i=1 =1

< C (77 | f gy +1) 77
<C (TZH 1 7o (7,00 + 1> S CL

This completes the proof. ]

3.2. Convergence analysis

In the follows we prove the convergence of the mixed time discrete scheme (3.1)—(3.2).
Recalling u € L>(I, L"(2)) and by (3.3)), we have

n ti n t; n t;
S [ o -l <2 [ Gl 4l )i <e Y [ aser @an
=1 ti—1 i=1 ti—1 i=1 ti—1

Lemma 3.3. Let (m,u) € V x @Q solve the problem 2.77)-2.8). Suppose that (HI)—(H3), for any
n=12,..., N we have

n t;
S [ et -l de+
i=1 Yli-1

2 2

+ 2 /t il(m(t) — my)dt

< CT.

Z / til<m<t> e

0,2

(3.42)

07
Proof. Forany i =1,2,..., N, (3.I)-(3.2) immediately implies

(Pm;,v) — (u;, V-v)y =0 forallv eV, (3.43)

(p(u} —ud),q) + 7 <v ) my, q> =7 <27k, q> forall ¢ € Q. (3.44)
k=1

k=1
Furthermore, (2.7)—(2.8)) can be written as
(fm;,v) — (u;,V-v)=0 forallveV, (3.45)

(p(u(t;) — u(0)),q) + 7 <Zv -y, q> = <Z?k, q> forall ¢ € Q. (3.46)
k=1 k=1

Subtracting (3.43) from (3.43) and (3.44) from (3.46)) and recall that u(0) = ug gives
<B(ﬁz — mi),v> — <Ez — UZ‘,V . V> = 0,

(6 0) — ) a) 7 <v 3 mk,q> L

k=1
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Now taking v =71 Z m; —my € Vand ¢ = u; — u; € ) and adding the resulting yields
k=1

<¢(uk(ti) —u}), U — uz> + 7 <B( —m;), Z m; — mk> =0. (3.47)

Summing the above over: = 1,...,n,n < N leads to
> {puM(t) — u), T — —|—TZ< ), mk—mk> = 0. (3.48)
i=1 k=1

We denote by A, B the terms in the above and estimate them separately.
We rewrite A as follows

- %Z/t (p(ur(ti) — uM(t)), ult) — ui) dt

- (3.49)
1 123 A " A " i A A
+;;/m_1<¢(U()_uZ)’u<)_ul> = A, + As.
For Aj, noting that by (A.2) we have |u — u;| > |[u* — u}|Y/?, thus
1S 5, .
=22 ), (om0~ jutt) ) a
(3.50)

Z/ (Ju(t) = ], () — ) dt = ¢2/ ) — | .

For A, by Holder’s inequality,

A= %i/t </t POy (s)ds, u(t) — u> dt

[ ool o) =, Bsh)

. —Z (/ 68 )], ds ) (/tt lu(t) —uz-||o,rdt)-

By Young’s inequality, Holder’s inequality, and recalling (3.41)) and regularity of d,u* and u we

have
1 n r 1 n t; s
g 23 ([ oo @l,as) 230 (7 1o~ o,

=1

| /\

n

1 n . T/S 1 ti : s/r
FZ (/ti_l 600> (5) [, ds) + ;Z (/ti_l Ju(t) — uillg, dt) <C.

=1 i=1

IN
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For B, using the identity (A.10) we rewrite B as

B = TZ <6(ﬁ2 — mz),Zﬁk — mk>
=1 k=1

2
n n 2
= VA w4 DY | VAEm - m)| (3.52)
i=1 0,2 i=1 ’
n 2 n
> 7—5* Zmi_mi +T§*Z||mi_mi||g,2-
i=1 0,2 =1

Combining (3.48)—(3.52), we find that

2
. n t; s 78, n 8. n
R | =1 0,2 i=1

The result follows straightforwardly by multiplying above by 7 and rescaling constants. O

Lemma 3.4. Assume (HI)—(H3), foranyn = 1,2,..., N we have

n t; n t;
2/ u(t) — u; dt Z/ m(t) — m; dt
i=1 Jti—1 i=1 Y li—1

Proof. Subtracting (3.43) from (3.45)) and adding the resultant equation for i = 1...n gives

<Z A(m; — mz-),v> — <Za —u;, V- v> =0 forallveV. (3.55)
i=1

i=1

(3.54)

<C
0,r 0,2

Furthermore, by Lemma[A.5] there is a v € V such that (A.21)) holds for

n
E ﬂz‘ — U;
=1

r=2 .

