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A Mathematical Analysis on the Transmission Dynamics of Neisseria gonorrhoeae

Christine Craib and Wei Feng

ABSTRACT. In this project, we analyze an epidemiological model describing the transmission of
gonorrhea. We address two stratifications: one based on age groups and one based on education
levels, each with a core sexual activity class and two noncore sexual activity classes. Using param-
eters based on sexual behavior in the United States, we address the impact of the average number of
partners per year for each sexual activity class on the behavior of the model around two equilibrium
points: a disease-free equilibrium and an endemic equilibrium. The focus of the project is to identify
the conditions leading to the existence of each of the equilibrium points, analyze the local stability
of these points, and discuss the results. Ultimately, the goal of the project is to find conditions for the
bifurcation of the two equilibrium points, in order to obtain the highest average number of partners
per year for various groups resulting in the eradication of gonorrhea.

1. Introduction

The application of compartmental models to epidemiology began with the SIR Model, developed
by Kermack and McKendrick (Brauer, 2008). Over the past century, this model has been analyzed
and expanded to fit the dynamics of various diseases. The model discussed in this paper was
presented by Garnett and Anderson (1996) and employs compartments with terms relevant to the
dynamics of gonorrhea.

The model that Garnett and Anderson (1996) present is as follows:

dXki

dt
= µNki − βkckiXki

n∑
j=1

ρkij

(
Yk′j
Nk′j

)
− µXki + νYki,

dYki
dt

= βkckiXki

n∑
j=1

ρkij

(
Yk′j
Nk′j

)
− (ν + µ)Yki, (1.1)

where Xki is the susceptible population, Yki is the infectious population, and Nki is the total pop-
ulation. Subscript k represents sex (male or female), with k′ as the opposite sex, and subscript
i represents the sexual activity class. Parameter µ is the rate of both entry to and exit from the
sexually active population, βk is the transmission probability per partnership from sex k′ to sex k,
cki is the rate of sex partner change of sex k in activity group i, ρkij defines the probability that
someone of sex k in activity group i mates with someone of sex k′ in activity group j, and ν is the
recovery rate.
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The term µNki represents individuals becoming sexually active and therefore becoming suscep-
tible to gonorrhea. The term βkckiXki

∑n
j=1 ρkij

(
Yk′j
Nk′j

)
is the rate individuals become infected.

The terms µXki and µYki are the rates individuals become sexually inactive while susceptible or
infectious, respectively, and are no longer transmitting gonorrhea. The term νYki represents the
rate at which individuals recover. These dynamics are displayed visually in Figure 1.1.

X YµNki

βkckiXki

∑n
j=1 ρkij

(
Yk′j
Nk′j

)
νYki

µXki µYki

FIGURE 1.1. Garnett and Anderson Transmission Dynamics.

We assume that the average number of partners per year and the mixing probabilities are equiv-
alent for both sexes, thereby eliminating subscript k (Garnett and Anderson, 1996). Furthermore,
we assume the total population is constant and Nki = Xki+Yki. Since Xi = Ni−Yi, System (1.1)
can be reduced to a system of ordinary differential equations consisting solely of the Yi functions.

Our analysis considers three sexual activity groups, a core group and two noncore groups, with
parameter values specific for the disease and to human activity. Research on gonorrhea has found
that the average length of infection is six months, or ν = 2.0 recoveries per year (Garnett and
Anderson, 1993). The average transmission probability per partnership is eighty percent, or β =
0.8 (Garnett and Anderson, 1993). Also, research on sexual activity lifespan has found the average
person to be sexually active for forty years, or µ = 0.025 years−1 (Lindau and Gavrilova, 2010).
Therefore, the system becomes:

Y ′1 = 0.8c1 (N1 − Y1)

[
ρ11

(
Y1
N1

)
+ ρ12

(
Y2
N2

)
+ ρ13

(
Y3
N3

)]
− 2.025Y1,

Y ′2 = 0.8c2 (N2 − Y2)

[
ρ21

(
Y1
N1

)
+ ρ22

(
Y2
N2

)
+ ρ23

(
Y3
N3

)]
− 2.025Y2,

Y ′3 = 0.8c3 (N3 − Y3)

[
ρ31

(
Y1
N1

)
+ ρ32

(
Y2
N2

)
+ ρ33

(
Y3
N3

)]
− 2.025Y3, (1.2)

where Y ′i = dYi

dt
, i = 1 is the core group, and i = 2, 3 are the noncore groups.

