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Mixed finite element method for generalized Forchheimer in heterogeneous porous media
AYATI YADAV, TED PARK, TESSICA SELVAGANESAN, THINH KIEU, AND RAY YE

ABSTRACT. We analyzed a mixed finite element discretization of the generalized Darcy-Forchheimer
model in a two- or three-dimensional porous domain. We established the existence, uniqueness, and
stability of the solutions. Error estimates are presented based on the monotonicity possessed by the
Forchheimer term. Numerical investigations were performed to confirm the theoretical accuracy of

the discretization.

1. Introduction

The Darcy law is the most common equation to describe fluid flows in porous media

—vp ="ty (1.1)
K
where p, v, u, k are, respectively (resp.), the pressure, velocity, absolute viscosity and permeability.
When the Reynolds number is large, Darcy’s law becomes invalid, see Bear (1972); Muskat
(1937). A nonlinear relationship between the velocity and gradient of pressure is introduced by
adding the higher order terms of velocity to Darcy’s law. Forchheimer established this in |Forch-
heimer (1901) the following three nonlinear empirical models:

~Vp=av+blvlv, —Vp=av+blvlv+e|v]’v, —Vp=av+dv|"'v.me (1,2). (1.2)

Above, the positive constants a, b, ¢, d are obtained from the experiments for each case.
All three Forchheimer equations in (1.2)) can be written in a general form

N

—Vp = Z a;|v

1=0

Yiv. (1.3)

This is called the generalized Forchheimer equation. When the media is heterogeneous, the co-
efficients a; in equation (I.3) depend on the spatial variable x. For compressible fluids, by the
dimensional analysis in Muskat (1937), the equation ((1.3]) can be modified to become

N

~Vp =) aplv|*y, (1.4)

=0
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where N > 1,09 =0 < a; < ... < ay are fixed real numbers, the coefficients ay(x), . .., an(x)
are non-negative with

0<a, <ap(x),an(x) <a* <oo, 0<ai(x)<a" <oo,i=1,...,N—1.
In particular, Ward Ward (1964) established from experimental data that

—Vp=Hyvier where cp > 0. (1.5)
K

Lviv,
VE

The mathematical study of Darcy’s law has been studied intensively, with a vast literature, see e.g.
Vazquez| (2007)); Aronson (1986) and references there in. In contrast, the mathematical analysis of
Forchheimer flows has received considerably less attention. For incompressible fluids, see Fabrie
(1989); Franchi and Straughan| (2003)); Payne and Straughan| (1996, |1999); Payne and Song| (2000);
Chadam and Qin|(1997); Straughan|(2008). Regarding compressible fluids, see /Aulisa et al. (2009);
Hoang and Ibragimov| (2012); Hoang et al.| (2015, 2014)); Celik et al.| (2017); Hoang and Kieu
(2019);|Celik et al.| (2018, |2023) for single-phase flows and also Douglas et al.|(1993); |Park (2005));
Kieu (2016)) for numerical analysis. In particular, the papers Celik and Hoang| (2016, 2017) deal
with slightly compressible fluids in heterogeneous porous media.

Multiplying both sides of the equation (1.4) to p, we find that

N
(Z a;|pv ai) pv = —pVp. (1.6)

1=0

Denote the function F' : QO x RT™ — R* as a generalized polynomial with non-negative coefficients
by

F(x,2) = ap(x)z + a1(x)z" + - - + ay(x)z*N, 2z>0. (1.7)
The equation can be rewritten as
F(x,|pv])pv = —pVp. (1.8)

Under isothermal conditions, the state equation only relates the density p with the pressure p,
that is p = p(p). Therefore, the equation of state for slightly compressible fluids is given by

dp _p

dp @’
where 1/w > 0 represents the small compressibility.
Hence,
Vp = %pr, or pVp=wVp. (1.9)
Combining and implies that
F(x,[pv])pv = —0Vp.
By rescaling coefficients a;(x) — @ 'a;(x) of F(.), we assume that @ = 1. Thus, the above
equation 1s
F(x,|pv])pv = =Vp. (1.10)
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The equation (I.10) is coupled with the conservation law (or continuity equation)

div (pv) = f(x), (L11)

where f is external mass flow rate.
In order to apply standard mixed formulation, it is more convenient to introduce the momentum

variable m = pv, and to cast the governing equations in a density-momentum formulation
F(x, m(x)|)m(x) = —Vp(x) forallx € Q,
1.12
divm(x) = f(x) for all x € Q. (112

The Darcy- Forchheimer equation (I.12) leads to
F(jm|) = F(x, [m|)[m| = [Vp|, where F(s) = sF(s).

Since F is a one-to-one mapping from [0, co) onto [0, 00), one can find a unique non-negative |m|
as a function of |Vp,

m| = F(|Vp)).
When solving for m from the first equation in (1.12)), it gives
-V
m = P = —K(x,|Vp|)Vp, (1.13)

F(x, F7X(|Vpl))
where the function K : 2 x R™ — R is defined for £ > 0 by
1

K8 = mramay (1.14)
with s = s(x, £) being the unique non-negative solution of sF'(s) = &.
Note that
FH0)=0, K(x,0)= L _ 1 o

F(x,0) ap(x)
When substituting (T.13)) into the second equation of (1.12)), we obtain a scalar partial differential
equation (PDE) for the density:

—div (K (x,|Vp|)Vp) = f(x), x€ Q. (1.15)

This approach was widely exploited in (Glowinski and Marroco (1975); Chow| (1989)); Baranger
and Najib (1990); Sandri, D. (1993); Fabrie| (1989) along with their numerical analysis.

In the present paper, the inhomogeneous continuity and the Forchheimer-Darcy’s momentum
equations are treated separately as a coupled system of first order PDE. This gives us the pos-
sibility to analyze the nonconstant coefficients. Using nonlinear monotone operator theory (e.g.,
Brézis| (1973); ILions (1969); [Showalter| (1997); Zeidler (1990)), we can prove the existence and
uniqueness of a weak solution of the corresponding elliptic problem of for the Dirichlet
boundary conditions with general coefficient functions, while imposing only minimal regularity
assumptions. Moreover, we establish explicit estimates results which are not obtained in [Fabrie
(1989). This problem was not studied in the literature previously.
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The mixed finite element method (MFEM) is valued for its ability to simultaneously compute
scalar (e.g., pressure) and vector (e.g., velocity) functions with comparable accuracy. For second-
order elliptic problems, mixed methods for semilinear and nonlinear cases are well-studied in
Duran| (1988); Milner and Suri (1992)); Lee and Milner] (1997). In this paper, we combine the
techniques from Kieu (2016, 2020) with the mixed finite element framework in |Arbogast et al.
(1997) to utilize both the special structures of the equation as well as the advantages of the mixed
finite element method in obtaining the optimal order error estimates for the solution in several
norms of interest.

