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Mixed finite element method for generalized Forchheimer in heterogeneous porous media

AYATI YADAV, TED PARK, TESSICA SELVAGANESAN, THINH KIEU, AND RAY YE

ABSTRACT. We analyzed a mixed finite element discretization of the generalized Darcy-Forchheimer
model in a two- or three-dimensional porous domain. We established the existence, uniqueness, and
stability of the solutions. Error estimates are presented based on the monotonicity possessed by the
Forchheimer term. Numerical investigations were performed to confirm the theoretical accuracy of
the discretization.

1. Introduction

The Darcy law is the most common equation to describe fluid flows in porous media

−∇p = µ

κ
v, (1.1)

where p, v, µ, κ are, respectively (resp.), the pressure, velocity, absolute viscosity and permeability.
When the Reynolds number is large, Darcy’s law becomes invalid, see Bear (1972); Muskat

(1937). A nonlinear relationship between the velocity and gradient of pressure is introduced by
adding the higher order terms of velocity to Darcy’s law. Forchheimer established this in Forch-
heimer (1901) the following three nonlinear empirical models:

−∇p = av+b|v|v, −∇p = av+b|v|v+c|v|2v, −∇p = av+d|v|m−1v,m ∈ (1, 2). (1.2)

Above, the positive constants a, b, c, d are obtained from the experiments for each case.
All three Forchheimer equations in (1.2) can be written in a general form

−∇p =
N∑
i=0

ai|v|αiv. (1.3)

This is called the generalized Forchheimer equation. When the media is heterogeneous, the co-
efficients ai in equation (1.3) depend on the spatial variable x. For compressible fluids, by the
dimensional analysis in Muskat (1937), the equation (1.3) can be modified to become

−∇p =
N∑
i=0

aiρ
αi |v|αiv, (1.4)
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where N ≥ 1, α0 = 0 < α1 < . . . < αN are fixed real numbers, the coefficients a0(x), . . . , aN(x)
are non-negative with

0 < a∗ < a0(x), aN(x) < a∗ <∞, 0 ≤ ai(x) ≤ a∗ <∞, i = 1, . . . , N − 1.

In particular, Ward Ward (1964) established from experimental data that

−∇p = µ

κ
v + cF

ρ√
κ
|v|v, where cF > 0. (1.5)

The mathematical study of Darcy’s law has been studied intensively, with a vast literature, see e.g.
Vázquez (2007); Aronson (1986) and references there in. In contrast, the mathematical analysis of
Forchheimer flows has received considerably less attention. For incompressible fluids, see Fabrie
(1989); Franchi and Straughan (2003); Payne and Straughan (1996, 1999); Payne and Song (2000);
Chadam and Qin (1997); Straughan (2008). Regarding compressible fluids, see Aulisa et al. (2009);
Hoang and Ibragimov (2012); Hoang et al. (2015, 2014); Celik et al. (2017); Hoang and Kieu
(2019); Celik et al. (2018, 2023) for single-phase flows and also Douglas et al. (1993); Park (2005);
Kieu (2016) for numerical analysis. In particular, the papers Celik and Hoang (2016, 2017) deal
with slightly compressible fluids in heterogeneous porous media.

Multiplying both sides of the equation (1.4) to ρ, we find that(
N∑
i=0

ai|ρv|αi

)
ρv = −ρ∇p. (1.6)

Denote the function F : Ω×R+ → R+ as a generalized polynomial with non-negative coefficients
by

F (x, z) = a0(x)z
α0 + a1(x)z

α1 + · · ·+ aN(x)z
αN , z ≥ 0. (1.7)

The equation (1.6) can be rewritten as

F (x, |ρv|)ρv = −ρ∇p. (1.8)

Under isothermal conditions, the state equation only relates the density ρ with the pressure p,
that is ρ = ρ(p). Therefore, the equation of state for slightly compressible fluids is given by

dρ

dp
=
ρ

ω̄
,

where 1/ω̄ > 0 represents the small compressibility.
Hence,

∇ρ = 1

ω̄
ρ∇p, or ρ∇p = ω̄∇ρ. (1.9)

Combining (1.8) and (1.9) implies that

F (x, |ρv|)ρv = −ω̄∇ρ.

By rescaling coefficients ai(x) → ω̄−1ai(x) of F (.), we assume that ω̄ = 1. Thus, the above
equation is

F (x, |ρv|)ρv = −∇ρ. (1.10)
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The equation (1.10) is coupled with the conservation law (or continuity equation)

div (ρv) = f(x), (1.11)

where f is external mass flow rate.
In order to apply standard mixed formulation, it is more convenient to introduce the momentum

variable m = ρv, and to cast the governing equations in a density-momentum formulation

F (x, |m(x)|)m(x) = −∇ρ(x) for all x ∈ Ω,

divm(x) = f(x) for all x ∈ Ω.
(1.12)

The Darcy- Forchheimer equation (1.12) leads to

F(|m|) = F (x, |m|)|m| = |∇ρ|, where F(s) = sF (s).

Since F is a one-to-one mapping from [0,∞) onto [0,∞), one can find a unique non-negative |m|
as a function of |∇ρ|,

|m| = F−1(|∇ρ|).

When solving for m from the first equation in (1.12), it gives

m =
−∇ρ

F (x,F−1(|∇ρ|))
= −K(x, |∇ρ|)∇ρ, (1.13)

where the function K : Ω× R+ → R+ is defined for ξ ≥ 0 by

K(x, ξ) =
1

F (s(x, ξ))
, (1.14)

with s = s(x, ξ) being the unique non-negative solution of sF (s) = ξ.
Note that

F−1(0) = 0, K(x, 0) =
1

F (x, 0)
=

1

a0(x)
> 0.

When substituting (1.13) into the second equation of (1.12), we obtain a scalar partial differential
equation (PDE) for the density:

−div (K(x, |∇ρ|)∇ρ) = f(x), x ∈ Ω. (1.15)

This approach was widely exploited in Glowinski and Marroco (1975); Chow (1989); Baranger
and Najib (1990); Sandri, D. (1993); Fabrie (1989) along with their numerical analysis.

In the present paper, the inhomogeneous continuity and the Forchheimer-Darcy’s momentum
equations are treated separately as a coupled system of first order PDE. This gives us the pos-
sibility to analyze the nonconstant coefficients. Using nonlinear monotone operator theory (e.g.,
Brézis (1973); Lions (1969); Showalter (1997); Zeidler (1990)), we can prove the existence and
uniqueness of a weak solution of the corresponding elliptic problem of (1.15) for the Dirichlet
boundary conditions with general coefficient functions, while imposing only minimal regularity
assumptions. Moreover, we establish explicit estimates results which are not obtained in Fabrie
(1989). This problem was not studied in the literature previously.
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The mixed finite element method (MFEM) is valued for its ability to simultaneously compute
scalar (e.g., pressure) and vector (e.g., velocity) functions with comparable accuracy. For second-
order elliptic problems, mixed methods for semilinear and nonlinear cases are well-studied in
Durán (1988); Milner and Suri (1992); Lee and Milner (1997). In this paper, we combine the
techniques from Kieu (2016, 2020) with the mixed finite element framework in Arbogast et al.
(1997) to utilize both the special structures of the equation as well as the advantages of the mixed
finite element method in obtaining the optimal order error estimates for the solution in several
norms of interest.

The paper is organized as follows. We introduce the notations and the relevant results in section
2. Section 3 is devoted to the analysis of the variational formulation. We prove the existence,
uniqueness, and stability of weak solution. In section 4, we introduce the discrete problems, recall
their main properties, and derive a priori error estimates. We end our paper with some numerical
results validating the convergence analysis in section 5.

