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Constructing Galois 2-extensions of the 2-adic Numbers

Chad Awtrey, Jim Beuerle, and Jade Schrader

ABSTRACT. Let Q2 denote the field of 2-adic numbers, and let G be a group of order 2n for some
positive integer n. We provide an implementation in the software program GAP of an algorithm
due to Yamagishi that counts the number of nonisomorphic Galois extensions K/Q2 whose Galois
group is G. Furthermore, we describe an algorithm for constructing defining polynomials for each
such extension by considering quadratic extensions of Galois 2-adic fields of degree 2n−1. While
this method does require that some extensions be discarded, we show that this approach considers far
fewer extensions than the best general construction algorithm currently known, which is due to Pauli-
Sinclair based on the work of Monge. We end with an application of our approach to completely
classify all Galois 2-adic fields of degree 16, including defining polynomials, ramification index,
residue degree, valuation of the discriminant, and Galois group.

1. Introduction

Let p be a prime number and denote by Qp the field of p-adic numbers. A consequence of
Krasner’s Lemma is the following: for a fixed positive integer n, there are only finitely many
nonisomorphic extensions of Qp of degree n. It is therefore natural to ask for a formula which
counts extensions; or at least a formula which counts extensions with specified invariants, such as
ramification index, residue degree, valuation of the discriminant, Galois group, etc.

Some results are well known. For example, there is a unique unramified extension of Qp of
degree n; i.e., where the residue degree is n. Tamely ramified extensions are also well understood;
that is, extensions where p does not divide the ramification index. In particular, fix a positive
integer e not divisible by p and a positive integer f . Then the number of nonisomorphic tamely
ramified extensions of Qp of degree n = ef with ramification index e and residue degree f is given
by ∑

d|f

φ(f/d) · gcd(e, pd − 1),

where φ is Euler’s totient function.
It is also possible to count nonisomorphic extensions of wildly ramified extensions (where p

divides the ramification index) using a formula due to Monge (2011). For example, Table 1.1 gives
the number of nonisomorphic extensions of Q2 of degree 2n for 1 ≤ n ≤ 16. The case n = 1
is well known. The cases n = 2, 3, 4, 5 are classified in Jones and Roberts (2006, 2008), where
defining polynomials and Galois groups are given. A similar classification for the cases n = 6, 7
appears in Awtrey et al. (2016, 2015a); Awtrey and Shill (2013); Awtrey et al. (2015c). No other
cases have been completely classified.
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TABLE 1.1. The number of nonisomorphic extensions of Q2 of degree 2n for 1 ≤
n ≤ 16.

Degree Number
2 7
4 59
6 47
8 1823

10 158
12 5493
14 590
16 890111

Degree Number
18 2991
20 314543
22 8942
24 43488949
26 35294
28 19173718
30 209854
32 114799238127

The first general algorithm for constructing defining polynomials for all nonisomorphic exten-
sions is due to Pauli-Roblot and appears in Pauli and Roblot (2001). Based on recent work in
Monge (2014), a faster method is developed in Pauli and Sinclair (2017) for constructing totally
ramified extensions of unramified p-adic fields. In both cases, the algorithms construct a large col-
lection of polynomials some subset of which is guaranteed to define all nonisomorphic extensions.
In particular, it is necessary to discard isomorphic extensions. Though we note that the number
of polynomials that must be discarded is far smaller in the Pauli-Sinclair method when compared
with the Pauli-Roblot method.

If we are interested only in Galois extensions, we can use either of these algorithms. But not
only must we discard isomorphic extensions, we also need to discard non-Galois extensions. The
purpose of this paper is to offer an alternative approach to constructing defining polynomials of
Galois extensions of Q2 of degree 2n for some positive integer n. Our method constructs these
extensions as quadratic extensions of Galois 2-adic fields of degree 2n−1.