The purpose of this paper is to determine the highest average number of partners per year for
different groups of individuals that ensure the asymptotic eradication of gonorrhea. In Section
2, we consider a stratification based on age. We describe the process of calculating parameters
specific to this stratification and provide two examples of the analysis process, complete with
numerical simulations. By varying the group contact rates, we determine the highest average
number of partners per year for individuals less than nineteen years of age, between the ages of
twenty and twenty-nine, and over the age of thirty such that the disease-free equilibrium, or where
(Y1, Y2, Y3) = (0, 0, 0), is locally asymptotically stable. Similarly, in Section 3, we consider a
stratification based on education level. Once again, we vary the group contact rates to determine
the highest average number of partners per year for individuals with less than a high school edu-
cation, those with a high school diploma or GED, and those with more than a high school educa-
tion such that the disease-free equilibrium is locally asymptotically stable. The results from each
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stratification may be integrated by public health departments into educational materials and other
preventative methods.

2. Age stratification

In this section, we consider a stratification of the heterosexual, sexually active population based
on age. According to research by Aral et al. (1999), the age group with the highest prevalence of
gonorrhea are those less than nineteen years old. Then, i = 1 are individuals less than nineteen
years old, i = 2 are individuals between the ages of twenty and twenty-nine, and i = 3 are
individuals over thirty years old.

2.1. Parameterization

We calculate values for Ni and ρij based on data collected by the CDC and the research of Aral
et al.. The CDC’s 2011 National Health Statistics Report (NHSR) details the number of individuals
in the United States of each age group, as well as the percentage of those who have either never had
sex, or are not currently sexually active (Chandra et al.). From this data, we are able to calculate
the number of sexually active individuals in each of the NHSR’s age groups by subtracting the sum
of the percentages of those who have never had heterosexual sexual contact and those who have
not had contact in the last year (and are therefore not currently sexually active) in each age group
from the total population of that age group. These values are shown in Table 2.1.

TABLE 2.1. Number of Sexually Active Women and Men of NHSR Age Groups.

Age Sexually Active
Women

Sexually Active
Men

k nwk nmk

1 15-19 years 4933863 5410054
2 20-24 years 8416200 8302392
3 25-29 years 9327500 9450486
4 30-34 years 8963845 8818575
5 35-39 years 9678900 9595740
6 40-44 years 9949692 9593415

The total heterosexual, sexually active populations in each of the sexual activity groups are then:

N1 = nw1 + nm1 = 10343917,

N2 = nw2 + nw3 + nm2 + nm3 = 35496578,

N3 = nw4 + nw5 + nw6 + nm4 + nm5 + nm6 = 56600167. (2.1)
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We then determined the values in the mixing matrix, or the matrix defining the likelihood that
two individuals of each sexual activity group will mate. Using the data published for each sex and
age group by Aral et al. and weighting these values with the corresponding adjusted populations
from the NHSR, the mixing matrix for the age stratification becomes:

ρ11 ρ12 ρ13
ρ21 ρ22 ρ23
ρ31 ρ32 ρ33

 =

0.665 0.324 0.010
0.143 0.684 0.173
0.024 0.352 0.624

 (2.2)

Substituting the values from (2.1) and (2.2) into System (1.2), we have

Y ′1 = βc1 (N1 − Y1)

[
ρ11

(
Y1
N1

)
+ ρ12

(
Y2
N2

)
+ ρ13

(
Y3
N3

)]
− (ν + µ)Y1

= 0.8c1 (10343917− Y1)