2. Preliminaries

2.1. Inequalities

The following are some commonly used consequences of Young’s inequality.
If x, y ≥ 0, γ ≥ β ≥ α > 0, p, q > 1 with 1/p+ 1/q = 1, and ε > 0, then

xα ≤ 1 + xβ, xβ ≤ xα + xγ, xy ≤ εxp + ε−q/pyq. (2.1)

For z ∈ R, denote z+ = max{0, z}. For x,y ∈ Rn and p > 0, one has

(|x|+ |y|)p ≤ 2(p−1)+(|x|p + |y|p) =

|x|p + |y|p, for p ∈ (0, 1],

2p−1(|x|p + |y|p), for p > 1,
(2.2)

which consequently yields

(|x|+ |y|)p ≤ 2p(|x|p + |y|p) for p > 0, (2.3)

||x|p − |y|p| ≤ |x− y|p for p ∈ (0, 1]. (2.4)

Lemma 2.1. If p > 0 and x,y ∈ Rn, then

||x|px− |y|py| ≤ 2(p−1)+(|x|p + |y|p)|x− y|, (2.5)

(|x|px− |y|py) · (x− y) ≥ 1

2
(|x|p + |y|p)|x− y|2, (2.6)

(|x|px− |y|py) · (x− y) ≥ 1

21+(p−1)+
|x− y|p+2. (2.7)

If p ∈ (−1, 0), then

||x|px− |y|py| ≤ 2−p|x− y|1+p for all x, y ∈ R, (2.8)

(|x|px− |y|py) · (x− y) ≥ (1 + p)(|x|+ |y|)p|x− y|2 for all x,y ∈ Rn. (2.9)
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It is meant, naturally in (2.8) and (2.9), that

|x|px, |y|py, (|x|+ |y|)p|x− y|2 = 0 for p ∈ (−1, 0) and x = y = 0.

Proof. Proof of inequality (2.5). Consider Scenario 1 and define h2(t) = |γ(t)|pγ(t) for t ∈ [0, 1].
Then,

||x|px− |y|py| =
∣∣∣∣∫ 1

0

h′2(t)dt

∣∣∣∣ = ∣∣∣∣∫ 1

0

|γ(t)|p(x− y) + p|γ(t)|p−2(γ(t) · (x− y))γ(t)dt

∣∣∣∣
≤ (1 + p)|x− y|

∫ 1

0

|γ(t)|pdt ≤ (1 + p)|x− y|
∫ 1

0

2(p−1)+(tp|x|p + (1− t)p|y|p)dt

= 2(p−1)+(|x|p + |y|p)|x− y|.

This proves (2.5).
In Scenario 2, we can assume y = −kx for some k ≥ 0. We have

||x|px− |y|py| = |x|p+1(1 + kp+1) ≤ |x|p+1(1 + kp)(1 + k) = (|x|p + |y|p)|x− y|.

Hence, we obtain (2.5).
Proofs of inequalities (2.6) and (2.7). We have

(|x|px− |y|py) · (x− y) =

(
|x|p
(x+ y

2
+

x− y

2

)
− |y|p

(x+ y

2
− x− y

2

))
· (x− y)

= (|x|p − |y|p)x+ y

2
· (x− y) +

1

2
(|x|p + |y|p)|x− y|2

=
1

2
(|x|p − |y|p)(|x|2 − |y|2) + 1

2
(|x|p + |y|p)|x− y|2.

Since (|x|p − |y|p)(|x|2 − |y|2) ≥ 0, we obtain (2.6). Using (|x| + |y|)p ≥ 2−(p−1)+|x − y|p, we
then deduce (2.7) from (2.6).

Now, consider p ∈ (−1, 0).
Proof of inequality (2.8). Let x, y ∈ R. The inequality obviously holds true when x = 0 or

y = 0. Also, by switching the roles of x and y, we can assume x > 0 and y ̸= 0.
If y > 0, then ||x|px − |y|py| = |x1+p − y1+p|. Noting that 1 + p ∈ (0, 1), we apply inequality

(2.4) to have

||x|px− |y|py| ≤ |x− y|1+p ≤ 2−p|x− y|1+p.

If y < 0, then ||x|px− |y|py| = |x|1+p+ |y|1+p. Applying Hölder’s inequality to the dot product
of two vectors (|x|1+p, |y|1+p) and (1, 1) with powers 1/(1 + p) and −1/p, we obtain

||x|px− |y|py| ≤ (|x|+ |y|)1+p · 2−p = 2−p|x− y|1+p,

which yields (2.8).
Proof of inequality (2.9). Let x,y ∈ Rn. Consider Scenario 1 and define the function

h3(t) = |γ(t)|pγ(t) · (x− y) for t ∈ [0, 1].
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Then,

(|x|px− |y|py) · (x− y) =

∫ 1

0

h′3(t)dt =

∫ 1

0

|γ(t)|p|x− y|2 + p|γ(t)|p−2|γ(t) · (x− y)|2dt

≥ (1 + p)|x− y|2
∫ 1

0

|γ(t)|pdt.

Note that −p ∈ (0, 1), hence |γ(t)|−p ≤ (|x|+ |y|)−p. Therefore, we obtain (2.9).
In Scenario 2, we can assume y = −kx for some k ≥ 0. We have

(|x|px− |y|py) · (x− y) = |x|2+p(1 + k1+p)(1 + k).

Since 0 < 1 + p < 1, from (2.3), we have that 1 + k1+p ≥ (1 + k)1+p. Hence,

(|x|px− |y|py) · (x− y) ≥ |x|2+p(1 + k)2+p = |x− y|2(|x|+ |y|)p,

which proves (2.9) again. □

Lemma 2.2. The following inequalities hold for all x,y ∈ Rn.

|F (|x|)x− F (|y|)y| ≤ c1 (1 + |x|αN + |y|αN ) |x− y|. (2.10)

(F (|x|)x− F (|y|)y) · (x− y) ≥ c2
(
|x− y|2 + |x− y|αN+2

)
, (2.11)

where the constants c1 = a∗21+(αN−1)+(N + 1) > 0, and c2 = a∗2
−1−(αN−1)+ > 0.

Proof. Proof of inequality (2.10). We have

|F (|x|)x− F (|y|)y| = |a0(x− y) + a1(|x|α1x− |y|α1y) + · · ·+ aN(|x|αNx− |y|αNy)|

≤ a∗ (|x− y|+ ||x|α1x− |y|α1y|+ · · ·+ ||x|αNx− |y|αNy|) .

Applying (2.5) to the terms ||x|αix− |y|αiy|, we find that

|F (|x|)x− F (|y|)y| ≤ a∗
(
1 + 2(α1−1)+(|x|α1 + |y|α1) + · · ·+ 2(αN−1)+(|x|αN + |y|αN )

)
|x−y|.

By Young’s inequality (2.1), |w|αi ≤ 1 + |w|αN , we find that

|F (|x|)x− F (|y|)y| ≤ a∗21+(αN−1)+(N + 1) (1 + |x|αN + |y|αN ) |x− y|,

which proves (2.10).
Proof of the inequality (2.11). We have

(F (|x|)x− F (|y|)y) · (x− y) = a0|x− y|2 + . . .+ aN(|x|αNx− |y|αNy) · (x− y)

≥ a∗
(
|x− y|2 + . . .+ (|x|αNx− |y|αNy) · (x− y)

)
.

Applying (2.7) to the terms (|x|αix− |y|αiy) · (x− y), we obtain

(F (|x|)x− F (|y|)y) · (x− y) ≥ a∗

(
|x− y|2 + . . .+

1

21+(αN−1)+
|x− y|αN+2

)
≥ a∗

21+(αN−1)+

(
|x− y|2 + |x− y|αN+2

)
.

Therefore, we obtain (2.11). □
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2.2. Functional spaces

Next, we review the Sobolev spaces and trace theorems. Hereafter, the spatial dimension n ≥ 2

is fixed. Let Ω be an open, bounded subset of Rn with the boundary ∂Ω of class C1.
For 1 ≤ s < ∞, let Ls(Ω) be the standard Lebesgue space of scalar functions and denote

Ls(Ω) = (Ls(Ω))n. The notation ∥·∥0,s is used to denote both norms ∥·∥Ls(Ω) and ∥·∥Ls(Ω).
For a nonnegative integer m, let Wm,p(Ω) be the standard Sobolev space with the norm

∥u∥m,s =
( ∑

|α|≤m

∥Dαu∥sLs(Ω)

) 1
s
.

For any normed space X , its dual space is denoted by X ′, and the product between X ′ and X is
denoted by ⟨·, ·⟩X′,X , i.e., ⟨y, x⟩X′,X = y(x) for y ∈ X ′ and x ∈ X .

Consider 1 < s <∞ now. The function γ0 : f ∈ C∞(Ω) 7→ f
∣∣
∂Ω

can be extended to a bounded
linear mapping γ0,s : W 1,s(Ω) → Ls(∂Ω). The function γ0,s(f) is called the trace of f on ∂Ω.