The remainder of the paper is organized as follows. In Section 2 we describe an algorithm in
Yamagishi (1995) that counts the number of Galois 2-adic fields of degree 2n with a given 2-group
G as its Galois group. This result is useful for us for two reasons: it allows us to verify when
we have found all defining polynomials in our algorithm, and it allows us to demonstrate why our
method considers fewer polynomials than the Pauli-Sinclair method (see Table 3.1 for a compar-
ison). In Section 3 we describe our algorithm for constructing Galois extensions of Q2 of degree
2n for some positive integer n. In Section 4, we apply our results to completely classify Galois
2-adic fields of degree 16. We compute defining polynomials for each of the 251 nonisomorphic
extensions, the ramification index, residue degree, valuation of the discriminant, and Galois group
of each extension. The raw data can be obtained by emailing the first author. We provide sum-
mary tables which count the number of extensions by ramification index, discriminant exponent,
and Galois group. Our final section discusses the computational feasibility of constructing Galois
2-adic fields of degrees 2n for n ≥ 5.

2. Counting Galois 2-extensions of Q2

In this section, we describe an algorithm in Yamagishi (1995) that counts the number of Galois
extensions of Q2 of degree 2n whose Galois group is some specified 2-group G. We include our
implementation of this algorithm for the software program GAP (2013). We then use our algorithm
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TABLE 2.1. The number of Galois extensions of Q2 of degree 2n for 1 ≤ n ≤ 6.

Degree Number
2 7
4 19
8 67

16 251
32 915
64 4131

to count Galois extensions of Q2 of degree 2n for 1 ≤ n ≤ 6, giving a complete description of the
counts for each possible Galois group in the case n = 4.

As mentioned in Yamagishi (1995), the Galois group of the maximal pro-2-extension of Q2

is a one-relator group whose relation is given in Labute (1967). Combining this characterization
with a well-known enumeration argument, Yamagishi proves the following result. Note, we are
restricting Yamagishi’s results to the case where the base field is Q2.

Theorem 2.1 (Yamagishi). Let G be a finite 2-group. The number of nonisomorphic Galois 2-adic
fields with Galois group G is

1

#Aut(G)

∑
H≤G

µG(H)α(H),

where #Aut(G) denotes the size of the automorphism group of G and where µG and α are defined
as follows:

(1) If H ≤ G with [G : H] = 2i, then

µG(H) =

{
(−1)i2i(i−1)/2 if H ≥ Φ(G)

0 otherwise
,

where Φ(G) denotes the Frattini subgroup of G.
(2) For irreducible complex characters χ of H , we have

α(H) =
∑
χ

∑
g,h∈H

χ(g2h3)χ(h).

Using Theorem 2.1, we can count the number of Galois extensions of Q2 of degree 2n by running
over all possible groups G of order 2n. For example, Table 2.1 contains this data for 1 ≤ n ≤ 6.

If we focus on the degree 16 Galois extensions of Q2, Table 2.2 gives more refined information
about the 251 extensions by showing how many have a given Galois group. Up to isomorphism,
there are 14 groups of order 16. One way to access these groups in GAP is via the TransitiveGroup
library. In the table, we identify each group in two ways: (1) by its T-number (accessed by typing
TransitiveGroup(16,T) in GAP), and (2) by a more descriptive name that indicates its
structure. For the descriptive name, Cn denotes the cyclic group of order n, En the elementary
abelian group of order n, Dn the dihedral group of order 2n, Qn the generalized quaternion group
of order n, × a direct product, and o a semidirect product. In the case of C8 o C2, there are
different mappings from C2 into Aut(C8). These give rise to two distinct groups of order 16 (other
thanD8). One is defined by the mapping x 7→ x3, and the other is given by x 7→ x5. We distinguish
these two cases in the obvious way: by C8 o3 C2 and C8 o5 C2, respectively.
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TABLE 2.2. For each of the 14 groups of order 16, column T gives the group’s tran-
sitive number, Name gives a descriptive name of the group, and Number gives the
number of nonisomorphic Galois extensions of Q2 of degree 16 with the specified
group as its Galois group.

T Name Number
1 C16 48
2 E4 × C4 3
3 E16 0
4 C4 × C4 4
5 C8 × C2 36
6 C8 o5 C2 36
7 Q8 × C2 3
8 C4 o C4 12
9 D4 × C2 9

10 E4 o C4 12
11 Q8 o C2 16
12 C8 o3 C2 36
13 D8 16
14 Q16 20

We computed the data in Table 2.2 with the software program GAP (2013). For example, here
are several functions we wrote for GAP which will accomplish this task. The main function is
Count2adicFields, which takes one input, a 2-group G (called either from GAP’s Transitive-
Group library or SmallGroup library). The other functions are merely auxiliary functions which
support the main function, including many for working with character tables to help compute α(G).
---------------------------
IsEl := function(g,cc)

return(IsSubset(Elements(cc),[g]));
end;