×
(
6.42989× 10−8Y1 + 9.13124× 10−9Y2 + 1.81038× 10−10Y3

)
− 2.025Y1

= f (Y1, Y2, Y3) ,

Y ′2 = βc2 (N2 − Y2)

[
ρ21

(
Y1
N1

)
+ ρ22

(
Y2
N2

)
+ ρ23

(
Y3
N3

)]
− (ν + µ)Y2

= 0.8c2 (35496578− Y2)

×
(
1.37783× 10−8Y1 + 1.92692× 10−8Y2 + 3.06515× 10−9Y3

)
− 2.025Y2

= g (Y1, Y2, Y3) ,

Y ′3 = βc3 (N3 − Y3)

[
ρ31

(
Y1
N1

)
+ ρ32

(
Y2
N2

)
+ ρ33

(
Y3
N3

)]
− (ν + µ)Y3

= 0.8c3 (56600167− Y3)

×
(
2.31521× 10−9Y1 + 9.90420× 10−9Y2 + 1.10331× 10−8Y3

)
− 2.025Y3

= h (Y1, Y2, Y3) . (2.3)

2.2. Analysis

We consider values of c1, c2, and c3, under the condition that c1 ≥ c2 ≥ c3 ≥ 1.0 (Chandra et al.).
Varying c1, c2, and c3 according to the method described in Appendix A, each set of (c1, c2, c3) is
substituted into System (2.3). The partial derivatives of f , g, and h with respect to Y1, Y2, and Y3
are taken to form the Jacobian matrix. The equilibrium points of the system are determined by
setting f = g = h = 0 and solving for Y1, Y2, and Y3. For each equilibrium point, the values for
Y1, Y2, and Y3 are substituted into the Jacobian matrix; the eigenvalues of the Jacobian matrix are
obtained and analyzed to determine the local stability of the system.
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2.2.1. Example 1

For example, we consider the point (c1, c2, c3) = (2.7, 2.5, 2.4). Substituting these ci values into
System (2.3), the system becomes

Y ′1 = 2.16 (10343917− Y1)

×
(
6.42989× 10−8Y1 + 9.13124× 10−9Y2 + 1.81038× 10−10Y3

)
− 2.025Y1

= f1 (Y1, Y2, Y3) ,

Y ′2 = 2.00 (35496578− Y2)

×
(
1.37783× 10−8Y1 + 1.92692× 10−8Y2 + 3.06515× 10−9Y3

)
− 2.025Y2

= g1 (Y1, Y2, Y3) ,

Y ′3 = 1.92 (56600167− Y3)

×
(
2.31521× 10−9Y1 + 9.90420× 10−9Y2 + 1.10331× 10−8Y3

)
− 2.025Y3

= h1 (Y1, Y2, Y3) . (2.4)

The partial derivatives of f1, g1, and h1 with respect to Y1, Y2, and Y3 are taken to form the
Jacobian matrix J1 for System (2.4):

J1 =

 ∂f1
∂Y1

∂f1
∂Y2

∂f1
∂Y3

∂g1
∂Y1

∂g1
∂Y2

∂g1
∂Y3

∂h1

∂Y1

∂h1

∂Y2

∂h1

∂Y3

 , (2.5)

where
∂f1
∂Y1

= −2.77771× 10−7Y1 − 1.97235× 10−8Y2 − 3.91043× 1010Y3 − 0.58838,

∂f1
∂Y2

= 0.20402− 1.97235× 10−8Y1,

∂f1
∂Y3

= 0.00404− 3.91043× 10−10Y1,

∂g1
∂Y1

= 0.97817− 2.75566× 10−8Y2,

∂g1
∂Y2

= −2.75566× 10−8Y1 − 7.70767× 10−8Y2 − 6.13031× 10−9Y3 − 0.65702,

∂g1
∂Y3

= 0.21760− 6.13031× 10−9Y2,

∂h1
∂Y1

= 0.25160− 4.44520× 10−9Y3,

∂h1
∂Y2

= 1.07631− 1.90161× 10−8Y3,

∂h1
∂Y3

= −4.44520× 10−9Y1 − 1.90161× 10−8Y2 − 4.23672× 10−8Y3 − 0.82601.