Define Xs = W 1−1/s,s(∂Ω) to be the range of γ0,s equipped with the norm

∥f∥Xs = inf{∥φ∥1,s : φ ∈W 1,s(Ω), γ0,s(φ) = f}.

Define the space

Ws(div,Ω) = {v ∈ Ls(Ω) : div v ∈ Ls(Ω)} (2.12)

equipped with the norm

∥v∥Ws(div,Ω) =
(
∥v∥s0,s + ∥div v∥s0,s

)1/s
. (2.13)

Then, Ws(div,Ω) is a reflexive Banach space, see Lemma A.1 below.
Let r > 1 be the Hölder conjugate of s, i.e., 1/s+ 1/r = 1. Thanks to (2.2),

∥v∥Ws(div,Ω) ≤ ∥v∥0,s + ∥div v∥0,s ≤ 21/r ∥v∥Ws(div,Ω) . (2.14)

Let ν⃗ denote the outward normal vector to the boundary ∂Ω. Then one can extend the normal
trace γn(v) = v · ν⃗ for v ∈ (C∞(Ω))n to a bounded, linear mapping γn,s from Ws(div,Ω) into
X ′
r. In particular, there is c1 > 0 such that

∥γn,s(v)∥X′
r
≤ c1 ∥v∥Ws(div,Ω) for all v ∈ Ws(div,Ω), (2.15)

and Green’s formula ∫
Ω

v · ∇q dx+

∫
Ω

div v q dx =

∫
∂Ω

(v · ν⃗)q dσ (2.16)

holds for every v ∈ Ws(div,Ω) and q ∈ W 1,r(Ω).
Finally, we recall an important norm estimate, see (Baranger and Najib, 1990, Inequality (4.2))

or (Sandri, D., 1993, Lemma A.1) or (Knabner and Summ, 2016, Lemma A.3).



8 A. Yadav, T. Park, T. Selvaganesan, T. Kieu, R. Ye

Lemma 2.3. Let r, s ∈ (1,∞) be Hölder conjugates of each other and let V = Ws(div,Ω). Then
there exists a constant C∗ > 0 such that, for all q ∈ Lr(Ω), it holds

∥q∥0,r ≤ C∗ sup
v∈V \{0}

∫
Ω
div v q dx

∥v∥V
. (2.17)

Proof. Let q ∈ Lr(Ω). If q = 0, then (2.17) holds true. Consider q ̸= 0. Denote by W 1,r
0 (Ω) the

space of functions in W 1,r
0 (Ω) having zero trace on the boundary. Note that |q|r−2q ∈ Ls(Ω). By

the Browder–Minty Theorem, there exists a unique solution w ∈ W 1,s
0 (Ω) of the problem∫

Ω

|∇w|r−2∇w · ∇v dx =

∫
Ω

|q|r−2qv dx for all v ∈ W 1,r
0 (Ω). (2.18)

Choosing v = w in (2.18) and applying the Hölder and Poincaré inequalities give

∥∇w∥r0,r =
∫
Ω

|∇w|r dx =

∫
Ω

|q|r−2qw dx ≤ ∥q∥r−1
0,r ∥w∥0,r ≤ C ∥q∥r−1

0,r ∥∇w∥0,r ,

where C is a positive constant. Hereafter, C denotes a generic positive constant. It follows that

∥∇w∥0,r ≤ C ∥q∥0,r .

Set u = −|∇w|r−2∇w. Then u ∈ Ls(Ω) and, by (2.18), divu = |q|r−2q ∈ Ls(Ω). Therefore,
u ∈ V \ {0}. Observe that

∥u∥sV = ∥u∥s0,s + ∥divu∥s0,s = ∥∇w∥r0,r + ∥q∥r0,r ≤ C ∥q∥r0,r .

Thus, ∥u∥V ≤ C ∥q∥r−1
0,r . We then have∫

Ω

(divu)q dx =

∫
Ω

|q|r dx = ∥q∥r0,r = ∥q∥0,r ∥q∥
r−1
0,r ≥ C ∥q∥0,r ∥u∥V .

Consequently, we obtain inequality (2.17). □

Our calculations frequently use the following exponents

s = αN + 2 ∈ (2,∞), r =
s

s− 1
∈ (1, 2). (2.19)

The arguments C,C1, . . . denote generic positive constants whose values may vary from place to
place. These constants depend on the exponents, the coefficients of the polynomial F , the spa-
tial dimension n, and the domain Ω, but are independent of the boundary data and the spatial
discretization step.

3. The mixed formulation

We consider the problem governed by the Darcy-Forchheimer equation and the continuity equa-
tion together with Dirichlet boundary condition

F (|m(x)|)m(x) = −∇ρ(x) for all x ∈ Ω,

divm(x) = f(x) for all x ∈ Ω,

ρ(x) = ψ(x) for all x ∈ ∂Ω.

(3.1)
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The mixed formulation of (3.1) reads as follows: Find (m, ρ) ∈ Ws(div,Ω)× Lr(Ω) ≡ V ×Q

such that 
∫
Ω

F (|m|)m · v dx−
∫
Ω

ρ div v dx = −
∫
∂Ω

ψ (v · ν⃗) dσ for all v ∈ V,∫
Ω

(divm)q dx =

∫
Ω

f q dx for all q ∈ Q.

(3.2)

Forcing function

For the fifth integral in (3.2), we assume f ∈ Ls(Ω) and define Λf : Q→ R by

Λf (q) =

∫
Ω

fq dx for all q ∈ Q.

Then Λf ∈ Q′ and
∥Λf∥Q′ = ∥f∥0,s . (3.3)

Boundary data

For the third integral in (3.2), we assume ψ ∈ Xr and define Υψ : V → R by

Υψ(v) =

∫
∂Ω

ψ(v · ν⃗) dσ for all v ∈ V.

Thanks to the Green’s formula (2.16), Υψ(v) is the rigorous formulation for the boundary inte-
gral in (3.2). By (2.15), one has Υψ ∈ V ′ and

∥Υψ∥V ′ ≤ c̄1 ∥ψ∥Xr
. (3.4)

For the second and fourth integrals in (3.2), we define a bilinear form b : V ×Q→ R by

b(v, q) =

∫
Ω

(div v)q dx for all v ∈ V, q ∈ Q.

Then for any v ∈ V and q ∈ Q, applying Hölder’s inequality gives

|b(v, q)| ≤ ∥div v∥0,s ∥p∥0,r . (3.5)

For the first integral in (3.2), we define a : Ls(Ω)× Ls(Ω) → R by

a(u,v) =

∫
Ω

F (|u(x)|)u(x) · v(x) dx for all u,v ∈ Ls(Ω).

The following are the basic properties of a(·, ·).

Lemma 3.1. For any u,v,w ∈ Ls(Ω), one has

|a(u,w)− a(v,w)| ≤ c4

(
1 + ∥u∥s−2

0,s + ∥v∥s−2
0,s

)
∥u− v∥0,s ∥w∥0,s , (3.6)

a(u,u− v)− a(v,u− v) ≥ c2 ∥u− v∥s0,s , (3.7)

where c2, c4 = c1(1 + |Ω|1/s) are positive constants.
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Consequently,

|a(u,w)| ≤ c4
(
∥u∥0,s + ∥u∥s−1

0,s

)
∥w∥0,s, (3.8)

|a(u,u)| ≥ c2∥u∥s0,s. (3.9)

Proof. Using property (2.10), we have

|a(u,w)− a(v,w)| ≤
∫
Ω

|F (|u|)u− F (|v|)v| |w| dx

≤ c1

∫
Ω

(1 + |u|s−2 + |v|s−2) |u− v| |w| dx.

Applying Hölder’s inequality for three powers s/(s− 2), s, s gives∫
Ω

(1 + |u|s−2 + |v|s−2) |u− v| |w| dx ≤
(
∥1∥0,s + ∥u∥s−2

0,s + ∥v∥s−2
0,s

)
∥u− v∥0,s ∥w∥0,s .