---------------------------
FindIndex := function(g,cc)

local j;
for j in [1..Size(cc)] do

if
IsEl(g,cc[j]) then return(j); fi; od;

return(0);
end;

---------------------------
EvalChi := function(g,chi,cc)

local ind;
ind := FindIndex(g,cc);

return(chi[ind]);
end;
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---------------------------
OneChiSum := function(g,H,chi,cc)

local lis;
lis := List(H,j->EvalChi(gˆ2*jˆ3,chi,cc)*EvalChi(j,chi,cc));

return(Sum(lis));
end;

---------------------------
MyChiSum := function(G,H,chi,cc)

local lis;
lis := List(G,j->OneChiSum(j,H,chi,cc));

return(Sum(lis));
end;

---------------------------
MyAlpha := function(g)

local tbl,cc,c,chi,lis;
tbl := CharacterTable(g);
cc := ConjugacyClasses(tbl);
c := Size(cc);
chi := Irr(tbl);
lis := List(chi,j->MyChiSum(g,g,j,cc));

return(Sum(lis));
end;

---------------------------
MyMu := function(g,h)

local f,rc,i;
f := FrattiniSubgroup(g);

if
IsSubgroup(h,f) then
rc := RightCosets(g,h);
i := LogInt(Size(rc),2);
return((-1)ˆi*2ˆ(1/2*i*(i-1)));

else return(0); fi;
end;
---------------------------
Count2adicFields := function(g)

local aut,as,lis;
aut := AutomorphismGroup(g);
as := AllSubgroups(g);
lis := List(as,j->MyMu(g,j)*MyAlpha(j));

return(1/Size(aut)*Sum(lis));
end;
---------------------------
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3. Our Algorithm

In this section, we describe our algorithm for producing polynomials defining all nonisomorphic
Galois extensions of Q2 of degree 2n for some positive integer n.

Our next result forms the basis of our algorithm for constructing Galois 2-extensions of Q2. In
particular, we show that every Galois extension of Q2 of degree 2n can be constructed as a quadratic
extension of a Galois extension of Q2 of degree 2n−1. This result is an immediate consequence of
the following proposition.

Proposition 3.1. Let p be a prime number and K/Qp a Galois extension of degree pn with Galois
group G. There exists a subfield F of K with [K : F ] = p such that F/Qp is Galois. Thus K can
be realized as a cyclic degree p extension of a Galois p-adic field of degree pn−1.

Proof. SinceG is a p-group, its center Z(G) is nontrivial. Since Z(G) is also a p-group, it contains
an element of order p and hence a subgroup H of order p. Since H ≤ Z(G), H is a normal
subgroup of G. Let F be the subfield fixed by H . Since H has order p, the Galois correspondence
implies that K/F is a Galois extension of degree p with Galois group H; hence K/F is a cyclic
degree p extension. Furthermore, it also follows that [F : Qp] = pn−1. Since H is normal, F/Qp

is Galois; in fact, its Galois group is isomorphic to G/H . �

Letting p = 2 in Proposition 3.1, we see that every Galois extension of Q2 of degree 2n can
be realized as a quadratic extension of a Galois extension of Q2 of degree 2n−1. How many such
quadratic extensions are there? The answer is 22+2n−1 − 1.

To see this, let K be any extension of Q2 of degree m. The quadratic extensions of K are in
one-to-one correspondence with the nontrivial representatives of K∗/K∗2. Let O denote the ring
of integers of K, P its unique prime ideal, π a uniformizer, f the residue degree of K, U the
units of K in O and U1 the units congruent to 1 modulo P . Note that U1 has a natural O-module
structure, being finitely generated of rank m. Now, we can decompose K∗ in the following way:

K∗ ' πZ × U ' Z× µK × U1 ' Z× µK × µK,1 × Zm2 ,

where µK denotes the (2f − 1)-st roots of unity in U , and µK,1 denotes roots of unity congruent to
1 modulo P . Since µK has odd order and µK,1 has even order, it follows that

K∗/K∗2 ' C2 × C2 × Cm
2 ' C2+m

2 .