Setting f1 = g1 = h1 = 0 and solving for Y1, Y2, and Y3, one equilibrium point exists: (Y1, Y2, Y3) =
(0, 0, 0), which is the disease-free equilibrium.
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The equilibrium values (Y1, Y2, Y3) = (0, 0, 0) are substituted into Matrix (2.5):

J1 (0, 0, 0) =

−0.58838 0.20402 0.00404
0.97817 −0.65702 0.21760
0.25160 1.07631 −0.82601

 (2.6)

The eigenvalues of J1 (0, 0, 0) are found to be λ1 = −0.00058, λ2 = −0.73079, and λ3 =
−1.34003. Since λ1, λ2, λ3 < 0, then the equilibrium (Y1, Y2, Y3) = (0, 0, 0), the disease-free equi-
librium, is locally asymptotically stable at (c1, c2, c3) = (2.7, 2.5, 2.4). This asymptotic behavior
is depicted in Figure 2.1, with initial conditions chosen to be Y1 (0) = 70000, Y2 (0) = 200000,
and Y3 (0) = 100000, based on data from CDC et al. (2015).

FIGURE 2.1. Asymptotic Behavior of Age Stratification with (c1, c2, c3) = (2.7, 2.5, 2.4).
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2.2.2. Example 2

Continuing to vary ci, we consider the point (c1, c2, c3) = (3.2, 2.2, 2.0). Substituting these ci
values into System (2.3), the system becomes

Y ′1 = 2.56 (10343917− Y1)

×
(
6.42989× 10−8Y1 + 9.13124× 10−9Y2 + 1.81038× 10−10Y3

)
− 2.025Y1

= f2 (Y1, Y2, Y3) ,

Y ′2 = 1.76 (35496578− Y2)

×
(
1.37783× 10−8Y1 + 1.92692× 10−8Y2 + 3.06515× 10−9Y3

)
− 2.025Y2

= g2 (Y1, Y2, Y3) ,

Y ′3 = 1.60 (56600167− Y3)

×
(
2.31521× 10−9Y1 + 9.90420× 10−9Y2 + 1.10331× 10−8Y3

)
− 2.025Y3

= h2 (Y1, Y2, Y3) . (2.7)

The partial derivatives of f2, g2, and h2 with respect to Y1, Y2, and Y3 are taken to form the Jacobian
matrix J2 for System (2.7):

J2 =

 ∂f2
∂Y1

∂f2
∂Y2

∂f2
∂Y3

∂g2
∂Y1

∂g2
∂Y2

∂g2
∂Y3

∂h2

∂Y1

∂h2

∂Y2

∂h2

∂Y3

 , (2.8)

where
∂f2
∂Y1

= −3.29210× 10−7Y1 − 2.33760× 10−8Y2 − 4.63458× 10−10Y3 − 0.32234,

∂f2
∂Y2

= 0.24180− 2.33760× 10−8Y1,

∂f2
∂Y3

= 0.00479− 4.63458× 10−10Y1,

∂g2
∂Y1

= 0.86079− 2.42499× 10−8Y2,

∂g2
∂Y2

= −2.42499× 10−8Y1 − 6.78275× 10−8Y2 − 5.39467× 10−9Y3 − 0.82118,

∂g2
∂Y3

= 0.19149− 5.39467× 10−9Y2,

∂h2
∂Y1

= 0.20967− 3.70434× 10−9Y3,

∂h2
∂Y2

= 0.89693− 1.58467× 10−8Y3,

∂h2
∂Y3

= −3.70434× 10−9Y1 − 1.58467× 10−8Y2 − 3.53060× 10−8Y3 − 1.02584.