> w —u; € LY(Q). (3.56)
=1

w =

Taking this v above yields

||V||0,2

n
E ﬂi — U;
i=1

= <Z B (m; — mi)7V> < g

0,r

n
i=1

0,2
r—1

n n
<A D om—my|| wlly, =7 M —m, > U -
=1 0,2 i=1 0,2 Il i=1 0,r
It follows directly that
n n
dow -l <D W —m; (3.57)
=1 0,r i=1 0,2

The result follows straightforwardly by multiplying the above by 7. U
Summarizing the estimates in Lemma [3.3]and [3.4] we obtain the following
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Theorem 3.5. Assume (H1)—(H3). Let (m,u) € V' x @ solve problem 2.7)-2.8) and (m;, v;) €
V' x @Q solve problem (3.1)-(3.2), i = 1,..., N, foranyn = 1,2,..., N we have

n t; n t;
S [ o -l | [ ) v
i=1 Yti-1 i=1 Yti—1

n t; 2 n
S [ - mya| Y
i=1 Jti-1 =T

0,

2

0,r

Lﬂm@—th

(3.58)

2

+ < CT.

0,2
4. The fully discrete mixed finite element discretization

Based on our semidiscrete analysis we derive error estimates for the fully discretization approx-
imation.

Let {7,}, be a quasi-regular polygonalization of 2 (by triangles, rectangles, tetrahedron or
possibly hexahedron), with max,¢7;, diam 7 < h. The discrete subspace V;, x Qp C V x @ is
defined as

Vi, ={v e V;v|r € RT{(T) forall T € T}, 4.1)
Qn={q € Q;qlr € K(T) forall T € Tp}, (4.2)

with Py(T) denotes the space of constant and RTy(T) = (Po(T))? + xP(T).
The finite element space 1/}, is the lowest degree element of the Raviart -Thomas space (cf.
Ciarlet (1978)); Raviart and Thomas|(1977)) and @)}, is the space of piecewise constant functions.
For momentum, let IT : V' — V}, be the Raviart-Thomas projection Raviart and Thomas| (1977,
which satisfies

(V-(IIm—m),q) =0 forallm € V,q € Q. 4.3)

For pseudo-density, we use the standard L2-projection operator, see in Ciarlet (1978), 7 : Q —
@, satisfying
(mru—u,q) =0 forallu € Q,q € Qp,

4.4
(ru —u,V-my) =0 forallmy, € V},,u € Q. (4.4)

This projection has well-known approximation properties, e.g.Bramble et al. (2002); Brezzi and
Fortin| (1991)); Johnson and Thomée| (1981).

M — mlly,, < Chmll,, vm e VW) ws)

I~ ully, < Chlull,, € [1,00], Vu € Whe(Q). |

The two projections 7 and II preserve the commuting property divo Il = rodiv: V — Q.
With i =1,..., N the fully discrete problems can be defined as follows:

For given {?z}f\iln and uy, ;1. Find a pair (my, ;, up,;) in Vi, X Qp, 7 =1,2,..., N such that

(Bmy,;, v) — (up;, V-v) =0 forallv eV, (4.6)

uﬁz - uﬁ i1 —=
p————1q ) + (V- mu;,q) = (firq) forallq e @, 4.7)
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with initial choice
<uh,07 q> = <7TU07 Q> for all q S Qha

4.
(Bmp, o, v) = (up, V-v) forallveV,. (4.8)

4.1. Error analysis for fully discrete method

In this section we derive an error estimate for the fully discrete scheme. First, we give some
results that are crucial in getting the convergence results.