In Table 3.1, we compare the number of extensions that our method produces with the number
produced by the Pauli-Sinclair algorithm. As the data show, our approach requires much less
filtering as the degree of the extensions increase.

We point out that quadratic extensions of 2-adic fields are quickly constructed using the algo-
rithm in Pauli and Roblot (2001).

We now describe our algorithm for computing Galois extensions of Q2 of degree 2n.

Algorithm 3.2. Let n be a positive integer, and let L be the set of Galois extensions of Q2 of degree
2n−1. If n = 1, take L = {Q2}. This algorithm produces polynomials defining all nonisomorphic
Galois extensions of Q2 of degree 2n.

(1) For each K ∈ L, form all quadratic extensions of K (using Pauli and Roblot (2001) for
example) and produce polynomials defining each field as an extension over Q2. There
should be a total of 22+2n−1 − 1 such polynomials.



Galois 2-extensions 27

TABLE 3.1. For 1 ≤ n ≤ 5, Column Alg counts the number of extensions pro-
duced by Algorithm 3.2 for computing Galois extensions of Q2 of degree 2n, P-S
counts the number of extensions produced by the Pauli-Sinclair method, and Num-
ber gives the number of nonisomorphic Galois extensions.

Degree Number Alg P-S
2 7 7 7
4 19 105 89
8 67 1,197 4,945

16 251 68,541 4,777,313
32 915 65,797,893 1,221,308,375,461

TABLE 3.2. Quadratic extensions of Q2, including a defining polynomial, ramifi-
cation index e, residue degree f , valuation of the discriminant c, and Galois group
G.

Poly e f c G
x2 + x+ 1 1 2 0 C2

x2 + 2x+ 2 2 1 2 C2

x2 + 2x+ 6 2 1 2 C2

x2 + 2 2 1 3 C2

x2 + 6 2 1 3 C2

x2 + 10 2 1 3 C2

x2 + 14 2 1 3 C2

(2) Discard all extensions that are not Galois. For example, compute the extension’s automor-
phism group and check if the automorphism group has size 2n (the automorphisms can be
represented as roots of linear factors after factoring the polynomial over its stem field).

(3) For each group G of order 2n, use Theorem 2.1 to count the number of nonisomorphic
extensions of Q2 of degree 2n with Galois group G.

(4) Partition all extensions by their automorphism groups. For each set in the partition, de-
termine if the number of extensions in the set matches the computation from Step (3). If
not, discard isomorphic extensions (using the Root-Finding Algorithm in Pauli and Roblot
(2001), for example).

(5) Return the list of all remaining polynomials along with their automorphism groups iden-
tified either as a transitive subgroup of S2n or using the SmallGroup libraries located in
Bosma et al. (1997) or GAP.

In Tables 3.2–3.5 we list the outputs of our algorithm for values of n between 1 and 3. We also
include each extension’s ramification index, residue degree, and discriminant valuation. Note, we
also lowered coefficients of these defining polynomials in an effort to produce polynomials whose
coefficients were either 0 or as small as possible.
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TABLE 3.3. Galois quartic extensions of Q2, including a defining polynomial, ram-
ification index e, residue degree f , valuation of the discriminant c, and Galois group
G.