Setting f2 = g2 = h2 = 0 and solving for Y1, Y2, and Y3, two equilibrium points exist: (Y1, Y2, Y3) =
(0, 0, 0), which is the disease-free equilibrium, and at (Y1, Y2, Y3) = (Y ∗1 , Y

∗
2 , Y

∗
3 ) =

(71231.90049, 97128.91127, 99138.62909), which is the endemic equilibrium.



14 C. Craib and W. Feng

Considering the disease-free equilibrium, (Y1, Y2, Y3) = (0, 0, 0) are substituted into Matrix
(2.8):

J2 (0, 0, 0) =

−0.32234 0.24180 0.00479
0.86079 −0.82118 0.19149
0.20967 0.89693 −1.02584

 . (2.9)

The eigenvalues of J2 (0, 0, 0) are found to be λ1 = 0.01072, λ2 = −0.76148, and λ3 = −1.41860.
Since λ1 > 0, then the equilibrium (Y1, Y2, Y3) = (0, 0, 0), the disease-free equilibrium, is unstable
at (c1, c2, c3) = (3.2, 2.2, 2.0).

Considering the endemic equilibrium, (Y1, Y2, Y3) = (Y ∗1 , Y
∗
2 , Y

∗
3 ) are substituted into Matrix

(2.8):

J2 (Y
∗
1 , Y

∗
2 , Y

∗
3 ) =

−0.34810 0.24013 0.00476
0.85843 −0.83003 0.19097
0.20930 0.89536 −1.03114

 . (2.10)

The eigenvalues of J2 (Y ∗1 , Y
∗
2 , Y

∗
3 ) are found to be λ1 = −0.01068, λ2 = −0.77326, and λ3 =

−1.42533. Since λ1, λ2, λ3 < 0, then the equilibrium (Y1, Y2, Y3) = (Y ∗1 , Y
∗
2 , Y

∗
3 ), the endemic

equilibrium, is locally asymptotically stable at (c1, c2, c3) = (3.2, 2.2, 2.0). This asymptotic be-
havior is depicted in Figure (2.2), with initial conditions chosen to be Y1 (0) = 70000, Y2 (0) =
200000, and Y3 (0) = 100000, based on CDC et al. (2015).

FIGURE 2.2. Asymptotic Behavior of Age Stratification with (c1, c2, c3) = (3.2, 2.2, 2.0).
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2.3. Results

Throughout this analysis, a bifurcation emerged. The points in Table 2.2 represent the largest
values of ci at 0.1 increments such that the disease-free equilibrium is locally asymptotically stable,
where the eigenvalues of the Jacobian matrix are all with negative real parts. From these critical
points with three group contact rates, if at least one contact rate is raised, then the endemic equi-
librium becomes locally asymptotically stable, which predicts the persistence of the disease. The
method in Appendix A was then refined to 0.01 increments in Python, with the resulting ci values
plotted in Figure (2.3), along with the surface of best fit. Visually, any (c1, c2, c3) less than or equal
to the surface in Figure (2.3) predicts the asymptotic eradication of gonorrhea.

TABLE 2.2. Eradication Points for Age Stratification.

c1 c2 c3

3.6 1.2 1.2
3.5 1.6 1.6
3.4 1.9 1.3
3.4 1.8 1.8
3.3 2.1 1.4
3.3 2.0 2.0

c1 c2 c3

3.2 2.3 1.1
3.2 2.2 1.8
3.2 2.1 2.1
3.1 2.4 1.4
3.1 2.3 1.9
3.1 2.2 2.2

c1 c2 c3

3.0 2.5 1.5
3.0 2.4 1.9
3.0 2.3 2.3
2.9 2.6 1.5
2.9 2.5 1.9
2.9 2.4 2.3

c1 c2 c3

2.8 2.7 1.4
2.8 2.6 1.8
2.8 2.5 2.2
2.8 2.4 2.4
2.7 2.7 1.7
2.7 2.6 2.1

c1 c2 c3

2.7 2.5 2.4
2.6 2.6 2.2
2.6 2.5 2.5

Younger Than 19

2.6
2.8

3.0
3.2

3.4
3.6

Between 20 and 291.00 1.25 1.50 1.75 2.00 2.25 2.50 2.75

Ol
de

r T
ha

n 
30

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

FIGURE 2.3. Approximate Bifurcation Points for Average Partners per Year in Age
Stratification with 0.01 Increments.