The paper is organized as follows. We introduce the notations and the relevant results in section
[2l Section 3] is devoted to the analysis of the variational formulation. We prove the existence,
uniqueness, and stability of weak solution. In section[d] we introduce the discrete problems, recall
their main properties, and derive a priori error estimates. We end our paper with some numerical
results validating the convergence analysis in section [5

2. Preliminaries

2.1. Inequalities

The following are some commonly used consequences of Young’s inequality.
Ifr,y>0,v>8>a>0,p,g>1withl/p+1/g=1,and e > 0, then

<1+ o <z*+27, zy<exP 4+ e Pyl 2.1
For z € R, denote 2" = max{0, z}. For x,y € R" and p > 0, one has

x|P + |y, forp € (0, 1],
(x| + Iy < 207" (e + [y?) = 4 8+ PEOA )
2 H(|x[P + |y[P), forp>1,
which consequently yields
(x| + lyD)? < 22(1[” + [y[?) forp >0, (2.3)
X" = [yl"| < |x = yl” for p € (0, 1]. (2.4)

Lemma 2.1. Ifp > 0 and x,y € R", then

Ix[Px — |y [Py| < 207V (|x? + |y [P)|x — ], (2.5)
1
("> = y17y) - (x = y) = (%" + |y ") Ix = yl?, (2.6)
1
("% = ly[y) - (x =¥) = grpmex —yI"™ 2.7)
Ifp € (—1,0), then
|zfPe — [y[Py] < 27P|z — y['HP forallz,y € R, (2.8)

(x[Px — |y|Py) - (x —y) > 1+ p)(|x| + |ly])*|x — | forallx,y € R". (2.9)
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It is meant, naturally in (2.8]) and (2.9)), that
[xI"x, [y [Py, ()] + [y[)P]x — y|* = 0 forp € (=1,0) and x =y = 0.

Proof. Proof of inequality (2.5). Consider Scenario 1 and define hy(t) = |y(¢)[Py(t) for ¢t € [0, 1].

1
I~ iyl = | [ o] -
0
1 1 N
<O+p)k—y / (Pt < (11 p)lx — ] / 20~V (I[P 1 (1 — t)P|y|?)d
0 0

Then,
/0 YO (x —y) +plv@P2(y(1) - (x = y))(t)dt

—1)+
= 2077 ([P + [y [P)lx — y .

This proves (2.5).
In Scenario 2, we can assume y = —kx for some £ > 0. We have

[IxPx — |y [Py| = [x[PH L+ £ < =[PP+ R (1 + k) = (%P + [y [P)x — v

Hence, we obtain (2.5)).

Proofs of inequalities (2.6) and (2.77). We have

x+y x-y
(xPx = |yPy) - (x —y) = { Ix[( + )= lylP(
2 9 9
X+y 1
= (X" = [y") == (x=y) + 5 (X" + ly[P)|x —y
1 1
= §(|X|p — |y (x> = |y[*) + §(|X|p +lyl")x - y|*

Since (|x[” — [y/?)(|x|* — |y[*) > 0, we obtain 2:6). Using (|x| + |y[)? > 2 *~V"|x —y|?, we

then deduce (2.7) from (2.6).

Now, consider p € (—1,0).
Proof of inequality (2.8)). Let z,y € R. The inequality obviously holds true when = = 0 or

y = 0. Also, by switching the roles of x and y, we can assume x > 0 and y # 0.
If y > 0, then ||z[Pz — |y[Py| = |z'™” — y'™P|. Noting that 1 + p € (0, 1), we apply inequality

(2.4) to have
|2’z — [y[Py| < |z —y" < 27|z — [P
If y < 0, then ||z[Px — |y[Py| = |z|'™P + |y|*™P. Applying Holder’s inequality to the dot product

of two vectors (|z|'?, |y|'*?) and (1, 1) with powers 1/(1 + p) and —1/p, we obtain
ez —JyPyl < (o] + )7 - 277 = 277w — y| 77,

which yields (2.8).
Proof of inequality (2.9). Let x,y € R". Consider Scenario 1 and define the function

ha(t) = (P (E) - (x — y) for t € [0, 1]
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Then,
1

(IxPx — [yly) - (x — y) = / Iy () dt = / Pl = yI2 + P P2 () - (x — y) [t
> (14 p)x— yP? / I (t)Pdt.

Note that —p € (0, 1), hence |y(¢)|7? < (|x| + |y|) . Therefore, we obtain (2.9).
In Scenario 2, we can assume y = —kx for some £ > (0. We have

(Ix["x = |y[?y) - (x = y) = [x["P(L+ &)1 + k).
Since 0 < 1+ p < 1, from (2.3)), we have that 1 + k™7 > (1 + k)P, Hence,
(IxPx = [yPy) - (x —y) = [x[*P(1+ k)*'P =[x — y[*(|x] + |y])",
which proves (2.9) again. O
Lemma 2.2. The following inequalities hold for all x,y € R".
[F(Ix))x = F(lyDyl < e (1+ " + |y[*¥) [x = y]. (2.10)
(F(IxDx = F(lyl)y) - (x =y) > e5 (Ix = y|* + [x — y|*¥*?), 2.11)
where the constants ¢, = a*2"Y ="V (N 4+ 1) > 0, and ¢y = a,27 1~ (@v=1D" > 0,
Proof. Proof of inequality (2.10). We have
[E([x])x = F(lyDyl = lao(x —y) + ar(|x[*'x = [y|*y) + - + an(jx[*Vx = [y|*Vy)]
<a”([x =yl + |x[*x = [y["y| + -+ []x]"Vx = [y[*"Vy]) .
Applying to the terms ||x
B ()se — F(yy] < a (1420707 (] 4 [y[") 4 -+ 200 (™ o [y])) [yl
By Young’s inequality (2.1)),
[F(Ix)x = F(lyy| < a 28NN 4 1) (14 %] 4 [y[*) [x =y,

which proves (2.10).
Proof of the inequality (2.11]). We have
(F(xDx = F(lyl)y) - (x —y) = aolx —y|* + ... + an(|x]*Vx — [y[*Vy) - (x = y)
> a. (Jx =yl +. .+ (x[*"x = [y[*y) - (x ).