Lemma 4.1. Let (m;, u;) € V x Q solve problem (3.1)-(3.2) and (my, ;, up, ;) € Vi, X Qy, solve the
fully discrete finite element approximation (4.6)—@.7) for each time step i, withi = 1,..., N, for

anyn =1,..., N we have
> — o, + T +7 Y [Tmy — mylfp
i=1 0,2 i=1 (49)

n n
<cC <Z i = willg, + D fm — Hmz’”ﬁ,z) :
=1 =1

Proof. From (4.7), we immediately obtain

2

anz —my;

=1

(d(up, — up g q +er my,;, q) —TZ (firq) forallg € Q. (4.10)

Subtracting (@.10) from (3.44), respectlvely, #.6) from @]} and recalling the definition of pro-
jectors (4.3)-(4.4), we find the error equations

(B(my, — mp ), V> — (mug —upg, V-v)y =0 forallv eV, 4.11)

(p(up — up ), q>+72 - (Ilm; — my,;),q) =0 forall g € Q. (4.12)

k
Now taking ¢ = mu, —upy € Qpand v =17 Z IIm; — my,; € Vj, in @.11), respectively (4.12),

i=1

adding the resulting and summing up for £ = 1,...,n withn < N gives
n n k
> {blup —up ), mug — i) + 7y <B(mk —my), Yy Tm; — mhﬂ-> =0.  (413)
k=1 k=1 i=1

Now we proceed by estimate separately the terms in the above, denoted A, B.
We start by writing

A= Z<¢ N =), T — k) (4.14)

—Z<¢ —uhk uk—uhk>+z<¢ —uhk Wuk—uk>—A1+A2
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The first term above is positive by (A.3]). Moreover by (A.2)) we have

Az 6.3 (= wal = w7 = 0. D0 |k = il (4.15)
k=1 k=1

For A,, using Young’s inequality we obtain for any € > 0,

Ay < eg’ ZHuk uthO (es) "5~ Lg* ZHﬂuk—ukHOT. (4.16)

We rewrite B as follows

n k
B = Z <5(mk — Hmk),TZHmi — mh,i>
k=1

=1

. . (4.17)
-+ Z <5(Hmk — mh,k), 7'21—11’1’1z — mh’i> = Bl =+ Bg.
k=1 =
For By, we use (A.10) and the boundedness of the function 3:
B> "5 AT 4.18
12 > Tmy — my, ZH my, — my i[5, - (4.18)
k=1 0,2
For B,, using Young’s inequality and the boundedness of the function [ gives
B 2
By <% > |y, — Iy |13, + —my, (4.19)
k=1 0,2
Combining ({.13), @.13), (4.16), (4.18) and @.19), we find that
d g R
S T * T 2
gf)* Z Hug - uﬁ,k‘HO,g + T mpy i + 9 Z ||Hmk - thgHO’z
k=1 0,2 =
< e’ ZH% Ul + (€8) 7l lemk—uk!\or
k=1
g & 2
+ 5 Il — Tmy|[; , + Z IIm; — my,, (4.20)
k=1 k= 0,2
Choosing ¢ = ¢, /(2¢*) properly leads to
n n n 2
Z ||U£ — UzkafLS + TZ HHmk — mhkagg + 7 ank — My
k=1 k=1 k=1 0,2
n n 2
<O\ D lrw —uglly, + > Ilmy — Tmy 5, — my,;
k=1 k=1 0,2

4.21)
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Dropping the first two terms in previous inequality, applying the discrete Gronwall inequality

(A.15) with

2

p, =T

n
E Hmk — My

,oand by =Y lmup —wlly, + Y my — Tmy 5, (4.22)
k=1 k=1 k=1

0,2

we obtain

T

< (- (znm—uuwzumk—nmknf),Q)
k=1 k=1

2
0 - - (4.23)
CcT - . 2
< o1 (Z e — welly, + > [my — HmkHo,Q) :
k=1 k=1

Substituting back to (4.21)), we also find that

n s n or. n . n
> i - U%HQSJFTZ Ty, — my, i[5, < Cem=7 (Z I — uglly, + > Imy — Hmk“é,z) :
k=1 k=1 k=1 k=1
(4.24)
Finally, (4.9) follows from (.23)-#.24). O

The following technical lemma@ is proved in Douglas and Roberts| (1985)); Thomas| (1977).

n
E Hmk — l’IIh’]€
k=1

Lemma 4.2. There exists a constant C' > 0 not depending on the mesh size h, such that given an
arbitrary w € Qy,. There exists a v € V}, such that

V.v =wand HVHQ2 < O”V'VHo,s (4.25)
with C > 0 independence of h, w and v.