Poly e f c G
x4 + x+ 1 1 4 0 C4

x4 + 2x3 + 9x2 + 13 2 2 4 E4

x4 + 8x3 + 5x2 + 6x+ 1 2 2 4 C4

x4 + 14x3 + 11x2 + 14x+ 27 2 2 6 C4

x4 + 2x3 + 5x2 + 22x+ 1 2 2 6 C4

x4 + 18x3 + 5x2 + 2x+ 17 2 2 6 E4

x4 + 6x3 + 23x2 + 10x+ 7 2 2 6 E4

x4 + 2x2 + 4x+ 10 4 1 8 E4

x4 + 2x2 + 4x+ 2 4 1 8 E4

x4 + 4x3 + 2x2 + 4x+ 6 4 1 8 E4

x4 + 4x3 + 2x2 + 4x+ 14 4 1 8 E4

x4 + 8x3 + 4x2 + 10 4 1 11 C4

x4 + 8x3 + 4x2 + 2 4 1 11 C4

x4 + 4x2 + 18 4 1 11 C4

x4 + 4x2 + 26 4 1 11 C4

x4 + 8x3 + 4x2 + 26 4 1 11 C4

x4 + 4x2 + 2 4 1 11 C4

x4 + 4x2 + 10 4 1 11 C4

x4 + 8x3 + 4x2 + 18 4 1 11 C4

4. Application to Galois 2-adic Fields of Degree 16 and Higher

The data in Tables 3.2–3.5 was already known due to Jones and Roberts (2006, 2008). In this
section, we use Algorithm 3.2 to construct all Galois extensions of Q2 of degree 16. To our knowl-
edge, this data has not been computed before; though we do note that one polynomial for each
possible Galois group does appear in Awtrey et al. (2015b). The entire set of defining polynomials,
along with the extension’s ramification index, residue degree, discriminant exponent, and Galois
group can be obtained by contacting the first author. Instead, we provide summary tables where we
count the number of extensions by ramification index, discriminant exponent, and Galois group.
See Tables 4.1–4.4.

The entire computation took approximately 6 hours and 21 minutes on a machine with a 3 GHz
Intel Core i7 processor and 8 GB of RAM. By comparison, the total time to compute degree 8
fields was approximately 7 minutes, while the algorithm finished in about 30 seconds for degree
4 fields. Quadratic extensions of Q2 are well known, and our algorithm took about 1/100th of a
second.

We have not carried out the computation for the next highest degree (32) in full. But we have
done one case, where we constructed all quadratic extensions of the unramified extension of Q2 of
degree 16. For this case, the defining polynomial we chose was f(x) = x16 + x5 + x3 + x + 1.
Let F/Q2 be the extension defined by f(x). There are a total of 218 − 1 = 262143 nonisomorphic
quadratic extensions of F . Using Pauli and Sinclair (2017), we obtained polynomials defining
these extensions in about 2 hours and 27 minutes. We then computed the automorphism groups of
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TABLE 3.4. Galois octic extensions of Q2, including a defining polynomial, rami-
fication index e, residue degree f , valuation of the discriminant c, and Galois group
G.