Thus, we obtain (3.6).
Finally, by (2.11), we have

a(u,u− v)− a(v,u− v) =

∫
Ω

(F (|u|)u− F (|v|)v) · (u− v) dx ≥ c2

∫
Ω

|u− v|s dx,

which proves (3.7).
Taking v = 0 in (3.6) and (3.7), we obtain (3.8) and (3.9). □

Definition 3.2. Given f ∈ Ls(Ω) and ψ ∈ Xr, a weak solution of Problem (3.2) is a pair (m, ρ) ∈
V ×Q that satisfies {

a(m,v)− b(v, ρ) = −Υψ(v) for all v ∈ V,

b(m, q) = Λf (q) for all q ∈ Q.
(3.10)

We will establish the existence and uniqueness of a weak solution of the problem (3.2).

Theorem 3.3. The following statements hold true.

(1) For any f ∈ Ls(Ω) and ψ ∈ Xr, there exists a unique weak solution (m, ρ) ∈ V × Q of
Problem (3.2).

(2) There is c3 > 0 such that if f, ψ, (m, ρ) are as in part 1, then

∥m∥0,s + ∥divm∥0,s + ∥ρ∥0,r ≤ c3
(
∥f∥r−1

0,s + ∥f∥s−1
0,s + ∥ψ∥r−1

Xr
+ ∥ψ∥Xr

). (3.11)

The proof of Theorem 3.3 will be presented in subsection 3.4 below.
We use regularization to show the existence of a weak solution (m, ρ) ∈ V × Q to the prob-

lem (3.2).
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3.1. The regularized problem

For u,v ∈ V and p, q ∈ Q, define

I(u,v) =

∫
Ω

|divu|s−2divu · div v dx and J(p, q) =

∫
Ω

|p|r−2p · q dx. (3.12)

For the fixed ε > 0, we consider the following regularized problem: Find (mε, ρε) ∈ V × Q

such that {
a(mε,v) + εI(mε,v)− b(v, ρε) = −Υψ(v) for all v ∈ V

εJ(ρε, q) + b(mε, q) = Λf (q) for all q ∈ Q.
(3.13)

Lemma 3.4. For every ε > 0, there is a unique solution (mε, ρε) ∈ V × Q of the regularized
problem (3.13).

Proof. Adding the left hand side of (3.13), we obtain the nonlinear form defined on V ×Q,

aε((mε, ρε), (v, q)) := a(mε,v)+εI(mε,v)−b(v, ρε)+εJ(ρε, q)+b(mε, q), for (v, q) ∈ V ×Q.
(3.14)

A nonlinear operator Aε : (V ×Q) → (V ×Q)′ defined by

⟨Aε((u, p)), (v, q)⟩(V×Q)′×(V×Q) = aε((u, p), (v, q)).

Then, Aε is continuous, coercive and strictly monotone.
Applying the theorem of Browder and Minty (see in Zeidler and Boron (1989), Thm. 26.A) for

every f̃ ∈ (V × Q)′, there exists unique a solution (mε, ρε) ∈ V × Q of the operator equation
Aε(mε, ρε) = f̃ . In particular, we choose the linear form f̃ defined by f̃(v, q) := −Υψ(v)+Λf (q),
which arises by adding the right hand sides of (3.13). Therefore, (3.13) has a unique solution.

Below, we establish that Aε is continuous, coercive and strictly monotone.

Proof of the fact Aε is continuous. For any (u1, p1), (u2, p2), (v, q) ∈ V ×Q, we have

⟨Aε((u1, p1)−Aε((u2, p2)), (v, q)⟩(V×Q)′×(V×Q) = a(u1,v)− a(u2,v)

+ ε(I(u1,v)− I(u2,v))− b(v, p1 − p2) + ε(J(p1, q)− J(p2, q)) + b(u1 − u2, q).
(3.15)

Using the (3.6), we have

|a(u1,v)− a(u2,v)| ≤ c4

(
1 + ∥u1∥s−2

0,s + ∥u2∥s−2
0,s

)
∥u1 − u2∥0,s ∥v∥0,s

≤ c4
(
1 + ∥u1∥s−2

V + ∥u2∥s−2
V

)
∥u1 − u2∥V ∥v∥V .

(3.16)

From (2.5) and Hölder’s inequality, it follows that

|I(u1,v)− I(u2,v)| ≤ 2s−2

∫
Ω

(|divu1|s−2 + |divu2|s−2) · |div (u1 − u2)| · |div v| dx

≤ 2s−2
(
∥divu1∥s−2

0,s + ∥divu2∥s−2
0,s

)
∥div (u1 − u2)∥0,s ∥div v∥0,s

≤ 2s−2
(
∥u1∥s−2

V + ∥u2∥s−2
V

)
∥u1 − u2∥V ∥v∥V .
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Using (2.8), together with Hölder’s inequality and the fact that r − 2 ∈ (−1, 0), we have

|J(p1, q)− J(p2, q)| ≤
∫
Ω

∣∣|p1|r−2p1 − |p2|r−2p2
∣∣ · |q| dx

≤ 22−r
∫
Ω

|p1 − p2|r−1|q|dx

≤ 22−r ∥p1 − p2∥r−1
Q ∥q∥Q .

By Hölder’s inequality,

|b(v, p1 − p2)|+ |b(u1 − u2, q)| ≤ ∥div v∥0,s ∥p1 − p2∥0,r + ∥div (u1 − u2)∥0,s ∥q∥0,r
≤ ∥p1 − p2∥Q ∥v∥V + ∥u1 − u2∥V ∥q∥Q .

From (3.15) and the above estimates, it follows that

| ⟨Aε((u1, p1)−Aε((u2, p2)), (v, q)⟩(V×Q)′×(V×Q) | ≤ c5(1 + ε)
(
1 + ∥u1∥s−2

V + ∥u2∥s−2
V

)
·
(
∥u1 − u2∥V + ∥p1 − p2∥Q + ∥p1 − p2∥r−1

Q

)
∥(v, q)∥V×Q ,

where c5 = max{c4, 2s−2, 22−r}. This yields

∥Aε((u1, p1)−Aε((u2, p2)∥(V×Q)′ ≤ c5(1 + ε)
(
1 + ∥u1∥s−2

V + ∥u2∥s−2
V

)
·
(
∥u1 − u2∥V + ∥p1 − p2∥Q + ∥p1 − p2∥r−1

Q

)
.

Thus, Aε is continuous.

Proof of the fact Aε is coercive. For any (u, p) ∈ V ×Q, we have from (3.9) and (3.14), that

⟨Aε(u, p), (u, p)⟩(V×Q)′×(V×Q) = a(u,u) + εI(u,u) + εJ(p, p)

≥ c2 ∥u∥s0,s + ε ∥divu∥s0,s + ε ∥p∥r0,r
≥ min{c2, ε}

(
∥u∥sV + ∥p∥rQ

)
.

Note that s > 2 > r > 1. We consider ∥u∥V + ∥p∥Q ≥ 2.
If ∥u∥V ≥ 1, then

∥u∥sV + ∥p∥rQ ≥ ∥u∥rV + ∥p∥rQ ≥ 21−r(∥u∥V + ∥p∥Q)
r.

If ∥u∥V < 1, then ∥p∥Q > 1 > ∥u∥V , and

∥u∥sV + ∥p∥rQ ≥ ∥p∥rQ ≥
(
1

2
∥p∥Q +

1

2
∥u∥V

)r
= 2−r(∥u∥V + ∥p∥Q)

r.

In both cases, we find that

⟨Aε(u, p), (u, p)⟩(V×Q)′×(V×Q)

∥(v, q)∥V×Q
≥ 2−rmin{c2, ε} ∥(v, q)∥r−1

V×Q → ∞ as ∥(v, q)∥V×Q → ∞.

Therefore, Aε is coercive.
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Proof of the fact Aε is strictly monotone. By “strictly monotonotone”, we mean that

⟨Aε(u, p)−Aε(v, q), (u− v, p− q)⟩(V×Q)′×(V×Q) > 0

for all (u, p), (v, q) ∈ V ×Q with (u, p) ̸= (v, q).
Let (u, p), (v, q) ∈ V ×Q. We have

⟨Aε(u, p)−Aε(v, q), (u− v, p− q)⟩(V×Q)′×(V×Q) = a(u,u− v)− a(v,u− v)

+ ε(I(u,u− v)− I(v,u− v)) + ε(J(p, p− q)− J(q, p− q)).

Applying inequality (3.7), we obtain

a(u,u− v)− a(u,u− v) ≥ c2 ∥u− v∥s0,s .