Lemma 4.3. Let (m;, u;) € V x Q solve problem (3.1)-(3.2) and (my, ;, up, ;) € Vi, X Qy, solve the
fully discrete finite element approximation (&.6)—@.7) for each time step i, i = 1,..., N. For any
n=1,...,N we have

Z TU; — Upi <C (Z ||ru; — “iHS,r + Z |lm; — Hmi||§72> ) (4.26)
i=1 i=1 i=1
Proof. Subtracting from (3.1)) we obtain

<Z f(m; — mh,i),v> — <Z TU; — Up g, V - V> =0 forallv eV, 4.27)
i=1

i=1

2

T

0,r

Using Lemma [{.2] there exist v € V}, such that

n
E TU; — Uny

=1

r—2

n
ZTI’UZ‘ —up; and ||v]| < C7

=1

r/s

n
E TU; — Uhy

i=1

Vev=r (4.28)

0,r

This implies
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n
E TW; — uh,i
=1

— <Z B(m; —my;), v> (4.29)

-
0,r =1
n
<B D my =yl V],
i=1 0,2
n n r/s
SB* Zmi_mh,i T Zﬂ-uz Up,i
i=1 0,2 1=1 0,r
n n r—1
=B _my | 7D s — g
i=1 0,2 i=1 0,r
It follows
n n
> mui— || < A7) my —my, (4.30)
i=1 0,r i=1 0,2
n n
< p* Zmi_Hmi + B ani_mh,i
i=1 0,2 1=1 0,2
Through the use of the inequality (1.14) and (4.9) we get easily,
K 2 n n 2
T Zﬂui — Up < 2(B%)? TZ ||lm; — HmiHa2 + T Zﬂmi —my,; 4.31)
=1 o,r =1 =1 0,2
n n
<C (Z lrw: — s, + > fmi — Hmi”éz) :
i=1 i=1
which completes the proof of (4.26)). 0

The error estimates between the time discrete and the fully discrete solution provided in Lem-
mas [4.1)and {4.3] can be summarized in the following theorem.

Theorem 4.4. Let (m;, u;) € V x Q solve problem (3.1)-(3.2) and (my, ;, up;) € Vi X Qp, solve
the fully discrete finite element approximation (@.6)—(@.7) for each time step i, i =1, ..., N. Then,
foranyn =1,..., N we have

n n

A A |8
> i —tpfly, 7 D T — ung
i=1 =1

2 2

+ 7
0,r

+ TZ ||Hmz — My ;

0,2 =1

<C <hz laallyy + 52 IImillf,2> -
i=1 =1

Proof. By using (.9)), (4.26)) and the project estimates (4.5]), we have

n
E Hmz — mh’i

i=1

2
o,
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2 2

n
+7 Y [Tmy — my,lf7

0,2 =1

n
E Hml — mhﬂ-

i=1

n
E TU; — Uhy

i=1

+ 7

n
Dl =y, +
i=1 0,r
n n
<C ZHWW—WHS,HFZHmi—Hmng,2>
=1 i=1
n n
<C hTZHUz‘H?{,mLhQZ||mz'||iz>
i=1 i=1
n n
< (13 hulf 1Y ol )
i=1 =1

The first term in the above is bounded, as follows from Theorem For the last term on the
right we make the following additional assumption

2(2—r)

(H4) m; € (H'(Q))4foralli =1,... N andrz Jmy||, < Cr
=1

The assumption above is not too restrictive, since it involves a negative exponent of the time step
7. It is suggested by the estimate (3.28)) obtained for V - m;. Here we assume a similar bound for
all partial derivatives of m;. The H!-regularity for m; in the multi dimensional case is ensured at
least for domains with sufficiently smooth boundaries, (see for example|Ladyzenskaja et al.|(1968)),
Chapter 4).