, we find that

“ix — |y[*y

w

@ <1+ |wl|*¥, we find that

Applying (2.7) to the terms (|x

1 o
(F(lxl)yx = F(ly])y) - (x —y) > a. (|x—y|2 Tt o X Y )

vix — |ly|*y) - (x —y), we obtain

> B
= 9lt(an—1)F

Therefore, we obtain (2.11)). ]

(x =yl + |[x — y[*¥*?) .
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2.2. Functional spaces

Next, we review the Sobolev spaces and trace theorems. Hereafter, the spatial dimension n > 2
is fixed. Let €2 be an open, bounded subset of R™ with the boundary 92 of class C*.

For 1 < s < oo, let L*(Q2) be the standard Lebesgue space of scalar functions and denote
L#(€2) = (L*(§2))". The notation |[|-||, , is used to denote both norms |[-[| ;. o) and |-« (q)-

For a nonnegative integer m, let WP (2) be the standard Sobolev space with the norm

1
fls = (3 1Dl )

laf<m

For any normed space X, its dual space is denoted by X, and the product between X’ and X is
denoted by (-, ) x/ y» .., (y, %)y, x = y(z) fory € X" and z € X.

Consider 1 < s < oo now. The function 7 : f € C*(Q) > f]| o, €an be extended to a bounded
linear mapping o s : W*(Q2) — L*(99). The function 7o <( f) is called the trace of f on 9.

Define X, = W'~1/#5(90) to be the range of 7 , equipped with the norm

£ llx, = inf{llell,, 0 € WH(Q),70.5(0) = [}
Define the space
W, (div,Q) = {v e L*(Q) : divv € L5(Q)} (2.12)
equipped with the norm
s . s 1/s
IV lhw, vy = (V15 + lldiv vy, ) (2.13)

Then, W(div, ©2) is a reflexive Banach space, see Lemma [A.1] below.
Let r > 1 be the Holder conjugate of s, i.e., 1/s + 1/r = 1. Thanks to (2.2),

IVl sy < IVllos + ldiv Vil < 27 1Vllw, aiv. - (2.14)

Let 7 denote the outward normal vector to the boundary 0€2. Then one can extend the normal

trace 1,(v) = v - v for v € (C*(f2))" to a bounded, linear mapping v, s from W(div, 2) into
X/. In particular, there is ¢; > 0 such that

s L, < @ IVl iy for all v € W(div, ), (2.15)

and Green’s formula

/V-qux+/divqux:/ (v-V)qdo (2.16)
Q Q o0

holds for every v € W(div, ) and ¢ € W7 ().
Finally, we recall an important norm estimate, see (Baranger and Najib, (1990, Inequality (4.2))
or (Sandr1, D., {1993, Lemma A.1) or (Knabner and Summ, 2016, Lemma A.3).
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Lemma 2.3. Let r, s € (1,00) be Holder conjugates of each other and let V- = W (div, Q). Then
there exists a constant C, > 0 such that, for all ¢ € L"(2), it holds

divv qd
laly, < C, sup Jodvvadx
' veV\{o} HVHV

Proof. Let ¢ € L"(Q2). If ¢ = 0, then (2.17) holds true. Consider ¢ # 0. Denote by Wol”"(Q) the
space of functions in W, () having zero trace on the boundary. Note that |¢|"~2¢ € L*(Q). By

(2.17)

the Browder—Minty Theorem, there exists a unique solution w € VVU1 *(Q) of the problem
/ |Vuw|" " *Vw - Vodx = / lq"2qudx forallv € W,"(Q). (2.18)
Q Q
Choosing v = w in (2.18)) and applying the Holder and Poincaré inequalities give

- —1 -1
IVl = [ 190l dx = [ o 2quix < Jali; Tl < Clali 190l
where C'is a positive constant. Hereafter, C' denotes a generic positive constant. It follows that

||vw||0,r <C ||Q||0,r :

Setu = —|Vw|""2Vw. Then u € L*(Q) and, by (2.18), divu = |¢[""2¢q € L*(Q). Therefore,

u € V'\ {0}. Observe that
lally = lalls, + lIdivulls, = Vel + llgll, < Cllal, -

Thus, |lull,, < C Hqu_rl We then have

. -1
/Q(dlvu)qu = /Q lal" dx = llqllo,. = llallo, lallo,” = Cliglly, lhally -
Consequently, we obtain inequality (2.17)). U

Our calculations frequently use the following exponents
5

-1
The arguments C, C'y, . .. denote generic positive constants whose values may vary from place to

s=anxy+2€(2,00), 1= €(1,2). (2.19)
s

place. These constants depend on the exponents, the coefficients of the polynomial F', the spa-
tial dimension n, and the domain §2, but are independent of the boundary data and the spatial
discretization step.

3. The mixed formulation

We consider the problem governed by the Darcy-Forchheimer equation and the continuity equa-
tion together with Dirichlet boundary condition

F(lm(x)|)m(x) = —Vp(x) forallx € €,
divm(x) = f(x) forall x € Q, 3.1
p(x) = (%) for all x € 09.
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The mixed formulation of (3.1) reads as follows: Find (m, p) € W,(div,Q) x L'(Q) =V x Q

such that

/F(|m|)m-vdx—/pdivvdx:— Y (v-V)do forallvelV,
Q Q G

/(divm)qu:/fqu forall ¢ € Q.
Q Q

Forcing function

For the fifth integral in (3.2)), we assume f € L*(€2) and define A; : Q — R by

As(q) = / fqdx forallq € Q.
Q
Then A; € Q" and
1A fllgr = [1fllo,s -

Boundary data

For the third integral in (3.2), we assume ) € X, and define T, : V' — R by

Ty(v) = m@b(v -V)do forallveV.

(3.2)

(3.3)

Thanks to the Green’s formula (2.16), T, (v) is the rigorous formulation for the boundary inte-

gral in (3.2). By (2.15), one has T, € V'’ and
ITylly, < e lldll, -

For the second and fourth integrals in (3.2), we define a bilinear form b : V' x @Q — R by

b(v,q) = /(divv)q dx forallv eV, qge Q.
Q

Then for any v € V and q € @), applying Holder’s inequality gives

b(v, @) < [|div o [pllo,
For the first integral in (3.2), we define a : L°(€Q2) x L*(Q2) — R by

a(u,v) = /QF(|U.(X)DU(X) -v(x)dx forallu,v € L*(Q).
The following are the basic properties of a(-, -).
Lemma 3.1. For any u,v,w € L*(Q2), one has
au, w) = a(v,w)| < e (14 Julls? + VI ) T = Vil Iwlo,

a(u,u - V) - a(v,u - V) > €y Hu - VHS,S’

where ¢, ¢y = c1(1 + |Q|'*) are positive constants.

