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Subfields of Solvable Sextic Field Extensions

Chad Awtrey and Peter Jakes

ABSTRACT. Let F be a field, f(x) ∈ F [x] an irreducible polynomial of degree six, K the stem
field of f , and G the Galois group of f over F . We show G is solvable if and only if K/F has
either a quadratic or cubic subfield. We also show that G can be determined by: the size of the
automorphism group of K/F , the discriminant of f , and the discriminants of polynomials defining
intermediate fields. Since most methods for computing polynomials defining intermediate subfields
require factoring f over its stem, we include a method that does not require factorization over K,
but rather only relies factoring two linear resolvent polynomials over F .

1. Introduction

The well-known quadratic formula shows that quadratic polynomials are “solvable by radicals.”
That is, their roots can be expressed using only:

(1) the polynomial’s coefficients
(2) the four arithmetic operations (+,−,×,÷)
(3) radicals (square roots, cube roots, etc.)

In the 16th century, Italian mathematicians proved that cubic and quartic polynomials too are
solvable by radicals. However the same is not true for polynomials of degree five and higher, a
fact first proved in the 19th century. How can we determine which polynomials are solvable by
radicals?

One answer to the above question is given by Galois theory, an area of mathematics named
in honor of French mathematician Evariste Galois. The work of Galois shows we can attach a
group structure to a polynomial’s roots. We call this group the Galois group of the polynomial.
Properties of the Galois group encode arithmetic information concerning the polynomial’s roots.
For example, the polynomial is solvable by radicals if and only if its Galois group is solvable.

Therefore a standard problem in computational algebra involves designing and implementing
algorithms that can determine a polynomial’s Galois group. Methods for accomplishing this task
have been in existence for more than a century. In fact, the original definition of the Galois group
implicitly contained a technique for its determination. For a degree n polynomial, this approach
essentially involves analyzing an auxiliary polynomial of degree n! (see van der Waerden (1991),
for example). Better methods are clearly needed.

Most modern implementations rely heavily on resolvent polynomials. These are polynomials
that define subfields of the original polynomial’s splitting field (see Stauduhar (1973)). The resol-
vent method can be divided into two approaches: (1) the absolute resolvent method, which deals
with general groups, and (2) the relative resolvent method, for when the Galois group is known to
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have a certain structure ahead of time. For example, the algorithm used by gp (2013) uses absolute
resolvents to compute Galois groups over the rational numbers up to and including degree 11. De-
tails of the algorithm (up to degree 7) can be found in Cohen (1993). Similarly, the algorithm in
Magma (Bosma et al., 1997) uses relative resolvents. Magma’s algorithm is in principle not limited
by the degree of the polynomial, and the base field can be more general than the rational numbers.
Magma’s implementation utilizes an extra feature that improves running times for imprimitive
extensions (i.e., extensions with nontrivial, proper subfields); namely, it first computes subfields
of the stem field of f (see van Hoeij et al. (2013)). By stem field, we mean the field extension
obtained by adjoining one root of the polynomial to the base field. The task of computing polyno-
mials defining subfields involves factoring the original polynomial over its stem field. Leveraging
this subfield information and initial absolute resolvent information, Magma’s algorithm proceeds
with the relative resolvent method using degree-independent algorithms as described in Fieker and
Klüners (2014) and Elsenhans (2017).

A benefit of Magma’s algorithm for determining Galois groups is the subfield information it ex-
ploits. However, Magma’s approach can be improved. In particular, the size of the automorphism
group is easy to determine by factoring a polynomial over its stem field (just count the number
of linear factors). This number is an invariant of the Galois group of the polynomial, as shown
in Awtrey et al. (2015) for example. Since Magma’s approach to computing subfields already
involves factoring the polynomial over its stem fields, it makes sense to also use the size of the au-
tomorphism group when determining Galois groups. Furthermore, discriminants of polynomials
defining subfields can be leveraged as well. But this is not done in Magma’s algorithm. The pur-
pose of this paper is to show how Galois groups of polynomials defining solvable sextic extensions
can be computed without resorting to relative resolvents, as Magma does.