Using Theorems [4.4]and [3.5] the project estimates (4.5)) and stability estimates, we end up with
error estimates for the fully discrete mixed finite element scheme.

Theorem 4.5. Let (m;, u;) € V x Q) solve problem (3.1)-(3.2) and (my, ;, up,;) € Vi, X Qy, solve the
fully discrete finite element approximation (&.6)-@.7) for each time step i, i = 1,..., N. Suppose
that (H1)—(H4). Then, there exists a positive constant C' independent of h and T such that for any
n=1,...,N,

2
—U}” dt

S e =y e+
i=1 Y ti-1

0,r
2
— mhﬂ- ) dt

—my)dtl| <C (T 4R ”) .

0,2

(4.32)



MFEM for Darcy flow of isentropic gases 43
Proof. Using the triangle inequality, (1.14)) and projector (.4) we find that

2 nooag 2
—my)dt]| <2 | / (m(t) — my)dt (ITm; — My, )dt
0,2 i=1 Y ti-1 0,
n t 2 n 2
i=1 ti—1 0,2 i=1 0,2
(4.33)
Similarly, we have
n t; 2 n t 2 n
> / (m(t) — my,)dt|]| <2 (Z / (m(t) —m)dt|| +72>" |[lm; — mh,i||§’2>
i=1 HJti-1 0,2 i=1 11/t 0,2 i=1
(4.34)
2 n 2
_u;” )dt <22(T = 'Z/ ) — u;)dt + 72 Zﬂ'ui Up,;
0,r =1 0,r
(4.35)
n t; n t; n
Z/t. e (t) — IS, b < 227 (Z / ) — 5 dt 73 [l ugiHO,S>
=1 1= =1 1= =1 (436)
It follows from (4.33)—(4.36) that
2
Z/ [ () = iy, dt + Z/ ) — uni)dt (4.37)
o,r
2
—my,;)dt —my,;)dt <C(I+71J), (4.38)
0,2 0,2
where
n ti n t 2
[ Z/ @) — || + Z/ w(t) — ug dt
i=1 Jti—1 7 i=1 7ti-1 0r
2
—m;)dt —m;)dt (4.39)
0,2
n n 2
J = Z Hu? — u;\”HZS + T Zﬁui — Up;
i=1 i=1 r
n 2 0’ n
+7 (D Ty —my |+ (Tmy — mylfp, - (4.40)
i=1 0,2 i=1

According to Theorems [3.5and

0,2
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I<Cr, and J<C <hz i}, + hQZ HmZHlQ) (4.41)
By using stability estimates (3.3)), (H4) and Young’s inequality with p = 5=, ¢ = =, we find that
J =Th" Z luilly o + B2 Z ;|3 , (4.42)
< TS ey Onr (4.43)
i=1
r 2, _— (2 )
<C (h 42 ) (4.44)
(2—r)p hrr—(2=7)\q .
<C (T p W h%—”z)) (4.45)
p q
2 _2(2 T)
<C (P +nr5). (4.46)
The result follows straightforward. U

5. Numerical results

In this section we carry out numerical experiments using mixed finite element to solve problem
(4.6)—(4.7) in two dimensional region. To test the convergence rates of the proposed algorithm, we
choose the true solution of the problem (1.9)—(I.10) by

u(x,t) = e~ " sinz; sin o,
5.1

m(x,t) = [—e™" cosz; sinay, —e ' sinz; cos xQ}T (x,t) € Q x (0,7T].

where Q = [0, 7], and T' > 0 the final time. For simplicity, we take the functions ¢(x) = 1 and
B(x) = 1 on Q. The forcing term f is determined from equation d;u* + V - m = f. Explicitly, the
forcing term f, initial condition and boundary condition accordingly are

f(x,t) = = ur(x,t) + 2u(x,t), (x,t) € Qx][0,7],
up(x) = sinzy sinzy  x € ), (5.2)
u(x,t) =0 (x,t) € 9Q x [0,T].