In addition, inequality (2.7) yields

I(u,u− v)− I(v,u− v) ≥ 21−s ∥div (u− v)∥s0,s .

Utilizing inequality (2.9), we have

J(p, p− q)− J(q, p− q) ≥ (r − 1)

∫
Ω

(|p|+ |q|)r−2|p− q|2 dx.

Consequently, by putting these estimates together, we arrive at

⟨Aε(u, p)−Aε(v, q), (u− v, p− q)⟩(V×Q)′×(V×Q)

≥ C2

(
∥u− v∥s0,s + ε ∥div (u− v)∥s0,s + ε

∫
Ω

(|p|+ |q|)r−2|p− q|2 dx
)
,

whereC2 = min{c2, 21−s, r−1}. This implies that ⟨Aε(u, p)−Aε(v, q), (u− v, p− q)⟩(V×Q)′×(V×Q)

is positive whenever (u, p) ̸= (v, q).
Therefore, Aε is strictly monotone. □

Next, we show that the solution (mε, ρε) is bounded independently of ε.

Lemma 3.5. There exist constants C > 0, independent of ε, such that for sufficiently small ε > 0

the solution (mε, ρε) of (3.13) satisfies the following estimates

∥mε∥V + ∥ρε∥Q ≤ C. (3.17)

Proof. We begin with a bound for the norm of divmε. Choosing q = |divmε|s−2divmε ∈ Q in
the second equation of (3.13) and using Hölder’s inequality, we find that

∥divmε∥s0,s ≤ ∥Λf∥Q′ ∥divmε∥s−1
0,s + ε ∥ρε∥r−1

0,r ∥divmε∥s−1
0,s .

It implies that

∥divmε∥0,s ≤ ∥Λf∥Q′ + ε ∥ρε∥r−1
0,r . (3.18)
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Choosing (v, q) = (mε, ρε) in (3.13) and utilizing (2.14) results in

a(mε,mε) + ε∥divmε∥s0,s + ε∥ρε∥r0,r = −Υψ(mε) + Λf (ρε)

≤ ∥Υψ∥V ′ ∥mε∥V + ∥Λf∥Q′ ∥ρε∥Q
≤ ∥Υψ∥V ′

(
∥mε∥0,s + ∥divmε∥0,s

)
+ ∥Λf∥Q′ ∥ρε∥0,r .

(3.19)
Applying inequality (3.8) to the first term of (3.19), neglecting the next two terms, and utilizing
the estimate (3.18) for the last divergence term, we obtain

c2 ∥mε∥s0,s ≤ ∥Υψ∥V ′

(
∥mε∥0,s + ∥Λf∥Q′ + ε ∥ρε∥r−1

0,r

)
+ ∥Λf∥Q′ ∥ρε∥0,r .

By Young’s inequality, specifically, the last one in (2.1), we have

∥Υψ∥V ′ ∥mε∥0,s ≤ (c2/2) ∥mε∥s0,s + (2/c2)
r/s ∥Υψ∥rV ′ .

It follows that

∥mε∥s0,s ≤ C
(
∥Υψ∥rV ′ + ∥Υψ∥V ′ ∥Λf∥Q′ + ε ∥Υψ∥V ′ ∥ρε∥r−1

0,r + ∥Λf∥Q′ ∥ρε∥0,r
)
. (3.20)

To bound ρε, we employ the inf-sup condition (2.17). The first equation in (3.13) and the above
estimate for ∥divmε∥0,s, we have

b(v, ρε) = a(mε,v) + εI(mε,v) + Υψ(v)

≤ C(∥mε∥0,s + ∥mε∥s−1
0,s ) ∥v∥0,s + ε ∥divmε∥s−1

0,s ∥div v∥0,s + ∥Υψ∥V ′ (∥v∥0,s + ∥div v∥0,s)

≤
[
C
(
∥mε∥0,s + ∥mε∥s−1

0,s

)
+ ε ∥divmε∥s−1 + ∥Υψ∥V ′

]
∥v∥V .

Consequently,

∥ρε∥0,r ≤ C∗ sup
v∈V \{0}

b(v, ρε)

∥v∥V
≤ C∗

[
C
(
∥mε∥0,s + ∥mε∥s−1

0,s

)
+ ε ∥divmε∥s−1 + ∥Υψ∥V ′

]
≤ C0

[
∥mε∥0,s + ∥mε∥s−1

0,s + ε
(
∥Λf∥Q′ + ε ∥ρε∥r−1

0,r

)s−1
+ ∥Υψ∥V ′

]
≤ 2s−1C0

[
∥mε∥0,s + ∥mε∥s−1

0,s + ε ∥Λf∥s−1
Q′ + εs ∥ρε∥0,r + ∥Υψ∥V ′

]
.

Here, we used the fact that (r − 1)(s− 1) = 1 in the last inequality.
By setting ε0 = min{1, (2s−2C0)

−1/s} and considering ε ∈ (0, ε0), we deduce

∥ρε∥0,r ≤ 2sC0

(
∥mε∥0,s + ∥mε∥s−1

0,s + ε ∥Λf∥s−1
Q′ + ∥Υψ∥V ′

)
. (3.21)

Consequently, one has

∥ρε∥r−1
0,r ≤ C1

(
∥mε∥r−1

0,s + ∥mε∥0,s + εr−1 ∥Λf∥Q′ + ∥Υψ∥r−1
V ′

)
. (3.22)
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Substituting (3.21) and (3.22) into (3.20) leads to

∥mε∥s0,s ≤C
[
∥Υψ∥rV ′ + ∥Υψ∥V ′ ∥Λf∥Q′

+ ε ∥Υψ∥V ′

(
∥mε∥r−1

0,s + ∥mε∥0,s + εr−1 ∥Λf∥Q′ + ∥Υψ∥r−1
V ′

)
+ ∥Λf∥Q′

(
∥mε∥0,s + ∥mε∥s−1

0,s + ε ∥Λf∥s−1
Q′ + ∥Υψ∥V ′

) ]
≤C
[
(1 + ε) ∥Υψ∥rV ′ + (1 + εr) ∥Υψ∥V ′ ∥Λf∥Q′ + ε ∥Λf∥sQ′

+ ε ∥Υψ∥V ′

(
∥mε∥r−1

0,s + ∥mε∥0,s
)
+ ∥Λf∥Q′

(
∥mε∥0,s + ∥mε∥s−1

0,s

) ]
.

Let s∗ = s/(s − r + 1) = s(s − 1)/(s(s − 1) − 1) ∈ (1, r). Then using Young’s inequality, we
obtain

∥mε∥s0,s ≤ C
[
(1 + ε) ∥Υψ∥rV ′ + (1 + εr) ∥Υψ∥V ′ ∥Λf∥Q′ + ε ∥Λf∥sQ′

]
+

1

2
∥mε∥s0,s + C

(
εs∗ ∥Υψ∥s∗V ′ + εr ∥Υψ∥rV ′

)
+ C(∥Λf∥rQ′ + ∥Λf∥sQ′

)
.

This implies

∥mε∥0,s ≤ C1d1(ε), (3.23)

where

d1(ε) =
[
(1 + εr)(∥Υψ∥rV ′ + ∥Υψ∥V ′ ∥Λf∥Q′) + (1 + ε) ∥Λf∥sQ′ + εs∗ ∥Υψ∥s∗V ′ + ∥Λf∥rQ′

]1/s
.

Inserting (3.23) into (3.21) yields

∥ρε∥0,r ≤ C2d2(ε), (3.24)

where d2(ε) = d1(ε) + d1(ε)
s−1 + ε ∥Λf∥s−1

Q′ + ∥Υψ∥V ′ .

Using this estimate in (3.18) yields

∥divmε∥0,s ≤ C3d3(ε), (3.25)

where d3(ε) = ∥Λf∥Q′ + εd2(ε)
r−1.

Observe that di(ε), for i = 1, 2, 3, are increasing functions with respect to ε. Summing up the
estimates (3.23), (3.24) and (3.25) gives

∥mε∥V + ∥ρε∥Q ≤ C def
==

3∑
i=1

Cidi(1).

Thus, we obtain the desired estimate (3.17).
The proof is complete. □
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3.2. Existence and uniqueness

This subsection is dedicated to establish the existence and uniqueness of a weak solution to
problem (3.2).