The remainder of the paper is organized as follows. In Section 2, we prove that if f(x) defines
a sextic extension K/F with solvable Galois group G, then K/F must have at least one proper,
nontrivial subfield. While Magma and Pari/GP provide algorithms for computing subfields (e.g.,
van Hoeij et al. (2013)), these methods require the ability to factor a polynomial over an extension
field. In Section 3, we show how to compute defining polynomials of subfields by factoring two
resolvent polynomials over the base field. Furthermore, our resolvent polynomials are formed
as resultants, and therefore do not require approximation of roots; normally, forming resolvents
requires computing approximations to the roots of f Stauduhar (1973). We end with Section 4,
which describes our algorithm for computing the Galois group of a solvable sextic polynomial.
Also included in this section are examples of our algorithm in action.

2. Subfields of solvable sextic extensions

Let F be a field, f(x) ∈ F [x] an irreducible sextic polynomial, K/F the stem field of f , and
G the Galois group of f over F . In this section, we show that G is solvable if and only if K/F
contains at least one proper, nontrivial subfield.

To accomplish this, we will analyze and perform computations on the possible Galois groups
of f . Since f is irreducible of degree six, once we fix an ordering of the roots of f is some
algebraic closure F of F , we can view G as a transitive subgroup of S6; G is transitive because of
f is irreducible. In this case, G is well-defined up to conjugation; different orderings of the roots
correspond to different conjugates ofG in S6. Therefore, our approach requires that we identify the
conjugacy classes of transitive subgroups of S6 in order to determine the group structure ofG. This
information is well known (see Butler and McKay (1983)). In Table 2.1, we give information on the
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TABLE 2.1. The 16 conjugacy classes of transitive subgroups of S6. Generators
are for one representative in each conjugacy class.

T Name Generators Size Solvable?
1 C6 (12)(34)(56), (135)(246) 6 yes
2 S3 (123)(456), (14)(26)(35) 6 yes
3 D6 (12)(34)(56), (135)(246), (35)(46) 12 yes
4 A4 (34)(56), (12)(56), (135)(246) 12 yes
5 C3 × S3 (456), (123), (14)(25)(36) 18 yes
6 C2 ×A4 (56), (34), (12), (135)(246) 24 yes
7 S+

4 (34)(56), (12)(56), (135)(246), (35)(46) 24 yes
8 S−

4 (34)(56), (12)(56), (135)(246), (3546) 24 yes
9 S3 × S3 (456), (123), (23)(56), (14)(25)(36) 36 yes
10 E9 o C4 (456), (123), (23)(56), (14)(2536) 36 yes
11 C2 × S4 (56), (34), (12), (145)(236), (35)(46) 48 yes
12 A5 (12346), (14)(56) 60 no
13 E9 oD4 (465), (45), (123), (23), (14)(25)(36) 72 yes
14 S5 (15364), (16)(24), (3465) 120 no
15 A6 (12345), (456) 360 no
16 S6 (123456), (12) 720 no

16 conjugacy classes of transitive subgroups of S6, including their transitive number (or T-number,
as in GAP (2013)), generators of one representative, their size, whether the group is solvable, and a
more descriptive name based on their structure. The descriptive names are standard: Cn represents
the cyclic group of order n, Dn the dihedral group of order 2n, En the elementary abelian group
of order n, An and Sn the alternating and symmetric groups on n letters, × a direct product, and o
a semi-direct product.

Before we prove the main result of this section, we establish the fact that the list of Galois groups
of the normal closures of nonisomorphic intermediate subfields is an invariant of the polynomial’s
Galois group.

Proposition 2.1. Let F be a field, f(x) ∈ F [x] an irreducible polynomial, K/F the stem field
of f , and G the Galois group of f over F . Let L be the list of the Galois groups of the normal
closures of all nonisomorphic intermediate subfields of K/F . Then L is an invariant of G. That is,
if f ′ ∈ F [x] is any other irreducible polynomial of the same degree as f , K ′ is its stem field, L′ is
the list of Galois groups of normal closures of nonisomorphic intermediate subfields of K ′/F , and
G is the Galois group of f ′ over F , then L′ = L.