We used FEniCS [Logg et al.| (2012) to perform our numerical simulations. We divided the square
into an AV x A/ mesh of squares, each then subdivided into two right triangles using the Rectan-
gleMesh class in FEniCS. The triangularization in region €2 is uniform subdivision in each dimen-
sion. The computations are performed for A = 1/2, 7" = 5 and 7' = 20. We obtain the convergence

Ine; _1—Ine; . . . . . . .
Y Py 1712 = of finite approximation at seven levels with the discretization parameters
17— T

h e {r/4,7/8,m/16,7/32,m/64,m/128,7/256} (the mesh size is actually h+/2) respectively.
In the view of Theorem [4.5] the time step is taken 7 = h5/® (by equating exponents in the error

rates r; =

bound from (4.32)) to ensure the terms 7 and p2r= 25 o the same order. We compute the errors as
given in (4.32). The numerical results are listed in Tables below.
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N h T Error T 4+ h%/5 Conv. order
4 1.11072E+00 1.13430E+00 2.20203E-03 2.26859E+00 —

8 5.55360E-01 4.93730E-01 6.44806E-04 9.87460E-01 1.77

16 2.77680E-01 2.14909E-01 3.15522E-04 4.29817E-01 1.03

32 1.38840E-01 9.35444E-02 1.22953E-04 1.870897E-01 1.36

64 6.94201E-02 4.07176E-02 5.32935E-05 8.14352E-02 1.21

128 3.47100E-02 1.77234E-02 2.28386E-05 3.54467E-02 1.22

256 1.73550E-02 7.714537E-03 9.78833E-06 1.54291E-02 1.22

TABLE 5.1. Numerical results (final time ' = 5, T = h6/5).

N h T Error T + ho/® Conv. order
4 1.11072E+00 1.134300E+00 3.45737E-04 2.268594E+00 -

8 5.55360E-01 4.93730E-01 1.53201E-04 9.874600E-01 1.18

16 2.77680E-01 2.14909E-01 6.68915E-05 4.298175E-01 1.20

32 1.38840E-01 9.35444E-02 2.58357E-05 1.870887E-01 1.37

64 6.94201E-02 4.07176E-02 8.38373E-06 8.143521E-02 1.62

128 3.47100E-02 1.77234E-02 2.55572E-06 3.544674E-02 1.71

256 1.73550E-02 7.714537E-03 8.37665E-07 1.542907E-02 1.61

TABLE 5.2. Numerical results (final time T = 20, 7 = h%/°).

As shown in the tables[5.TH5.2] the numerical results are confirming the theoretically estimated
convergence order of 7 + h%/°.

6. Conclusions

In this paper, we have analysed a numerical scheme for Darcy flows of isentropic gas. The spa-
tial discretization is mixed and based on the lowest order Raviart—Thomas finite elements, whereas
the time stepping is performed by the Euler implicit method. We have proven the convergence of
the scheme by estimating the error in terms of the discretization parameters. The numerical experi-
ments agree with the estimates derived theoretically. Obviously, this method can be expanded to the
case of many dimensions easily. There are some open questions including the possible extension
of the method to non-Darcy flows.
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Appendix A.

Lemma A.1 (Young’s inequality). Let p,p’ any positive real numbers satisfy 1/p + 1/p' = 1. If
a, b are nonnegative real numbers then for any € > 0,

1
ab < <€Z)p G p,b)p . (A1)

Lemma A.2. If \ € (0,1] then for all real numbers a,b > 0,

/

() |a* = 0| < |a —b|. (A2)
g Ala —bf?
(ZZ) (Cl)\ — b’\)(a — b) > m (A3)
(i) (a* —bN)a > H—A(a1+A — b, (A.4)

Proof. i. For a = b, a = 0 or b = 0 the inequality is obvious. W.l.o.g. let a > b > 0. Since
0< 1—2,% < land 0 < A < 1, we have

A

()
a

The inequality (A.2)) follows straightforward from (A.5]).