Poly e f c G
x8 + x4 + x3 + x+ 1 1 8 0 C8

x8 + 6x7 + 11x6 + 4x5 + 10x4 + 14x3 + 12x2 + 14x+ 1 2 4 8 C8

x8 + 12x7 + 5x6 + 8x5 + 10x4 + 12x3 + 8x2 + 4x+ 9 2 4 8 C4 × C2

x8 + 8x7 + 24x6 + 2x5 + 14x4 + 24x3 + x2 + 6x+ 11 2 4 12 C8

x8 + 12x7 + 8x6 + 10x5 + 22x4 + 16x3 + 27x2 + 14x+ 1 2 4 12 C4 × C2

x8 + 28x7 + 16x6 + 14x5 + 24x4 + 24x3 + 29x2 + 10x+ 17 2 4 12 C4 × C2

x8 + 4x7 + 14x6 + 18x5 + 26x4 + 12x3 + 21x2 + 2x+ 31 2 4 12 C8

x8 + 20x7 + 24x6 + 28x5 + 17x4 + 16x3 + 18x2 + 20x+ 1 4 2 16 E8

x8 + 14x6 + 8x5 + 29x4 + 28x3 + 16x2 + 24x+ 17 4 2 16 C4 × C2

x8 + 16x7 + 2x6 + 12x5 + 5x4 + 24x3 + 16x2 + 20x+ 1 4 2 16 C4 × C2

x8 + 28x7 + 31x4 + 24x3 + 8x2 + 28x+ 25 4 2 16 C4 × C2

x8 + 12x7 + 28x6 + 11x4 + 12x2 + 20x+ 1 4 2 16 D4

x8 + 28x7 + 12x6 + 24x5 + 3x4 + 24x3 + 4x2 + 28x+ 1 4 2 16 D4

x8 + 14x7 + 8x5 + 15x4 + 4x2 + 2x+ 5 4 2 12 D4

x8 + 12x6 + 2x5 + 15x4 + 14x3 + 14x2 + 2x+ 13 4 2 12 D4

x8 + 36x7 + 62x6 + 24x5 + 33x4 + 40x3 + 22x2 + 20x+ 51 4 2 22 D4

x8 + 20x7 + 62x6 + 24x5 + 39x4 + 56x3 + 50x2 + 4x+ 15 4 2 22 C8

x8 + 12x7 + 46x6 + 8x5 + 41x4 + 40x3 + 46x2 + 44x+ 1 4 2 22 C4 × C2

x8 + 52x7 + 50x6 + 40x5 + 13x4 + 40x3 + 2x2 + 20x+ 33 4 2 22 Q8

x8 + 4x7 + 46x6 + 32x5 + 57x4 + 16x3 + 62x2 + 60x+ 59 4 2 22 D4

x8 + 44x7 + 2x6 + 48x5 + 49x4 + 56x3 + 6x2 + 44x+ 55 4 2 22 C8

x8 + 12x7 + 26x6 + 48x5 + 9x4 + 24x3 + 22x2 + 60x+ 39 4 2 22 C8

x8 + 12x7 + 22x6 + 45x4 + 16x3 + 14x2 + 36x+ 63 4 2 22 C8

x8 + 20x7 + 30x6 + 16x5 + 15x4 + 48x3 + 50x2 + 44x+ 63 4 2 22 C4 × C2

x8 + 4x7 + 2x6 + 8x5 + 21x4 + 32x3 + 30x2 + 60x+ 35 4 2 22 Q8

x8 + 60x7 + 10x6 + 56x5 + 25x4 + 40x3 + 10x2 + 28x+ 17 4 2 22 C4 × C2

x8 + 4x7 + 14x6 + 8x5 + 19x4 + 32x3 + 46x2 + 20x+ 7 4 2 22 C4 × C2

x8 + 8x5 + 2x4 + 8x3 + 4x2 + 8x+ 26 8 1 24 D4

x8 + 8x7 + 4x6 + 2x4 + 8x3 + 4x2 + 8x+ 30 8 1 24 C4 × C2

x8 + 8x7 + 2x4 + 4x2 + 8x+ 26 8 1 24 C4 × C2

x8 + 8x7 + 8x5 + 2x4 + 8x3 + 4x2 + 8x+ 18 8 1 24 D4

x8 + 4x6 + 2x4 + 4x2 + 8x+ 6 8 1 24 Q8

x8 + 8x7 + 4x6 + 2x4 + 4x2 + 8x+ 30 8 1 24 Q8

x8 + 4x6 + 2x4 + 8x3 + 4x2 + 8x+ 6 8 1 24 C4 × C2

each of these extensions, a computation which took approximately 24 hours and 41 minutes. In
addition to the unramified extension, we found a total of 6 Galois extensions; 3 with C32 as Galois
group and 3 with C2 × C16 as Galois group. Let u ∈ F be a root of f(x). Defining polynomials
for these six extensions (as quadratic polynomials over F ) are as follows:

• With Galois group C32:



30 C. Awtrey, J. Beuerle, J. Schrader

TABLE 3.5. Octic extensions of Q2 (cont).