Theorem 3.6. Suppose f ∈ Ls(Ω) and ψ ∈ Xr. The mixed formulation (3.2) of the problem (3.1)
has a unique solution (m, ρ) ∈ Ws(div,Ω)× Lr(Ω).

Proof. Adding the left hand side of (3.2), we obtain the following nonlinear form defined on V ×Q
by

a((m, ρ), (v, q)) := a(m,v)− b(v, ρ) + b(m, q).

Consider the nonlinear operator A : V ×Q→ (V ×Q)′ defined by

⟨A(u, p), (v, q)⟩(V×Q)′×(V×Q) := a((u, p), (v, q)).

Set ε = 1/n and let (mn, ρn) be the unique solution of the regularized problem (3.13). Since
(mn, ρn) is a bounded sequence in V × Q, there exists a weakly convergent subsequence, again
denoted by (mn, ρn), with weak limit (m, ρ) ∈ V ×Q. For f̃(v, q) := −Υψ(v)+Λf (q) ∈ (V ×Q)′,∥∥∥A(mn, ρn)− f̃

∥∥∥
(V×Q)′

= sup
(v,q)̸=0

|a((mn, ρn), (v, q))− f̃(v, q)|
∥(v, q)∥V×Q

= sup
(v,q)̸=0

|a(mn,v)− b(v, ρn) + b(mn, q)− f̃(v, q)|
∥(v, q)∥V×Q

.

(3.26)

Noting from (3.13) that∣∣∣a(mn,v)− b(v, ρn) + b(mn, q)− f̃(v, q)
∣∣∣ = 1

n
|I(mn,v) + J(ρn, q)|

≤ 1

n

[
∥divmn∥s−1

0,s ∥div v∥0,s + ∥ρn∥r−1
0,r ∥q∥0,r

]
≤ 1

n

[
∥divmn∥s−1

0,s + ∥ρn∥r−1
0,r

]
∥(v, q)∥V×Q .

Hence, ∥∥∥A(mn, ρn)− f̃
∥∥∥
(V×Q)′

≤ C

n

[
∥divmn∥s−1

0,s + ∥ρn∥r−1
0,r

]
n→∞−→ 0. (3.27)

The sequence A(mn, ρn) converges strongly in (V × Q)′ to f̃ . Thus, we can conclude that
A(m, ρ) = f̃ in (V × Q)′ (see e.g. Zeidler (1990), p. 474), i.e., (m, ρ) is a solution of prob-
lem (3.10).

To show the uniqueness, we consider two solutions (m1, ρ1) and (m2, ρ2) of (3.10). Using the
test function (v, q) = (m1 −m2, ρ1 − ρ2), we obtain

a(m1,m1 −m2)− a(m2,m1 −m2)− (b(m1 −m2, ρ1)− b(m1 −m2, ρ2)) = 0,

b(m1, ρ1 − ρ2)− b(m2, ρ1 − ρ2) = 0.
(3.28)
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Adding these equations yields

0 = a(m1,m1 −m2)− a(m2,m1 −m2) ≥ c2 ∥m1 −m2∥s0,s .

It follows that m1 = m2.
For i = 1, 2, we have the variational equation a(mi,v) − b(v, ρi) = −Υψ(v) for all v ∈ V .

Subtracting these two equations implies b(v, p1 − p2) = a(m1,v)− a(m2,v) = 0 for all v ∈ V .
By applying inequality (2.17) in Lemma 2.3 to q = ρ1 − ρ2, we obtain ρ1 = ρ2. □

3.3. Estimates

Regarding the unique solutions of equation (3.10), we have the following estimates.

Theorem 3.7. Let (m, ρ) ∈ V ×Q be the solution of (3.10). Then

∥m∥0,s ≤ C(∥ψ∥r−1
Xr + ∥f∥r−1

0,s + ∥f∥0,s),

∥divm∥0,s ≤ ∥f∥0,s ,

∥ρ∥0,r ≤ C(∥f∥r−1
0,s + ∥f∥s−1

0,s + ∥ψ∥r−1
Xr + ∥ψ∥Xr).

(3.29)

Proof. We repeat the calculations in Lemma 3.5 with ε = 0. It follows (3.18), (3.20) and (3.21)
that

∥divm∥0,s ≤ ∥Λf∥Q′ , (3.30)

∥m∥s0,s ≤ C
(
∥Υψ∥rV ′ + ∥Υψ∥V ′ ∥Λf∥Q′ + ∥Λf∥Q′ ∥ρ∥0,r

)
, (3.31)

∥ρ∥0,r ≤ C
(
∥m∥0,s + ∥m∥s−1

0,s + ∥Υψ∥V ′

)
. (3.32)

Substituting (3.32) into (3.31) leads to

∥mε∥s0,s ≤ C
(
∥Υψ∥rV ′ + ∥Υψ∥V ′ ∥Λf∥Q′ + ∥Λf∥Q′ (∥mε∥0,s + ∥mε∥s−1

0,s )
)
.

Then by using Young’s inequality, we obtain

∥m∥0,s ≤ CZ, ∥ρ∥0,r ≤ CW , ∥divm∥0,s ≤ ∥Λf∥Q′ , (3.33)

where Z = (∥Υψ∥rV ′ + ∥Υψ∥V ′ ∥Λf∥Q′ + ∥Λf∥rQ′ + ∥Λf∥sQ′)1/s, W = Z + Zs−1 + ∥Υψ∥V ′ .
Let C denote a generic positive constant as in the proof of Lemma 3.5. Using inequalities (2.3)

and (2.1) yields

Z ≤ C
(
∥Υψ∥rV ′ + ∥Λf∥rQ′ + ∥Λf∥sQ′

)1/s ≤ C(∥Υψ∥r−1
V ′ + ∥Λf∥r−1

Q′ + ∥Λf∥Q′),

W ≤ C
(
∥Υψ∥r−1

V ′ + ∥Λf∥r−1
Q′ + ∥Λf∥Q′

)
+ C

(
∥Υψ∥r−1

V ′ + ∥Λf∥r−1
Q′ + ∥Λf∥Q′

)s−1
+ ∥Υψ∥V ′

≤ C(∥Υψ∥r−1
V ′ + ∥Υψ∥V ′ + ∥Λf∥r−1

Q′ + ∥Λf∥s−1
Q′ ).

Note from (3.3) and (3.4) that

∥Υψ∥V ′ ≤ c̄1 ∥ψ∥Xr and ∥Λf∥Q′ = ∥f∥0,s .

Then, we obtain the estimates (3.29). □
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3.4. Proof of Theorem 3.3

Proof. Part 1. The statement follows Theorem 3.6.
Part 2. We apply Theorem 3.7, then estimate (3.11) follows (3.29). □

4. A mixed finite element approximation

We assume that the boundary ∂Ω of Ω is polygonal or polyhedral. Let {Th}h be a regular trian-
gulation of Ω with maxτ∈Th diam τ ≤ h. The discrete subspaces Vh × Qh ⊂ V × Q are defined
as

Qh = {ρh ∈ L2(Ω), ∀τ ∈ Th, ρh|τ ∈ Pk(τ)},

Vh = {mh ∈ V, ∀τ ∈ Th,mh|τ ∈ RTk(τ)},

with Pk(τ) being the space of polynomial of degree at most k on the element τ and

RTk(τ) = (Pk(τ))
n + xPk(τ).

For momentum, let Π : V → Vh be the Raviart-Thomas projection Raviart and Thomas (1977),
which satisfies ∫

Ω

div (Πm−m) q dx = 0, for all m ∈ V, q ∈ Qh.

For density, we use the standard L2-projection operator, see in Ciarlet (1978), π : Q → Qh,
satisfying ∫

Ω

(πρ− ρ) q dx = 0, for all ρ ∈ Q, q ∈ Qh,∫
Ω

(πρ− ρ)divmh dx = 0, for all mh ∈ Vh, ρ ∈ Q.

This projection has well-known approximation properties, e.g. Brezzi and Fortin (1991); John-
son and Thomée (1981); Bramble et al. (2002).