(3.4)

(3.5)

(3.6)

(3.7)
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Consequently,
la(u, w)| < ey ([[uflos + alls") [Wllo.s, (3.8)
la(u, u)| = cof[ulfg . (3.9)
Proof. Using property (2.10), we have
ja(u, w) —a(v,w)| < /Q [F(Ju]) u = F(|v]) v|[w] dx
<o / (L4 [u™2 + [v*2) Ju - v| |w| dx.
Q
Applying Holder’s inequality for three powers s/(s — 2), s, s gives
/Q (U a2 4 v 72) fu = vl fw] de < (I, + Ially” + 1157 ) Tl = vl 1wl

Thus, we obtain (3.6).
Finally, by (2.11)), we have

a(u,u—v)—a(v,u—v):/Q(F(|u|)u—F(|v|)v)-(u—v)decg/Q|u—v|sdx,

which proves (3.7).
Taking v = 0 in (3.6) and (3.7), we obtain (3.8)) and (3.9). O

Definition 3.2. Given f € L*(12) and ¢ € X,, a weak solution of Problem (3.2) is a pair (m, p) €
V' x Q that satisfies

{a(m, V) = b(v,p) = =Ty(v) forallv eV, (3.10)

b(m, q) = As(q) forall q € Q.

We will establish the existence and uniqueness of a weak solution of the problem ([3.2)).

Theorem 3.3. The following statements hold true.

(1) Forany f € L*(Q) and i) € X,, there exists a unique weak solution (m, p) € V x Q of

Problem (3.2).
(2) There is c3 > 0 such that if f,1, (m, p) are as in part|l} then

. r— s— r—1
[mllo, + lldivmlly, + ol < cs(Ifllos + 11"+ Il + ¥, )- (3.11)

The proof of Theorem [3.3] will be presented in subsection [3.4] below.
We use regularization to show the existence of a weak solution (m, p) € V' x @ to the prob-

lem (3.2]).
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3.1. The regularized problem

Foru,v € V and p, q € @, define
I(u,v) = / |divu*2divu-divvdx and J(p,q) = / Ip|"?p - q dx. (3.12)
Q Q

For the fixed ¢ > 0, we consider the following regularized problem: Find (m., p.) € V x @
such that

£ + ] £ _b s Pe :_T f 11 EV
{a(m v) +el(m.,v) —b(v,p.) »(v) forallv a3

eJ(pe;q) +b(me, q) = Ap(q) forallg € Q.

Lemma 3.4. For every ¢ > 0, there is a unique solution (m., p.) € V X Q of the regularized
problem (3.13).

Proof. Adding the left hand side of (3.13)), we obtain the nonlinear form defined on V' x @),

ac((me, p.), (v, q)) = a(m, v)+el(m., v)=b(v, p:) +£J(pe, ¢)+b(m., q), for (v,q) € V xQ.
(3.14)
A nonlinear operator A : (V' x Q) — (V x @)’ defined by

<‘A6((u7p>)’ (V’ q)>(V><Q)’><(V><Q) = aé((u’p)7 (Vv (]))

Then, A. is continuous, coercive and strictly monotone.

Applying the theorem of Browder and Minty (see in Zeidler and Boron| (1989), Thm. 26.A) for
every fe (V' x @), there exists unique a solution (m., p.) € V x @ of the operator equation
A.(m,, p.) = f.In particular, we choose the linear form f defined by f(v,q) := =T, (v)+As(q),
which arises by adding the right hand sides of (3.13)). Therefore, (3.13)) has a unique solution.

Below, we establish that .A. is continuous, coercive and strictly monotone.

Proof of the fact A. is continuous. For any (uy, p1), (us,p2), (v,q) € V x @, we have

<AE<<u1>pl) - AE((u27p2))7 (V7 Q)>(V><Q)’><(V><Q) = a(uh V) o CL(UQ, V)

(3.15)
+e(I(ug, v) = I(ug,v)) = b(v,p1 — p2) + £(J(p1, q) — J(p2,0)) + b(u1 — u2,q).
Using the (3.6]), we have
a(ur, v) = a(ue, V)| < eq (1+ 32 + fuslis?) fhan = ey, V],
B > et (3.16)

-2 -2
< cq (T4 [Jwn ][+ fluell57) T = wolly (vl -

From (2.3) and Hoélder’s inequality, it follows that
[I(uy,v) — I(uy,v)| < 252/(!diV w572 + [divug[*7?) - [div (uy — up)]| - [div v| dx
0

< 272 (v o7 + divualls * ) ldiv (=)o, [div v,

— -2 -2
< 277 (Jlally + hael[57) [ur = wafly (vl
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Using (2.8)), together with Holder’s inequality and the fact that r — 2 € (—1,0), we have
|J(p1,q) — J(p2,@)| < / ‘|p1|r_2p1 — \p2|r_2p2’ -|q| dx
Q

<2 [ Iy =l
Q
—r r—1
<227y —pallg llallg-
By Holder’s inequality,
bV, p1r = p2)| + [b(wy — vz, @) < [|div o [lpr = p2llg, + ldiv (w1 — sl , llglly,
< e = p2llg VIl + [lur = wafly lallg -

From (3.15) and the above estimates, it follows that

[ {(A((wr,p1) = Ac((u2,22)), (V. @) vy vy | < es(L+2) (1 [[wlly + uzlli)
(= wlly + oy = p2llg + o1 = 2all ) 1V, Dl »
where ¢; = max{cy, 2572, 227"}, This yields
A (1, p1) = Ac((uz, 2) | (g < es(1+) (14 lwlly ™ + Juzlly )
(lhar = aslly + llpr = p2llo + llpr = p2lly ).
Thus, A, is continuous.
Proof of the fact A. is coercive. For any (u,p) € V x @, we have from and (3.14)), that

<A8(uap)7 (u7p)>(V><Q)’><(V><Q) = a(u, 11) + {;‘I(u’ 11) + {-:J(p’p)
> ¢ ||ull + e lldivullg, + e llplly,
> min{ey, e} ([[ully, + [Ipllg )-

Note that s > 2 > 7 > 1. We consider [ul[,, + [|pll, > 2.
If |lu||,, > 1, then

lally +1lplg > hally + el > 2" (lally, + lplly)"

If [[ul|,, <1, then |[p[[, > 1 > [lul|,, and

S 7 T 1 1 ' —7r T
Il + 12l = ol > (5 Ipllg+ 5 ||u||v) =27 (Jully + Ipllg)"

In both cases, we find that

<A€(u7p>7 (uvp)>(V><Q)/><(V><Q)
||(V7q)||v><Q

Therefore, A. is coercive.