Poly e f c G
x8 + 8x7 + 4x6 + 2x4 + 8x3 + 4x2 + 8x+ 14 8 1 24 C4 × C2

x8 + 2x4 + 4x2 + 8x+ 2 8 1 24 C4 × C2

x8 + 4x6 + 2x4 + 8x3 + 4x2 + 8x+ 22 8 1 24 C4 × C2

x8 + 4x6 + 2x4 + 4x2 + 8x+ 22 8 1 24 Q8

x8 + 2x4 + 4x2 + 8x+ 18 8 1 24 C4 × C2

x8 + 8x5 + 2x4 + 8x3 + 4x2 + 8x+ 10 8 1 24 D4

x8 + 8x7 + 2x4 + 4x2 + 8x+ 10 8 1 24 C4 × C2

x8 + 8x7 + 8x5 + 2x4 + 8x3 + 4x2 + 8x+ 2 8 1 24 D4

x8 + 8x7 + 4x6 + 2x4 + 4x2 + 8x+ 14 8 1 24 Q8

x8 + 4x7 + 10x4 + 4x2 + 6 8 1 22 D4

x8 + 4x7 + 4x6 + 10x4 + 4x2 + 8x+ 10 8 1 22 D4

x8 + 4x7 + 2x4 + 4x2 + 14 8 1 22 D4

x8 + 4x7 + 10x4 + 4x2 + 14 8 1 22 D4

x8 + 4x7 + 4x6 + 10x4 + 4x2 + 8x+ 2 8 1 22 D4

x8 + 4x7 + 4x6 + 2x4 + 4x2 + 8x+ 10 8 1 22 D4

x8 + 4x7 + 4x6 + 2x4 + 4x2 + 8x+ 2 8 1 22 D4

x8 + 4x7 + 2x4 + 4x2 + 6 8 1 22 D4

x8 + 8x6 + 16x5 + 4x4 + 50 8 1 31 C8

x8 + 16x7 + 16x5 + 4x4 + 16x3 + 26 8 1 31 C8

x8 + 16x5 + 4x4 + 16x3 + 10 8 1 31 C8

x8 + 8x6 + 16x5 + 4x4 + 34 8 1 31 C8

x8 + 16x7 + 8x6 + 16x5 + 4x4 + 34 8 1 31 C8

x8 + 16x7 + 16x5 + 4x4 + 16x3 + 10 8 1 31 C8

x8 + 8x6 + 16x5 + 4x4 + 18 8 1 31 C8

x8 + 16x5 + 4x4 + 16x3 + 26 8 1 31 C8

x8 + 16x7 + 8x6 + 16x5 + 4x4 + 2 8 1 31 C8

x8 + 16x7 + 8x6 + 16x5 + 4x4 + 18 8 1 31 C8

x8 + 8x6 + 16x5 + 4x4 + 2 8 1 31 C8

x8 + 16x5 + 4x4 + 16x3 + 42 8 1 31 C8

x8 + 16x7 + 16x5 + 4x4 + 16x3 + 42 8 1 31 C8

x8 + 16x7 + 16x5 + 4x4 + 16x3 + 58 8 1 31 C8

x8 + 16x5 + 4x4 + 16x3 + 58 8 1 31 C8

x8 + 16x7 + 8x6 + 16x5 + 4x4 + 50 8 1 31 C8

– x2 + 8u13 + 2
– x2 + 2x+ 4u13 + 2
– x2 + 4x+ 8u13 + 2

• With Galois group C2 × C16:
– x2 + 2
– x2 + 2x+ 2
– x2 + 4x+ 2
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TABLE 4.1. The number of Galois extensions of Q2 of degree 16 with ramification
index 2.

G c = 16 24 Total
C16 1 2 3

C8 ×C2 1 2 3
Total 2 4 6

TABLE 4.2. The number of Galois extensions of Q2 of degree 16 with ramification
index 4.

G c = 32 36 40 Total
C16 4 4

E4 ×C4 1 1
C4 ×C4 2 2
C8 ×C2 3 2 5
C8 o5 C2 1 1 2 4
C4 oC4 2 2
E4 oC4 1 1 2

Total 2 6 12 20

TABLE 4.3. The number of Galois extensions of Q2 of degree 16 with ramification
index 8.

G c = 32 36 40 44 48 62 Total
C16 8 8

E4 ×C4 2 2
C4 ×C4 2 2
C8 ×C2 4 8 12
C8 o5 C2 4 4 8 16
Q8 ×C2 3 3
C4 oC4 2 2
D4 ×C2 2 4 3 9
E4 oC4 2 2
Q8 oC2 4 4 8 16
C8 o3 C2 2 2 4 4 12

D8 2 2 4
Q16 2 2 2 2 8
Total 4 8 8 8 36 32 96

Extrapolating the total time for this computation to the other 250 cases, we estimate that construct-
ing all Galois 2-adic fields of degree 32 would take approximately 283 days of computing time,
running on a single core. This can of course be sped up, if computations are run in parallel. The de-
gree 64 case, on the other hand, is most likely not tractable without using many cores. In this case,
we need to construct all quadratic extensions of the 915 Galois 2-adic fields of degree 32; in each
case there are 234 − 1 = 17179869183 such extensions. We then need to compute automorphism
groups; a task that takes about 1/2 second for each extension. Thus we would need approximately
250000 years of computing time on a single core.
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TABLE 4.4. The number of Galois extensions of Q2 of degree 16 with ramification
index 16.

G c = 54 58 64 79 Total
C16 32 32

C8 ×C2 16 16
C8 o5 C2 16 16
C4 oC4 8 8
E4 oC4 8 8
C8 o3 C2 16 8 24

D8 8 4 12
Q16 8 4 12
Total 16 32 48 32 128
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