3. Education Stratification

In this section, we consider a stratification of the heterosexual, sexually active population based
on education level. According to research by Aral et al. (1999), the education level with the
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highest prevalence of gonorrhea are those with less than a high school education. Then, i = 1
are individuals with less than a high school education, i = 2 are individuals with a high school
education, and i = 3 are individuals with more than a high school education.

3.1. Parameterization

As in the age stratification, we find values for Ni and ρij based on the data in the NHSR and the
research of Aral et al. (Chandra et al.; Aral et al., 1999). Using the same method as in the previous
stratification, the number of sexually active individuals in each of the NHSR’s education levels are
shown in Table 3.1.

TABLE 3.1. Number of Sexually Active Women and Men of NHSR Education Levels.

Education Level Sexually Active
Women

Sexually Active
Men

k nwk nmk

1 No high school diploma
or GED

5762880 7881720

2 High school diploma or GED 10920318 11111590
3 Some college,

no bachelor’s degree
11939634 11668623

4 Bachelor’s degree or higher 13988700 11709016

The total heterosexual, sexually active populations in each of the sexual activity groups are then:

N1 = nw1 + nm1 = 13644600,

N2 = nw2 + nm2 = 22031908,

N3 = nw3 + nw4 + nm3 + nm4 = 49305973. (3.1)

Using the data published for each sex and education group by Aral et al. and weighting these
values with the adjusted populations from the NHSR, the mixing matrix for the education stratifi-
cation becomes:

ρ11 ρ12 ρ13
ρ21 ρ22 ρ23
ρ31 ρ32 ρ33

 =

0.371 0.417 0.213
0.187 0.532 0.281
0.074 0.352 0.575

 (3.2)
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Substituting the values from (3.1) and (3.2) into System (1.2), we have

Y ′1 = βc1 (N1 − Y1)

[
ρ11

(
Y1
N1

)
+ ρ12

(
Y2
N2

)
+ ρ13

(
Y3
N3

)]
− (ν + µ)Y1

= 0.8c1 (13644600− Y1)

×
(
2.71666× 10−8Y1 + 1.89183× 10−8Y2 + 4.31015× 10−9Y3

)
− 2.025Y1

= f (Y1, Y2, Y3) ,

Y ′2 = βc2 (N2 − Y2)

[
ρ21

(
Y1
N1

)
+ ρ22

(
Y2
N2

)
+ ρ23

(
Y3
N3

)]
− (ν + µ)Y2

= 0.8c2 (22031908− Y2)

×
(
1.36916× 10−8Y1 + 2.41527× 10−8Y2 + 5.70016× 10−9Y3

)
− 2.025Y2

= g (Y1, Y2, Y3) ,

Y ′3 = βc3 (N3 − Y3)

[
ρ31

(
Y1
N1

)
+ ρ32

(
Y2
N2

)
+ ρ33

(
Y3
N3

)]
− (ν + µ)Y3

= 0.8c3 (49305973− Y3)

×
(
5.44930× 10−9Y1 + 1.59584× 10−8Y2 + 1.16533× 10−8Y3

)
− 2.025Y3

= h (Y1, Y2, Y3) . (3.3)

3.2. Analysis and Results

Once again, we consider values of c1, c2, and c3, under the condition that c1 ≥ c2 ≥ c3 ≥ 1.0
(Chandra et al.). The analysis with each set of (c1, c2, c3) is the same as in the age stratification.