∥Πm−m∥0,q ≤ Chp ∥m∥p,q , 1/q < p ≤ k + 1, ∀m ∈ V ∩ (W p,q(Ω))d. (4.1)

∥πρ− ρ∥0,q ≤ Chp ∥ρ∥p,q , 0 ≤ p ≤ k + 1, q ∈ [1,∞], ∀ρ ∈ p, q. (4.2)

The two projections π and Π preserve the commuting property div ◦ Π = π ◦ div : V → Qh.
The discrete formulation of (3.2) can read as follows: Find mh ∈ Vh, ρh ∈ Qh such that{

a(mh,v)− b(v, ρh) = −Υψ(v) for all v ∈ Vh,

b(mh, q) = Λf (q) for all q ∈ Qh.
(4.3)

In a similar manner to problem (3.2), we obtain the following:
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Theorem 4.1. For any f ∈ Ls(Ω) and ψ ∈ Xr, the problem (4.3) has a unique solution (mh, ρh) ∈
Vh ×Qh, and there exists a constant C > 0 such that

∥mh∥0,s + ∥divmh∥0,s + ∥ρh∥0,r ≤ C
(
∥f∥r−1

0,s + ∥f∥s−1
0,s + ∥ψ∥r−1

Xr
+ ∥ψ∥Xr

). (4.4)

4.1. Error estimates

In this subsection, we will give the error estimate between the analytical solution and the ap-
proximate solution.

Lemma 4.2. For any u,v,w ∈ Ls(Ω), one has

|a(u,w)− a(v,w)| ≤ c3

[
∥u− v∥0,2 ∥w∥0,2 + Φ(u,v)Ψ(u,v) ∥w∥0,s

]
, (4.5)

a(u,u− v)− a(v,u− v) ≥ c0

[
∥u− v∥20,2 + ∥u− v∥s0,s + Φ2(u,v)

]
, (4.6)

where c3 =
√
2c1, c0 = min{1, a∗}2−2(s−2)−1 are positive constants and

Φ(u,v) =

(∫
Ω

(|u|s−2 + |v|s−2)|u− v|2 dx
)1/2

, Ψ(u,v) =
(
∥u∥s−2

0,s + ∥v∥s−2
0,s

)1/2
. (4.7)

Proof. Using property (2.10) and Hölder’s inequality, we have

|a(u,w)− a(v,w)| ≤ c1

∫
Ω

(1 + |u|s−2 + |v|s−2)|u− v||w| dx

= c1

∫
Ω

|u− v||w|+ (|u|s−2 + |v|s−2)1/2|u− v|(|u|s−2 + |v|s−2)1/2|w| dx

≤ c1 ∥u− v∥0,2 ∥w∥0,2 + c1Φ(u,v)
(∫

Ω

(|u|s−2 + |v|s−2)|w|2 dx
)1/2

.

Applying Hölder’s inequality gives∫
Ω

(|u|s−2 + |v|s−2)|w|2 dx ≤
(∫

Ω

(|u|s−2 + |v|s−2)s/(s−2) dx

)(s−2)/s(∫
Ω

|w|s dx
)2/s

≤ 22/s
(∫

Ω

(|u|s + |v|s) dx
)(s−2)/s(∫

Ω

|w|s dx
)2/s

≤ 2(∥u∥s−2
0,s + ∥v∥s−2

0,s ) ∥w∥20,s .

Thus, we obtain (4.5).
Finally, by (2.6), we have

a(u,u− v)− a(v,u− v) =

∫
Ω

(F (|u|)u− F (|v|)v) · (u− v) dx

≥
∫
Ω

(
a0|u− v|2 + 1

2

N∑
i=1

ai(|u|αi + |v|αi)|u− v|2
)
dx

≥ 2−1a∗

[∫
Ω

|u− v|2 dx+

∫
Ω

(|u|s−2 + |v|s−2)|u− v|2 dx
]
.
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Using (2.3) |x|p + |yp| ≥ 2−p(|x| + |y|)p and (|x| + |y|)p ≥ 2−(p−1)+ |x − y|p, p > 0, it follows
that ∫

Ω

(|u|s−2 + |v|s−2)|u− v|2 dx =

∫
Ω

(
1

2
+

1

2
)(|u|s−2 + |v|s−2)|u− v|2 dx

≥ 2−2(s−2) ∥u− v∥s0,s + 2−1Φ2(u,v),

(4.8)

which proves (4.6). □

Theorem 4.3. Let (m, ρ) ∈ V ×Q be the solution of (3.2) and (mh, ρh) ∈ Vh×Qh be the solution
of (4.3). Then, there exist positive constants C independent of h such that

∥m−mh∥20,2 + ∥m−mh∥s0,s ≤ C(∥m− Πm∥20,2 + ∥m− Πm∥20,s). (4.9)

∥ρ− ρh∥0,r ≤ C(∥m− Πm∥0,2 + ∥m− Πm∥0,s + ∥ρ− πρ∥0,r). (4.10)

Proof. By (3.10) and (4.3), we have the error equations

a(m,v)− a(mh,v)− b(v, ρ− ρh) = 0 for all v ∈ Vh,

b(m−mh, q) = 0 for all q ∈ Qh.
(4.11)

Using L2-project and Raviart-Thomas projection, we rewrite (4.11) in the form

a(m,v)− a(mh,v)− b(v, πρ− ρh) = 0,

b(Πm−mh, q) = 0.

Choosing q = πρ− ρh ∈ Qh and v = Πm−mh ∈ Vh and adding the two resulting equations, we
obtain

a(m,Πm−mh)− a(mh,Πm−mh) = 0,

that is

a(m,m−mh)− a(mh,m−mh) = a(m,m− Πm)− a(mh,m− Πm). (4.12)

By (4.6),

a(m,m−mh)− a(mh,m−mh) ≥ c0

(
∥m−mh∥20,2 + ∥m−mh∥s0,s + Φ2(m,mh)

)
. (4.13)

Using (4.5), it follows that

a(m,m− Πm)− a(mh,m− Πm)

≤ c3

[
∥m−mh∥0,2 ∥m− Πm∥0,2 + Φ(m,mh)Ψ(m,mh) ∥m− Πm∥0,s

]
≤ ε

[
∥m−mh∥20,2 + Φ2(m,mh)

]
+ c23ε

−1
[
∥m− Πm∥20,2 +Ψ2(m,mh) ∥m− Πm∥20,s

]
.

Choosing ε = 2−1c0 and applying the above inequalities, we deserve

∥m−mh∥20,2+∥m−mh∥s0,s+Φ2(m,mh) ≤ c4

(
∥m− Πm∥20,2 +Ψ2(m,mh) ∥m− Πm∥20,s

)
≤ c4(1 + Ψ2(m,mh))

[
∥m− Πm∥20,2 + ∥m− Πm∥20,s

]
, (4.14)
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where c4 = 2c23c
−1
0 .

If we omit the non-negative term Φ2(m,mh) and apply (3.11) along with (4.4), then (4.9) im-
mediately follows.

By means of (4.5) and the Minkowski inequality, we find that

b(v, πρ− ρh) = a(m,v)− a(mh,v)

≤ ∥m−mh∥0,2 ∥v∥0,2 + Φ(m,mh)Ψ(m,mh) ∥v∥0,s
≤ (∥m−mh∥0,2 + Φ(m,mh)Ψ(m,mh)) ∥v∥Vh

≤
(
1 + Ψ2(m,mh)

)1/2 [∥m−mh∥20,2 + Φ2(m,mh)
]1/2

∥v∥Vh .

Applying (4.14) to the term ∥m−mh∥20,2 + Φ2(m,mh) results in

b(v, πρ− ρh) ≤ c
1/2
4 (1 + Ψ2(m,mh))

[
∥m− Πm∥20,2 + ∥m− Πm∥20,s

]1/2
∥v∥Vh

≤ c
1/2
4 (1 + Ψ2(m,mh))

[
∥m− Πm∥0,2 + ∥m− Πm∥0,s

]
∥v∥Vh .

(4.15)

We have

∥πρ− ρh∥0,r ≤ C∗ sup
v∈Vh

b(v, πρ− ρh)

∥v∥Vh
≤ C(1 + Ψ2(m,mh))

[
∥m− Πm∥0,2 + ∥m− Πm∥0,s

]
.

By invoking the triangle inequality, ∥ρ− ρh∥0,r ≤ ∥ρ− πρ∥0,r+∥πρ− ρh∥0,r, together with (3.11)
and (4.4), the inequality (4.10) readily follows.