Proof. Let G1 be the point stabilizer of 1 in G. By the Galois correspondence, G1 is the subgroup
fixing K/F . Therefore the nonisomorphic intermediate subfields of K/F correspond to the sub-
groups H of G containing G1, up to conjugation. Suppose E is one such subfield of K/F , and let
H be the subgroup that fixes E. Then the Galois group of the normal closure of E is isomorphic
to the image of the permutation representation of G acting on the cosets G/H . If L is the list of
Galois groups of normal closures of the nonisomorphic intermediate subfields of K/F , then L is
determined completely by a group-theoretic computation. This proves L is an invariant of G. �

If we know the Galois group G of a polynomial f defining the extension K/F , we can use the
proof of Proposition 2.1 to compute the list L of Galois groups of normal closures of nonisomor-
phic intermediate subfields. Table 2.2 contains this data for each of the 16 transitive subgroups of
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TABLE 2.2. The list GalSubs of Galois groups of normal closures of nonisomor-
phic intermediate subfields of the stem field of a polynomial whose Galois group G
is one of the 16 transitive subgroups of S6. The presence of no subfields is indicated
by blank cell.

T Name GalSubs Solvable?
1 C6 C2, C3 yes
2 S3 C2, S3 yes
3 D6 C2, S3 yes
4 A4 C3 yes
5 C3 × S3 C2 yes
6 C2 ×A4 C3 yes
7 S+

4 S3 yes
8 S−

4 S3 yes
9 S3 × S3 C2 yes

10 E9 o C4 C2 yes
11 C2 × S4 S3 yes
12 A5 no
13 E9 oD4 C2 yes
14 S5 no
15 A6 no
16 S6 no

S6. When the extension has no subfields, the corresponding entry in the table is left blank. Group
names are standard.

We computed this data with the software program GAP GAP (2013). For example, here are two
functions we wrote for GAP which will accomplish this task. The main function is SubfieldGals,
which takes one input, a transitive subgroup of Sn for some n < 31 (GAP’s TransitiveGroup li-
brary only goes up to n = 30). The other function RemoveConjugateSubgroups is just an
auxiliary function that we use in SubfieldGals. Note, the transitive subgroups of S6 can be
accessed in GAP by typing TransitiveSubgroup(6,j) for some 1 ≤ j ≤ 16.
---------------------------
RemoveConjugateSubgroups := function(g,lis)

local c,copy,nlis;
c := 1;
copy := ShallowCopy(lis);
nlis := [lis[1]];
copy := Filtered(copy,j->IsConjugate(g,nlis[c],j)=false);

while Size(copy)>0 do
Append(nlis,[copy[1]]);
c := c+1;
copy := Filtered(copy,j->IsConjugate(g,nlis[c],j)=false); od;

return(nlis);
end;

---------------------------

SubfieldGals := function(g)
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local n,b,stab,sub,perm,perms,myperm,deg,degs,mydeg;
n := Size(Orbits(g)[1]);
b := AllBlocks(g);

if
Size(b)=0 then return([]);

else
stab := List(b,j->Stabilizer(g,j,OnSets));
sub := RemoveConjugateSubgroups(g,stab);
perm := List(sub,j->Group(List(GeneratorsOfGroup(g),

i->Permutation(i,RightCosets(g,j),OnRight))));
deg := List(perm,j->Size(Orbits(j)[1]));
degs := ShallowCopy(deg);
mydeg := Permuted(degs,SortingPerm(deg));
perms := ShallowCopy(perm);
myperm := Permuted(perms,SortingPerm(deg)); fi;

return(List([1..Size(myperm)],j->[mydeg[j],
TransitiveIdentification(myperm[j])]));

end;
---------------------------

Our main result for this section now follows easily from Proposition 2.1 and Table 2.2.

Corollary 2.2. Let F be a field, f(x) ∈ F [x] an irreducible sextic polynomial, K/F the stem field
of f , and G the Galois group of f over F . Then G is solvable if and only if K/F has at least one
proper, nontrivial intermediate subfield.

Proof. By Proposition 2.1, the number of nonisomorphic intermediate subfields of K/F is an
invariant of G. By Table 2.2, this number is greater than 0 if and only if G is solvable. �

3. Computing Subfields Via Linear Resolvents

While Magma and Pari/GP include methods for determining polynomials defining subfields of
some extension K/F van Hoeij et al. (2013), their respective algorithms rely on factorization
methods over the extension K/F , which can be more expensive than factorization over the base
field F . In this section, we show how to compute subfields of sextic extensions using two linear
absolute resolvent polynomials.