As in the age stratification, a bifurcation emerged. The points in Table 3.2 represent the largest
values of ci such that the disease-free equilibrium is locally asymptotically stable, where the eigen-
values of the Jacobian matrix are all with negative real parts. From these critical points with three
group contact rates, if at least one contact rate is raised, then the endemic equilibrium becomes
locally asymptotically stable, which predicts the persistence of the disease. The method in Appen-
dix A was then refined to 0.01 increments in Python, with the resulting ci values plotted in Figure
(3.1), along with the surface of best fit. Visually, any (c1, c2, c3) less than or equal to the surface in
Figure (3.1) predicts the asymptotic eradication of gonorrhea.

4. Conclusion

In this paper, we presented a mathematical analysis of an epidemic model which represents
the transmission of gonorrhea through core and noncore groups. We focused our analysis on two
stratifications: age and education. We determined the approximated average numbers of partners
per year for each of our sexual activity groups such that a bifurcation occurred between the disease-
free and endemic equilibriums, resulting in values critical for education and prevention measures.

For the age stratification, we determined the number of sexually active people in each of our
core and noncore groups in the United States, and then determined the likelihood of individuals
from each group mating amongst themselves and amongst those in the other groups. The approx-
imated points at which the bifurcation occurs for the age stratification can be seen in Table 2.2.
Similarly, we approached the model using an education stratification. After determining the values
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TABLE 3.2. Eradication Points for Education Stratification.

c1 c2 c3

5.9 1.0 1.0
5.8 1.1 1.1
5.7 1.2 1.2
5.6 1.3 1.2
5.5 1.5 1.0
5.5 1.4 1.2
5.5 1.3 1.3
5.4 1.6 1.0
5.4 1.5 1.2
5.4 1.4 1.4
5.3 1.6 1.2
5.3 1.5 1.4
5.2 1.7 1.2
5.2 1.6 1.4
5.2 1.5 1.5
5.1 1.8 1.2
5.1 1.7 1.4
5.1 1.6 1.6
5.0 1.9 1.1
5.0 1.8 1.4
5.0 1.7 1.6
4.9 2.0 1.1
4.9 1.9 1.3
4.9 1.8 1.5
4.9 1.7 1.7
4.8 2.1 1.0
4.8 2.0 1.3
4.8 1.9 1.5
4.8 1.8 1.7
4.7 2.2 1.0
4.7 2.1 1.2
4.7 2.0 1.4
4.7 1.9 1.6
4.7 1.8 1.8

c1 c2 c3

4.6 2.2 1.2
4.6 2.1 1.4
4.6 2.0 1.6
4.6 1.9 1.8
4.5 2.3 1.1
4.5 2.2 1.3
4.5 2.1 1.5
4.5 2.0 1.7
4.5 1.9 1.9
4.4 2.4 1.0
4.4 2.3 1.3
4.4 2.2 1.5
4.4 2.1 1.7
4.4 2.0 1.9
4.3 2.5 1.0
4.3 2.4 1.2
4.3 2.3 1.4
4.3 2.2 1.6
4.3 2.1 1.8
4.3 2.0 2.0
4.2 2.5 1.1
4.2 2.4 1.3
4.2 2.3 1.5
4.2 2.2 1.7
4.2 2.1 1.9
4.2 2.0 2.0
4.1 2.6 1.0
4.1 2.5 1.3
4.1 2.4 1.5
4.1 2.3 1.7
4.1 2.2 1.8
4.1 2.1 2.0
4.0 2.7 1.1
4.0 2.6 1.2

c1 c2 c3

4.0 2.5 1.4
4.0 2.4 1.6
4.0 2.3 1.8
4.0 2.2 1.9
4.0 2.1 2.1
3.9 2.7 1.1
3.9 2.6 1.3
3.9 2.5 1.5
3.9 2.4 1.7
3.9 2.3 1.9
3.9 2.2 2.0
3.9 2.1 2.1
3.8 2.8 1.0
3.8 2.7 1.2
3.8 2.6 1.4
3.8 2.5 1.6
3.8 2.4 1.8
3.8 2.3 2.0
3.8 2.2 2.1
3.7 2.8 1.1
3.7 2.7 1.4
3.7 2.6 1.6
3.7 2.5 1.7
3.7 2.4 1.9
3.7 2.3 2.1
3.7 2.2 2.2
3.6 2.9 1.1
3.6 2.8 1.3
3.6 2.7 1.5
3.6 2.6 1.7
3.6 2.5 1.8
3.6 2.4 2.0
3.6 2.3 2.1
3.6 2.2 2.2