> 27" min{en, 2} [[(v, @) 17l = 00 a8 [|(v, @)y — o0
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Proof of the fact A. is strictly monotone. By “strictly monotonotone”, we mean that
<‘A€(u>p) - A€(V7 C]), (u —V,p— q>>(V><Q)’><(V><Q) >0

for all (u, p), (v,q) € V x Q with (u, p) # (v, ).
Let (u,p), (v,q) € V x Q). We have

(Ac(w,p) = A(v, ), (W =V, p = Q) (v uqyx(vxg) = (W u=V) —a(v,u—v)
+e(l(wu—v)=I(viu=v))+e(J(p,p—q) = J(ap—q))
Applying inequality (3.7)), we obtain
a(u,u—v) —a(u,u—v) >clu—vg,.
In addition, inequality yields
I(u,u—v)—I(v,u—v)>2""|div(u—v),.

Utilizing inequality (2.9), we have

ﬂnp—@—J@m—qnzv—n[ﬁm+mw*m—m%w

Consequently, by putting these estimates together, we arrive at

<A€(u7p) - A&(Vv Q)7 (u —V,p— Q)>(V><Q)/><(V><Q)
> € (= vl + eldiv (=)l 4 [ (ol + L2l = o i)
Q

where Cy = min{cy, 2! 7%, r—1}. This implies that (A.(u, p) — A.(v,q),(u —v,p — q)>(VXQ),X(VXQ)
is positive whenever (u, p) # (v, q).
Therefore, A. is strictly monotone. ]

Next, we show that the solution (m., p.) is bounded independently of ¢.

Lemma 3.5. There exist constants C > 0, independent of €, such that for sufficiently small ¢ > 0
the solution (m., p.) of (3.13)) satisfies the following estimates

ey + flpellg < C. (3.17)

Proof. We begin with a bound for the norm of divm,. Choosing ¢ = |divm_.[*"2divm, € Q in
the second equation of (3.13)) and using Holder’s inequality, we find that

. . -1 -1 . -1
||dlvma|\8,s < ”AfHQ/ ||dlvm5H375 +5||p5||6,r ||dlvms||3,s :

It implies that
. r—1
[divme|lo . < [[Afllg +ellpello, - (3.18)
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Choosing (v, q) = (m,, p.) in (3.13)) and utilizing (2.14)) results in
a(me, me) + ef|divmel[g ; + ellpello,, = =Ty (me) + Ay (pe)

< Tylly lmclly + [[Asllg llo-llq

< ol (lmello s + ldivmello, ) + 1 Afllg el -
(3.19)

Applying inequality (3.8) to the first term of (3.19)), neglecting the next two terms, and utilizing
the estimate ((3.18)) for the last divergence term, we obtain

ca lmellg o < 1 ully, (lmallo, + 1Asllg + < llollg," ) + A5l o, -
By Young’s inequality, specifically, the last one in (2.1)), we have
IColly Imello,s < (e2/2) [lmcllg, + (2/e2)* [Ty, -
It follows that
Imel < € (ITullys + ITullys A7 lgr + & 1 Tullys Noclls, + IAsllg llecll, ) - (3:20)

To bound p., we employ the inf-sup condition (2.17). The first equation in (3.13)) and the above
estimate for ||divm.||, ,, we have

b(v,p:) = a(m.,v) +ecl(m.,v) + Ty(v)
< O(lmelly,, + Imellg ) 1vllg,, + e lldivma 5" [[div vll + 1ol (v, + Idivvilg,)
< € (Imello + lmel52) + e ldivme |7 4+ 1l ] vily

Consequently,

b(v, p:) o : .
lpelly, < €. sup TP < 0[O (Jlmelo, + a3 ) + e ldiven |+ 0]l
venvioy [IvIly

s—1 r—1\s—1
< Co [Imellg, + Ime 33"+ (IAsllg + e lloclly) ™ + 1l
S— S—l S—l S
< 277Gy |Imelo, + el + e A" + e lloelly, + 1Tl |

Here, we used the fact that (r — 1)(s — 1) = 1 in the last inequality.
By setting o = min{1, (2°72C,)~/*} and considering ¢ € (0, o), we deduce

s s—1 s—1
locllo, < 2°Co (Jlmelo., + melly! + IA7l5" + 1Tl ) - (3:21)
Consequently, one has

r—1 r—1 r— r—1
el < O (Imelly! + el + = Al + 1) (3.22)
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Substituting (3.21)) and (3.22)) into (3.20) leads to

ey, <C LIl + 1ol Al
e Tullyr (Il + g, + € 1Al + 1)
1A lgr (Imello + Imellss + £ 115" + 1Tully) ]
<Cl(+) I Tullys + (14D 1ol 1A llgr + 1A
eIl (el + el ) + 1Al (Il + lhoclisst) |

Lets, =s/(s—r+1)=s(s—1)/(s(s—1) — 1) € (1,7). Then using Young’s inequality, we
obtain

Imellg, < C1(1+) [ITylly + (T +e) [Tyl [[Asll g + € ”AfH;/}

1 s s
+ 5 I, + O (e

Ty

vt Tl ) + CUIA G + AL )-
This implies

.|y, < Cidi(e), (3.23)
where

T S S Sx T 1/8
dy(e) = [(1 +e) U ol + Mol [[Afllg) + (L +e) [[Afllg + €™ [MTullys + HAfHQ/] :

Inserting (3.23)) into (3.21)) yields

[pello, < Cada(e), (3.24)

where d2<€) = dl(ﬁ) + d1<6)8_1 +¢€ ||AfHSQ_,1 + ||T1/1HV/ .
Using this estimate in (3.18)) yields

[divm, ||, , < Csds(e), (3.25)

where ds(¢) = [|Afllo +eda(e) "
Observe that d;(¢), for i = 1,2,3, are increasing functions with respect to . Summing up the

estimates (3.23)), (3.24) and (3.23)) gives

3
def
Iy + llplly < €<= Cidi(1).
=1

Thus, we obtain the desired estimate (3.17).
The proof is complete. U
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3.2. Existence and uniqueness

This subsection is dedicated to establish the existence and uniqueness of a weak solution to

problem (3.2)).