The proof is concluded. □

Theorem 4.4. Let (m, ρ) ∈ V ×Q be the solution of (3.2) and (mh, ρh) ∈ Vh×Qh be the solution
of (4.3). If (m, ρ) ∈ V ∩ (W p,s(Ω))n×W p,r(Ω), then there exist positive constants C independent
of h such that

∥m−mh∥20,2 + ∥m−mh∥s0,s ≤ Ch2p 1 ≤ p ≤ k + 1. (4.16)

∥ρ− ρh∥0,r ≤ Chp 1 ≤ p ≤ k + 1. (4.17)

Proof. The estimates (4.16) and (4.17) result from substituting the interpolation error inequalities
(4.1) and (4.2) into the inequalities (4.9) and (4.10) of Theorem 4.3. □

5. Numerical results

In this section, we conduct the numerical experiments using the lowest order Raviart-Thomas
finite element to solve problem (4.3) in a two-dimensional region. We test several examples using
triangular elements in a two-dimension domain to verify the rates of convergence. For simplicity,
we use the unit square Ω = [0, 1]2 as the example domain. The simulations are performed using
FEniCS Logg et al. (2012). The unit square is divided into a N × N mesh of squares, each split
into two right triangles via the UnitSquareMesh class in FEniCS, ensuring uniform triangulation
in each dimension.
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To test the convergence of our method, we consider the Forchheimer two-term law given by
F (|m|)m = m + |m|m, corresponding to the parameters s = 3 and r = 3/2. The general-
ized Forchheimer equation is solved numerically on each mesh using Newton’s method, with a
nonlinear solver tolerance of 10−6. We evaluate the Lr-error for the density along with both the
L2-error and Ls-errors for the momentum based on the regularity of the analytical solutions. The
convergence rates are computed using the formula r = ln(ei)−ln(ei−1)

ln(hi)−ln(hi−1)
across eight levels of mesh re-

finement with the discretization parameters h = 1/4, 1/8, 1/16, 1/32, 1/64, 1/128, 1/256, 1/512.
Example 1. (Forchheimer without source) We choose the analytical solution

ρ(x) = x1 −
√
3x2 and m(x) =

−2∇ρ
1 +

√
1 + 4|∇ρ|

=

(
−1

2
,

√
3

2

)T

∀x ∈ [0, 1]2.

The forcing term f is determined from equation divm = f . Explicitly, f(x) = 0. The boundary
condition is determined according to the analytical solution as follows:

ψ(x) =


x1 if x2 = 0

x1 −
√
3 if x2 = 1

−
√
3x2 if x1 = 0

1−
√
3x2 if x1 = 1

.

The numerical results are listed in Table 1.

N ∥ρ− ρh∥0,r Rates ∥m−mh∥0,2 Rates ∥m−mh∥0,s Rates
4 6.390e− 02 – 8.200e− 02 – 9.434e− 02

8 4.272e− 02 0.453 5.336e− 02 0.620 7.150e− 02 0.400

16 2.817e− 02 0.580 3.262e− 02 0.710 4.948e− 02 0.531

32 1.612e− 02 0.601 1.771e− 02 0.881 3.363e− 02 0.557

64 8.627e− 03 0.805 9.296e− 03 0.930 2.129e− 02 0.660

128 4.463e− 03 0.902 4.795e− 03 0.955 1.356e− 02 0.650

256 2.243e− 03 0.951 2.463e− 03 0.961 8.561e− 03 0.664

512 2.243e− 03 0.992 1.261e− 03 0.966 5.414e− 03 0.661

Table 1. The convergence study for Forchheimer flows using the mixed finite elements in 2D.

Example 2. (Forchheimer with the source, zero boundary data) In this example, the exact (ana-
lytical) solution is given by

ρ(x) = sin(πx1) sin(πx2) and m(x) =
−2∇ρ

1 +
√

1 + 4|∇ρ|
∀x ∈ [0, 1]2,

where ∇ρ = (π cos(πx1) sin(πx2), π sin(πx1) cos(πx2))
T , and

|∇ρ| = π
√
(cos(πx1) sin(πx2))2 + (sin(πx1) cos(πx2))2.
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The forcing term f(x) and the boundary condition ψ(x) are as follows

f(x) =
4π2 sin(πx1) sin(πx2)

1 +
√

1 + 4|∇ρ|
+

2π2 sin 2π(x1 + x2)

(1 +
√

1 + 4|∇ρ|)2
√
(1 + 4|∇ρ| |∇ρ|

, ψ(x) = 0.

The numerical results are listed in Table 2.

N ∥ρ− ρh∥0,r Rates ∥m−mh∥0,2 Rates ∥m−mh∥0,s Rates
4 1.252e− 02 – 4.420e− 02 – 6.400e− 02

8 8.416e− 03 0.562 3.102e− 02 0.511 4.682e− 02 0.451

16 4.932e− 03 0.573 2.160e− 02 0.522 3.189e− 02 0.554

32 2.831e− 03 0.771 1.389e− 02 0.637 2.168e− 02 0.557

64 1.533e− 03 0.801 8.340e− 03 0.736 1.474e− 02 0.556

128 8.073e− 04 0.885 4.685e− 03 0.832 9.918e− 03 0.572

256 4.009e− 04 0.925 2.509e− 03 0.901 6.575e− 03 0.593

512 4.009e− 04 1.010 1.284e− 03 0.966 4.332e− 03 0.602

Table 2. The convergence study for Forchheimer flows using the mixed finite elements in 2D.

Example 3. (Forchheimer with the source, nonzero boundary data) The analytical solution in
this example is

ρ(x) = w2(x) and m(x) = − 4(x1, x2)
T

1 +
√

1 + 8w(x)
∀x ∈ [0, 1]2,

where w(x) =
√
x21 + x22. The forcing term f and the boundary condition ψ(x) are as follows

f(x) = −
8(1 + 6w(x) +

√
1 + 8w(x))√

1 + 8w(x)(1 +
√

1 + 8w(x))2
, ψ(x) =


x22 on x1 = 0,

1 + x22 on x1 = 1,

x21 on x2 = 0,

x21 + 1 on x2 = 1

.

The numerical results are listed in Table 3.

N ∥ρ− ρh∥0,r Rates ∥m−mh∥0,2 Rates ∥m−mh∥0,s Rates
4 1.520e− 02 – 4.210e− 01 – 6.140e− 01

8 9.520e− 03 0.621 2.854e− 01 0.561 4.309e− 01 0.511

16 5.732e− 03 0.675 1.920e− 01 0.572 2.976e− 01 0.534

32 3.195e− 03 0.732 1.234e− 01 0.637 2.028e− 01 0.553

64 1.754e− 03 0.843 7.417e− 02 0.735 1.367e− 01 0.569

128 9.266e− 04 0.865 4.257e− 02 0.801 8.946e− 02 0.612

256 4.820e− 04 0.921 2.376e− 02 0.841 5.756e− 02 0.636

512 4.820e− 04 0.943 1.251e− 02 0.926 3.663e− 02 0.652

Table 3. The convergence study for Forchheimer flows using the mixed finite elements in 2D.
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Appendix A.

Lemma A.1. For any s ∈ (1,∞), Ws(div,Ω) is a reflexive Banach space.

Proof. Firstly, one can verify that Ws(div,Ω) is a Banach space. Similarly in Knabner and Summ
(2016), we use the mapping Ev = (v, div v) for v ∈ Ws(div,Ω) to embed Ws(div,Ω) into
(Ls(Ω))n+1. Also, denote W̃s = E(Ws(div,Ω)) ⊂ (Ls(Ω))n+1. Then, the norm ∥Ev∥(Ls(Ω))n+1

in W̃s is equivalent to the norm ∥v∥V . This way, we identify Ws(div,Ω) as W̃s and vice versa.
As a consequence, W̃s is a closed subspace of (Ls(Ω))n+1, hence it is a reflexive Banach space.

For dual and double dual spaces, we identify F ∈ Ws(div,Ω)
′ as F̃ = F ◦ E−1 ∈ W̃′

s, and we
identify G ∈ Ws(div,Ω)

′′ as G̃ ∈ W̃′′
s defined by G̃(F̃ ) = G(F̃ ◦E) for any F̃ ∈ W̃′

s. Then, W̃s

being reflexive implies that Ws(div,Ω) is a reflexive Banach space. □
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