In general, resolvent polynomials are constructed as follows. Let f(x) ∈ F [x] be irreducible
polynomial of degree n, and let G be the Galois group of f over F . Let H be a subgroup of Sn.
We form a resolvent polynomial R(x) whose stem field corresponds to H under the Galois corre-
spondence. Then as shown in Soicher and McKay (1985), the Galois group of R(x) is isomorphic
to the image of the permutation representation of G acting on the cosets Sn/H . The irreducible
factors of R(x) therefore correspond to the orbits of this action. In particular, the degrees of the
irreducible factors correspond to the orbit lengths.

The most difficult task in the resolvent method is constructing the polynomial R(x) that corre-
sponds to a given subgroup H of Sn. The following result gives one method for accomplishing
such a task. A proof can be found in Soicher and McKay (1985).

Theorem 3.1. Let f(x) ∈ F [x] be an irreducible polynomial of degree n, K the splitting field of
f , and ρ1, . . . , ρn the roots of f in F . Let T (x1, . . . , xn) be a polynomial with coefficients from F ,
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and let H be the stabilizer of T in Sn. That is

H = {σ ∈ Sn : T (xσ(1), . . . , xσ(n)) = T (x1, . . . , xn)}.
Let Sn//H denote a complete set of (right) coset representatives of H in Sn, and define the resol-
vent polynomial R(x) by:

R(x) =
∏

σ∈Sn//H

(x− T (ρσ(1), . . . , ρσ(n))).

(1) If R(x) is squarefree, its Galois group is isomorphic to the image of the permutation rep-
resentation of G acting on the cosets Sn/H .

(2) We can ensure R(x) is squarefree by taking a suitable Tschirnhaus transformation of f(x)
(Cohen, 1993, p.324).

(3) One choice for T is given by:

T (x1, . . . , xn) =
∑
σ∈H

(
n∏
i=1

xiσ(i)

)
.

Though this is not the only choice.

A special class of resolvents, which Soicher calls linear resolvents Soicher (1981), arise when
the multivariable function T is of the form:

T =
k∑
i=1

xi = x1 + x2 + x3 + · · ·+ xk.

For a given k, it is straightforward to show that T is stabilized by a subgroup H of Sn of the form
Sk × Sn−k. Thus the resolvent polynomial has degree

(
n
k

)
, and its roots are all possible sums of k

roots, without repeats so as to avoid a non-squarefree resolvent.
As shown in Soicher (1981), these linear resolvents can be computed as resultants. We will

make use of two such linear resolvents; when k = 2 and when k = 3. To distinguish these
two resolvents, we will refer to the resolvent corresponding to k = 2 as dp, and the resolvent
corresponding to k = 3 as tp. In other words, dp is the resolvent corresponding to the multivariable
function T = x1 + x2. Similarly, tp is the resolvent corresponding to T = x1 + x2 + x3. Each
resolvent requires us to compute a compositum. If f(x) and g(x) are two polynomials, then define
comp(f, g) as follows:

comp(f, g) = Resultanty(f(y), g(x− y)).
So comp(f, g) is the characteristic polynomial of α + β where f(α) = g(β) = 0. Here is how we
construct dp and tp for a degree n polynomial f(x):

dp(x2) =
comp(f, f)
2n · f(x/2)

tp(x3) =
comp(dp(f), f) · 3n · f(x/3)

comp(f, 2n · f(x/2))
If we know the Galois group G of a polynomial f defining the extension K/F , we can use Theo-
rem 3.1 to compute the degrees of the irreducible factors of dp and tp by a group-theoretic compu-
tation. Table 3.1 contains this data for each of the solvable transitive subgroups of S6.

As before, we computed the data in Table 3.1 with the software program GAP. For example,
here are two functions we wrote for GAP which will accomplish this task in general. The main
function is ResFactors, which takes three inputs: the degree n of the polynomial, a subgroup
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TABLE 3.1. The list of degrees of irreducible factors of the linear resolvent poly-
nomials DP and TP for the solvable transitive subgroups of S6.