c1 c2 c3

3.5 3.0 1.0
3.5 2.9 1.2
3.5 2.8 1.4
3.5 2.7 1.6
3.5 2.6 1.8
3.5 2.5 1.9
3.5 2.4 2.1
3.5 2.3 2.2
3.4 3.0 1.1
3.4 2.9 1.3
3.4 2.8 1.5
3.4 2.7 1.7
3.4 2.6 1.8
3.4 2.5 2.0
3.4 2.4 2.1
3.4 2.3 2.3
3.3 3.1 1.0
3.3 3.0 1.2
3.3 2.9 1.4
3.3 2.8 1.6
3.3 2.7 1.8
3.3 2.6 1.9
3.3 2.5 2.1
3.3 2.4 2.3
3.2 3.1 1.1
3.2 3.0 1.3
3.2 2.9 1.5
3.2 2.8 1.7
3.2 2.7 1.8
3.2 2.6 2.0
3.2 2.5 2.1
3.2 2.4 2.3
3.2 2.3 2.3
3.1 3.1 1.2

c1 c2 c3

3.1 3.0 1.4
3.1 2.9 1.6
3.1 2.8 1.8
3.1 2.7 1.9
3.1 2.6 2.1
3.1 2.5 2.2
3.1 2.4 2.3
3.1 2.3 2.3
3.0 3.0 1.5
3.0 2.9 1.7
3.0 2.8 1.8
3.0 2.7 2.0
3.0 2.6 2.1
3.0 2.5 2.3
3.0 2.4 2.4
2.9 2.9 1.7
2.9 2.8 1.9
2.9 2.7 2.1
2.9 2.6 2.2
2.9 2.5 2.3
2.9 2.4 2.4
2.8 2.8 2.0
2.8 2.7 2.1
2.8 2.6 2.3
2.8 2.5 2.4
2.7 2.7 2.2
2.7 2.6 2.3
2.7 2.5 2.4
2.6 2.6 2.4
2.6 2.5 2.5

for our parameters, we analyzed the model and determined the approximated points at which the
bifurcation occurred, as seen in Table 3.2.

Through this analysis, we determined the highest average number of partners per year for each
age group and education level such that the disease-free equilibrium became asymptotically stable,
thereby conjecturing the values ensuring the eradication of gonorrhea. Future work in this area
might include an analysis of the global stability for the disease-free equilibrium through method
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FIGURE 3.1. Approximate Bifurcation Points for Average Partners per Year in Ed-
ucation Stratification with 0.01 Increments.

of upper-lower solutions, as well as the implementation of this data into educational materials by
public health departments.

Appendix A. Psuedo-Code for Varying ci

(1) Let c∗1 be the maximum value of c1 where c1 = c∗1, c2 = 1.0, c3 = 1.0 results in the stability
of the disease-free equilibrium.

(2) Increment c2 by 0.1 until the disease-free equilibrium is no longer stable. Let c∗2 be the
maximum value of c2 where c1 = c∗1, c2 = c∗2, c3 = 1.0 results in the stability of the
disease-free equilibrium.

(3) Increment c3 by 0.1 until the disease-free equilibrium is no longer stable. Let c∗3 be the
maximum value of c3 where c1 = c∗1, c2 = c∗2, c3 = c∗3 results in the stability of the disease-
free equilibrium. This is then a point at which the bifurcation occurs.

(4) Reset c∗3 to 1.0. Then, decrement c∗2 by 0.1.
(5) Repeat steps 3 and 4 until c∗2 = c∗3.
(6) Reset c∗2, c

∗
3 = 1.0. Then, decrement c∗3 by 0.1.

(7) Repeat steps 2 through 6 until c∗1 = c∗2 = c∗3.
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