Theorem 3.6. Suppose [ € L*(2) and ¢ € X,. The mixed formulation (3.2) of the problem (3.1))
has a unique solution (m, p) € W(div, Q) x L"(Q).

Proof. Adding the left hand side of (3.2)), we obtain the following nonlinear form defined on V' x Q)
by

a((ma p)a (Va Q)) = a(mv V) - b(V, p) + b(m7 q)
Consider the nonlinear operator A : V' x Q — (V' x @)’ defined by

<A(u,p), (Vv q)>(V><Q)’><(V><Q) = a((u,p), (V7 Q))

Set ¢ = 1/n and let (m,, p,) be the unique solution of the regularized problem (3.13). Since
(m,, p,) is a bounded sequence in V' x (), there exists a weakly convergent subsequence, again
denoted by (m,,, p,,), with weak limit (m, p) € V xQ. For f(v,q) := =Yy (v)+A;(q) € (VxQ),

|a((mna pn)7 (Vv Q)) — f(V7 Q)|

| At p) =7 = sup

(VxQ) v,q)#0 H(Va(])H X
(v.a)# VxQ i (3.26)
= sup |a(mn7 V) — b(v7pn) + b<mn7 Q> B f(vv Q)|
(v,0) £0 (v, Dy g
Noting from (3.13) that
~ 1
a(m,, v) = B(V, pu) + b, @) = (v, )| = = [1(ma, V) + T(pn, )
< 1 d s—1 d r—1
=5 | 1vmn||0,s | 1VV||075 + ||Pn||0,r ||Q||0,r
1 . s—1 r—1
< v m 7+ ol ] 10 )l
Hence,
| At - F| < i, 52!+ loali,] =5 (3.27)
(VxQ) ~n 0,s 0,r

The sequence A(m,, p,) converges strongly in (V' x Q) to f. Thus, we can conclude that
A(m, p) = fin (V x Q) (see e.g. Zeidler (1990), p. 474), i.e., (m, p) is a solution of prob-
lem (3.10).

To show the uniqueness, we consider two solutions (mj, p;) and (msy, p2) of (3.10). Using the
test function (v, ¢) = (m; — my, p; — po), we obtain

a(my, m; —my) — a(my, my —my) — (b(my — my, p1) — b(my —my, py))

= 07
(3.28)
b(mlapl - pz) - b(m2, P1— ;02) = 0.
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Adding these equations yields
0 =a(mp,m; —my) — a(my, m; — my) > ¢ ||lm; — m2H8,s'

It follows that m; = ms,.

For i = 1,2, we have the variational equation a(m;,v) — b(v,p;) = —Ty(v) forall v e V.
Subtracting these two equations implies b(v, p; — p2) = a(my,v) —a(my,v) =0 forallv € V.
By applying inequality in Lemma[2.3|to ¢ = p; — p2, we obtain p; = ps. O

3.3. Estimates

Regarding the unique solutions of equation (3.10), we have the following estimates.

Theorem 3.7. Let (m, p) € V x Q be the solution of (3.10). Then
Imll,, < Ol + 1 los" + £l
Hdivao,s < ”fHO,s7 (3.29)
lollo, < CU o + 165" + 115" + 112l x0)-

Proof. We repeat the calculations in Lemma with € = 0. It follows (3.18), (3.20) and (3.21))
that

Idivmlly, < A7l (3:30)
Il < € (1Tl + Tl 1A rllgr + IAsllg elo, ) (331)
lello, < € (Imlly, + el + 1Tl ) (3.32)

Substituting (3.32)) into (3.31) leads to

T —1
Imclly, < € (IPollys + I Pullys IAsllg: + Al (lmelly, + mcl)))-

Then by using Young’s inequality, we obtain

lmllp, <CZ, el < CW, ldivmlly < [|Ag]|g (3.33)

where Z = (| Tyl + [1Tolly IAfllg + IAllG + 1AfG) Y W = 2 + 2571+ [Tyl
Let C' denote a generic positive constant as in the proof of Lemma [3.5] Using inequalities (2.3))

and (2.1) yields
r r s 1/s r— r—
Z < C(ITully + IALNG + 104115 ) " < CUMTllv" + 1AL + 1AL o),
r— r— r— r— s—1
W < C(IIullv" + 1AL+ 1Asllg ) + CUTully " + 1AL NG " + 187l )T + 1Tyl
< CUTllv + 1wl + 1AL G + 1AL ).
Note from (3.3]) and (3.4) that
1Tyl < e lléllye and [[Afllg = [If]lo, -
Then, we obtain the estimates (3.29)). O
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3.4. Proof of Theorem

Proof. Part[I] The statement follows Theorem [3.6]
Part[2] We apply Theorem 3.7] then estimate (3.11)) follows (3.29). O

4. A mixed finite element approximation

We assume that the boundary 0f2 of €2 is polygonal or polyhedral. Let {7}, be a regular trian-
gulation of ) with max,c7;, diam 7 < h. The discrete subspaces V}, x Q;, C V x Q are defined
as

Qh = {ph € L2(Q)7VT € ﬁzaph|7 € Pk(T)}a
Vi, = {mh e V.Vt e E,mh|7 S RTk(T)},

with Py (7) being the space of polynomial of degree at most & on the element 7 and

For momentum, let I : V' — V}, be the Raviart-Thomas projection Raviart and Thomas (1977),
which satisfies

/div(Hm—m)quzO, forallm € V,q € Q.
Q

For density, we use the standard L2-projection operator, see in (Ciarlet (1978), 7 : Q — Qp,
satisfying

/(Wp—p)quzoa forallpEQaquha

Q

/(Wp — p)divm, dx =0, forallm, € Vj,p € Q.
Q

This projection has well-known approximation properties, e.g. Brezzi and Fortin (1991); John-
son and Thomée| (1981)); Bramble et al.| (2002).

IMm —m|l,, <Ch ||lm|, ., 1/¢<p<k+1,YmeVnW(Q)):. 4.1)
7m0 = pllo, < CRP llpll,,, 0<p<k+1,q€ll,o0,Vpep,q. (4.2)

The two projections 7 and II preserve the commuting property divo Il = rodiv: V — Q.