ii. For a = b, a = 0 or b = 0 the inequality is obvious.
For a,b > 0, s € [0,1] let y(s) = sa + (1 — s)b, k(s) = v(s)*(a — b). Then

b A

<pi-2
a

<p-2
a

(A.5)

1 1
(0> — 1")(a — b) = k(1) — k(0) = / K (s)ds = Ala — b|2/ V(s s, (A6)
0 0
Note that (z + y)? < 2P + y? forall z,y > 0,0 < p < 1. We have
Y(8)'7r < (sa) M4 (1 = s)b) A <@t A
This implies that

1 1 _ 2
(aA—bA)(a—b)z)\|a—b|2/ gs — o=l (A7)

0 alf/\_|_blf)\ al*)\_kblf)\'

Therefore, we obtain (A.3]).
iii. Using the Young inequality with p = (A + 1)/A and ¢ = A + 1, we have

A 1

b)\ < _b)\-l-l - )\-‘rl‘ A.8

ST T &.8)
Thus,

A 1
A A A1 A+l A1

—bY)a > - b - — A9

(a Jaza 1+ A 1A (A.9)

which proves (A.4) hold true. O

In what follows, we will make use of the elementary results below.
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Lemma A.3. For any vector a;, by, € R4, k=1,...,N,d > 1, we have

N N2 |
(1) Z <an,2ak> =3 Zan + 3 Z |an|?. (A.10)
n=1 n=1

N
1
(i7) Z(an—an_l,an)— (lan|? = |aol?) Zmn an1 | (A.11)

n=1
N N

(ii)) Y (@ — o1, by) = anby — aghy — > (by — by1, an1). (A.12)
n=1 n=1

We recall a discrete version of Gronwall Lemma in backward difference form, which is useful
later.

Lemma A.4 (Discrete Gronwall inequality). Assume ¢ > 0, 1—{7 > 0 and the sequences {a,, }> |,
{b,}22, satisfying

Uy <by+70Y a;, n=12,. .. (A.13)
then »
< (L= Lr) by + 47> (1= Lr)= (A.14)
i=1
Furthermore, if {b,}°2 | is monotonically increasing then
an, < (1 —407)""b,,. (A.15)
Proof. Asn =1, we have a; < by + 7lay. It follows that
ay < b (1—67)7 1, (A.16)

which shows (A.14) hold true for n = 1.
Forn > 1,let S, =7 " a;,and a, = (1 — (1)"S,.
A simple calculation shows that

C_Ln — C_Ln_l = (]. — 6’7’)”_1<Sn - Sn—l — éTSn)
=(1(1 —47)" (a, — Sy) (A.17)
< r(1—7)""'b,.

Summation over n leads to

an < a1+ lr(1—tr)~'b;. (A.18)
=2
This and (A.16]) show that
S, < (1—tr)™" ((1 —Ur)lra; + ZfT(l — ET)ile) (A.19)
=2

<(1—tr)™" (67’1)1 + i&'(l — ﬁr)’;lbi> (1—t7) ”@TZ )b,

=2
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Noting that
Q< b+ Sy < by + (1 — 57)—"<(1 —br)ra, + > tr(1 - ET)HbZ). (A.20)
=2

Hence, (A.14) holds true.

If {b,}>° , is monotonically increasing we use b; < b,, in the sum of (A.14) and estimate the
remaining sum that is a partial sum of geometric sequence. U

Lemma A.5. Given w € L*(2). There exists av € V such that
Vv —wand |vlly, < Clull,, (A21)
with C' > 0 independence of w.

Proof. Letw € L*()) and u be the solution of Poison’s equation

—Au=w in
A.22
{u =0 on 0f). ( )

From Ciarlet (1978) we know that this problem has unique solution v € H}(€2). Testing the above
equation by u, integrating over domain €2 and using Green’s formula, we have

(Vu, Vu) = (w,u) . (A.23)
Recalling Holder’s inequality, and Poincaré’s inequality, we immediately obtain
2
IVullo, = (w, ) < Jlwllg [lull, < Cllwllg llully, < Cllwllo [IVullg, (A.24)
which shows that || Vul|,, < C'[[wl|, .. The result follows now by taking v = —Vu € V. O
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