The discrete formulation of (3.2)) can read as follows: Find my, € V}, p, € @}, such that
a(my,v) —b(v,pp) = =Ty(v) forallv €V,
“4.3)
b(myp,q) = As(q) forall g € Q.

In a similar manner to problem (3.2]), we obtain the following:
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Theorem 4.1. Forany f € L*(2) and v € X,, the problem [4.3)) has a unique solution (my,, pj,) €
Vi X Qp, and there exists a constant C' > 0 such that

Il o + lldivmally , + llonllo, < CCIFIGL + 1AL+ 1911, + 191l )- (4.4)

4.1. Error estimates

In this subsection, we will give the error estimate between the analytical solution and the ap-
proximate solution.

Lemma 4.2. For any u,v,w € L°(Q), one has
fa(w,w) — a(v.w)| < ¢5 [l = Vi, Wiy, + 20w Wy wly,] . @)
a(u,u — v) — a(v,u —v) > ¢ [Hu — |2y + lu— v, + P(u, v)] , (4.6)

where c3 = \/2c1, ¢o = min{1, a, }272¢=2~1 are positive constants and
1/2 _2 12
D(u,v) = ( / ("2 4 [v[*)u — vP dx) ) = (ul V) @
Proof. Using property (2.10) and Holder’s inequality, we have

o w) — alvow)| < er [ (14 ful* 4 v ) vl|w] dx
Q
= er [ = vl () = vl ) ] d

B . 1/2
< cullu =l IWloo + () ([ (il vl 2w ax)

Applying Holder’s inequality gives

(s—2)/s 2/s
/(|u|5_2+ ‘V|S_2)|W|2 dx < (/(|u|s—2+ |V|s—2)8/(5—2) dX) (/ |W|S dX>
Q Q Q
(s—2)/s 2/s
< /s </(\u\s+ |v|5)dx) (/ |W|de)
Q Q

< 2(|fullg,” + IvIl5") Iwllg,s -
Thus, we obtain (4.5).
Finally, by (2.6), we have
a(u,u—v) —a(v,u—v) = /(F(|u|)u — F(Jv])v) - (u—v)dx
Q

N

1
> / (aolu —v[*+ 3 Zai(lu
0

i=1

al_i_’V

ai)

u— v]2> dx

> 271, [/ |u—v|2dx+/(|u|5_2+ ]v|5_2)|u—v|2dx} :
Q Q
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Using @3) [x” + [y?| > 277(|x| + [y]) and (x| + [y])? > 27" |x — y[,p > 0, it follows
that

1 1
ul*=2 + |v|*? u—Vde:/ —+ V(a2 + v ) — v|Pdx
Qb2 W= v ax = [ G+ 0ul -y .
> 2726 lu— |5, +2710%(u, v),

which proves (@.6)). O

Theorem 4.3. Let (m, p) € V X Q) be the solution of (3.2) and (my,, p,) € Vi, X Qy, be the solution
of @.3). Then, there exist positive constants C' independent of h such that

2 s 2 2
i — my 2, + m —my 5, < C(lm — ]2, + m — 3. (4.9)
1= pully, < C(llm — Tmlly, + m — Tmlly, + llo — 7plly,). (4.10)

Proof. By and (4.3)), we have the error equations
a(m,v) —a(my,v) —b(v,p—p,) =0 forallv eV,
b(m —my,q) =0 forall g € Q. @10
Using L2-project and Raviart-Thomas projection, we rewrite (#.11)) in the form
a(m,v) —a(my,v) — b(v,mp — pp) =0,
b(Ilm — my, q) = 0.

Choosing ¢ = mp — py, € Qy and v = [Im — m;, € V}, and adding the two resulting equations, we
obtain
a(m,Im — m,) — a(mp, [Im —m,,) =0,
that is
a(m,m — my) — a(my, m — my) = a(m, m — [Im) — a(my, m — ITm). (4.12)
By (@.9),
a(m,m—my) —a(my, m —my) > ¢ (Hm — thg,Q + |lm — my [y, + ®*(m, mh)) . (4.13)
Using (4.3), it follows that
a(m,m — IIm) — a(my, m — ITm)
< ¢y [l = my [l — Tl , + ©(m, )W (m, my,) m — T, |
< & [llm = my |, + @2(m, mp)| + 3! [ — m, + 2(m, my) fjm — T}, |
Choosing ¢ = 27 !¢, and applying the above inequalities, we deserve

Jim = o 2+ — 0+ m, ) < e (Jlm = Tom[2, 4 W2 (m, ) Tm2,)

< ¢y(1 + U2(m, my)) [Hm —Tm|, + [jm — nmug,s} (414
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where ¢, = 2c2cy .

If we omit the non-negative term ®%(m, my,) and apply along with (#.4), then im-
mediately follows.

By means of (4.5]) and the Minkowski inequality, we find that

b(v,mp—pp) = a(m,v) —a(mp, v)
< =y g, V]l o + @ (m, my) W(m, my) vl

< (lm = myll , + ®(m, my) ¥(m, my)) |[v]]y,
2 1/2 2 2 12
< (143 (m,my)) " [llm = my |, + 02 ma)| vy,
Applying @.14) to the term |jm — tha2 + ®%(m, my,) results in

1/2 2 2 1/2
b(v,mp = gn) < "L+ (an, ) [ = Tl + fon = Tl ] vl

1/2
< (14 w3 (m,my)) [[m Ty, + m — Tl | V],

We have

b V, TP — Ph
o — pall, < Cosup TP o

1+ 3 (m, my,)) [ [Jm = T, + m — T, |
vevi vl

By invoking the triangle inequality, [|p — pxll, . < [lp — 7pllo,+l7p — pally,.» together with (3.11)
and (4.4)), the inequality (@.10)) readily follows.
The proof is concluded. 0

Theorem 4.4. Let (m, p) € V X Q) be the solution of (3.2) and (my,, p,) € Vi, X Qy, be the solution
of @3). If (m, p) € VN (WP3(Q))" x WPT(QQ), then there exist positive constants C' independent
of h such that

lm — my |5, + m—my |5, <Ch? 1<p<k+1. (4.16)

lp = pully, <CH? 1<p<k+1. 4.17)

Proof. The estimates (4.16) and (4.17) result from substituting the interpolation error inequalities

(.1) and (4.2) into the inequalities (4.9) and (4.10) of Theorem[4.3] O

5. Numerical results

In this section, we conduct the numerical experiments using the lowest order Raviart-Thomas
finite element to solve problem (4.3)) in a two-dimensional region. We test several examples using
triangular elements in a two-dimension domain to verify the rates of convergence. For simplicity,
we use the unit square 2 = [0, 1]? as the example domain. The simulations are performed using
FEniCS [Logg et al.| (2012)). The unit square is divided into a N' x A/ mesh of squares, each split
into two right triangles via the UnitSquareMesh class in FEniCS, ensuring uniform triangulation
in each dimension.
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To test the convergence of our method, we consider the Forchheimer two-term law given by
F(jm|)m = m + |m|m, corresponding to the parameters s = 3 and r = 3/2. The general-
ized Forchheimer equation is solved numerically on each mesh using Newton’s method, with a
nonlinear solver tolerance of 107%. We evaluate the L"-error for the density along with both the
L?-error and L*-errors for the momentum based on the regularity of the analytical solutions. The
convergence rates are computed using the formula r = % across eight levels of mesh re-
finement with the discretization parameters h = 1/4,1/8,1/16,1/32,1/64,1/128,1/256,1/512.

Example 1. (Forchheimer without source) We choose the analytical solution

T
N (LYY e
1++/144|Vp| 2’ 2 ’

The forcing term f is determined from equation divm = f. Explicitly, f(x) = 0. The boundary

p(x) =21 —V3z, and m(x)

condition is determined according to the analytical solution as follows:

( .
1 lfiL’QZO

ZL‘l—\/g 1f1’2:1
—\/gl’z 1fx1:O
\1—\/3.%'2 lfl'lzl

b(x) =

The numerical results are listed in Table 1.

N T lo=pillg, | Rates | fm—mylly, [ Rates | fm—myl,, | Rates
4 6.390e — 02 - 8.200e — 02 - 9.434e — 02
8 4.272e — 02 0.453 5.336e — 02 0.620 7.150e — 02 0.400

16 2.817e — 02 0.580 3.262e — 02 0.710 4.948e — 02 0.531
32 1.612e — 02 0.601 1.771e — 02 0.881 3.363e — 02 0.557
64 8.627e — 03 0.805 9.296e — 03 0.930 2.129e — 02 0.660
128 4.463e — 03 0.902 4.795e — 03 0.955 1.356e — 02 0.650
256 2.243e — 03 0.951 2.463e — 03 0.961 8.561e — 03 0.664
512 2.243e — 03 0.992 1.261e — 03 0.966 5.414e — 03 0.661

Table 1. The convergence study for Forchheimer flows using the mixed finite elements in 2D.

Example 2. (Forchheimer with the source, zero boundary data) In this example, the exact (ana-
lytical) solution is given by

—2Vp

14+ /14 4|Vp|

where Vp = (7 cos(may) sin(ma,), 7 sin(ma, ) cos(mas))’, and

vx € [0, 1]%,

p(x) = sin(mxy) sin(mze) and m(x) =

IVp| = 71/ (cos(may ) sin(ma,))? + (sin(7rzy) cos(my))2.
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The forcing term f(x) and the boundary condition ¢(x) are as follows

472 sin(mxy ) sin(mas)

22 sin 27 (w1 + )

23

= v e vir e yaravaw Y00
The numerical results are listed in Table 2.

N1 lo—pillo, | Rawes | [m-—myll,, | Rates | [m—my],, | Rates
4 1.252e¢ — 02 - 4.420e — 02 - 6.400e — 02

8 8.416e — 03 0.562 3.102e — 02 0.511 4.682¢ — 02 0.451
16 4.932¢ — 03 0.573 2.160e — 02 0.522 3.189¢ — 02 0.554
32 2.831e — 03 0.771 1.389e — 02 0.637 2.168e — 02 0.557
64 1.533e — 03 0.801 8.340e — 03 0.736 1.474e — 02 0.556
128 8.073e — 04 0.885 4.685¢ — 03 0.832 9.918e — 03 0.572
256 4.009e — 04 0.925 2.509¢e — 03 0.901 6.575e — 03 0.593
512 4.009e — 04 1.010 1.284e — 03 0.966 4.332¢ — 03 0.602

Table 2. The convergence study for Forchheimer flows using the mixed finite elements in 2D.

Example 3. (Forchheimer with the source, nonzero boundary data) The analytical solution in

this example is

p(x) =w?(x) and m(x)= Ao, 22)” vx € [0,1)?,
1+ /T +8uw(x)
where w(x) = /% + x2. The forcing term f and the boundary condition v(x) are as follows
onx; =0,
8(1 + 6w(x 1+ 8w(x 1+22 onz =1,
\/1+8w 1+\/1—|—8w onzy =0,
+1 onzy=1
The numerical results are listed in Table 3.
N lp=pill, | Rates | m—myly, | Raes | [m—myl,, | Raes
4 1.520e — 02 - 4.210e — 01 - 6.140e — 01
8 9.520e — 03 0.621 2.854e — 01 0.561 4.309¢ — 01 0.511
16 5.732e — 03 0.675 1.920e — 01 0.572 2.976e — 01 0.534
32 3.195e — 03 0.732 1.234e — 01 0.637 2.028e — 01 0.553
64 1.754e — 03 0.843 7.417e — 02 0.735 1.367¢ — 01 0.569
128 9.266e — 04 0.865 4.257e — 02 0.801 8.946e — 02 0.612
256 | 4.820e — 04 0.921 2.376e — 02 0.841 5.756e — 02 0.636
512 | 4.820e — 04 0.943 1.251e — 02 0.926 3.663e — 02 0.652

Table 3. The convergence study for Forchheimer flows using the mixed finite elements in 2D.
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Appendix A.

Lemma A.1. Forany s € (1,00), W(div, Q) is a reflexive Banach space.

Proof. Firstly, one can verify that W (div, €2) is a Banach space. Similarly in Knabner and Summ
(2016), we use the mapping Ev = (v,divv) for v. € W(div,Q) to embed W(div, ?) into
(Ls(jl))”“. Also, denote W, = E(W(div,Q)) C (L5(€2))"*". Then, the norm IEV | s (gyynss
in W is equivalent to the norm ||v||,,. This way, we identify W (div, 2) as W and vice versa.
As a consequence, W, is a closed subspace of (L*(92))™*1, hence it is a reflexive Banach space.
For dual and double dual spaces, we identify F' € W (div, Q)" as F=FoE'e¢ \7\7;, and we
identify G € W,(div, )" as G € W defined by G(F) = G(F o E) for any F' € W".. Then, W,
being reflexive implies that W (div, §2) is a reflexive Banach space. U
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