T Name DP TP
1 C6 3,6,6 2,6,6,6
2 S3 3,3,3,6 2,6,6,6
3 D6 3,6,6 2,6,12
4 A4 3,12 4,4,6,6
5 C3 × S3 6,9 2,18
6 C2 ×A4 3,12 6,6,8
7 S+

4 3,12 4,4,12
8 S−

4 3,12 8,12
9 S3 × S3 6,9 2,18
10 E9 o C4 6,9 2,18
11 C2 × S4 3,12 8,12
13 E9 oD4 6,9 2,18

H of Sn, and a transitive subgroup G of Sn. The other function LinRes takes two inputs n and
k and computes the direct product Sk × Sn−k, which is the subgroup stabilizing the multivariable
function T =

∑k
i=1 xi.

---------------------------
LinRes := function(n,k)

local h;
h := DirectProduct(SymmetricGroup([1..k]),

SymmetricGroup([k+1..n]));
return(h);

end;

---------------------------

ResFactors := function(n, h, g)
local sn, cosets, index, permrep, orb, orbs;

sn := SymmetricGroup(n);
cosets := RightCosets(sn,h);
index := Size(cosets);
permrep := Group(List(GeneratorsOfGroup(g),

j->Permutation(j, cosets, OnRight)));
orb := List(Orbits(permrep, [1..index]), Size);
orbs := ShallowCopy(orb);

return(Permuted(orbs, SortingPerm(orb)));
end;
---------------------------

When we compare Tables 2.2 and 3.1, we see that a sextic extension K/F defined by the poly-
nomial f has a cubic subfield if and only if dp(f) has a cubic irreducible factor. Similarly, K/F
has a quadratic subfield if and only if tp(f) has a quadratic irreducible factor. This is not a co-
incidence, as we show next. In particular, Proposition 3.2 shows that dp computes polynomials
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defining subfields of index two and tp computes polynomials defining index three subfields, when
they exist.

Proposition 3.2. Let F be a field, f(x) ∈ F [x] an irreducible polynomial of degree n, K/F the
stem field of f , G the Galois group of f over F , and dp(f) and tp(f) the linear resolvents (as
defined above). For a nontrivial, proper divisor k of n, K/F has an index k subfield if and only
if the linear resolvent corresponding to the subfield Sk × Sn−k has an irreducible factor of degree
n/k. In particular, if K/F is a sextic extension, it has a cubic subfield if and only if dp(f) has
an irreducible cubic factor. Similarly, K/F has a quadratic subfield if and only if tp(f) has an
irreducible quadratic factor.

Proof. Let α1, . . . , αn denote the roots of f in F , and let G1 be the point stabilizer of 1 in G.
So G1 is the subgroup fixing K/F = F (α1). As mentioned in the proof of Proposition 2.1,
the nonisomorphic intermediate subfields of K/F correspond to subgroups of G containing G1,
up to conjugation. Let H be one of these intermediate groups corresponding to a subfield L. If
[G : H] = n/k, it follows from the theory of blocks Wielandt (1964) that H partitions the set
of roots into n/k sets of size k. Let Bi denote the subsets of roots arising from this partition for
1 ≤ i ≤ n/k. For each i, define ρi by

ρi =
∑
α∈Bi

α.

Define the polynomial g(x) by

g(x) =

n/k∏
i=1

(x− ρi).

Thus g is the characteristic polynomial of ρ1. Therefore if g is squarefree, it defines the extension
L. We can always ensure g is squarefree by taking a suitable Tschirnhaus transformation of f .
Notice that each root of g corresponds to a particular sum of k roots of f .

Now consider a linear resolvent corresponding to the multivariable function T =
∑k

i=1 xi that is
stabilized by Sk × Sn−k. It follows that the roots of this resolvent are the possible sums of k roots
of f . Consequently if the resolvent is squarefree, it is guaranteed to have an irreducible factor of
degree n/k defining a subfield of degree n/k if and only if K/F has a subfield of index k. This
proves the first claim of the theorem. The final two claims follows since dp and tp correspond to
the cases k = 2 and k = 3, respectively. �

4. Algorithm

We now turn our attention to computing the Galois group in the case where K/F has at least
one intermediate subfield. According to Corollary 2.2, this is precisely the case when the Galois
group of f is solvable.

In our algorithm, we make use of the size of the automorphism group of K/F as well as the
discriminants of f and the discriminants of the polynomials defining the subfields of K/F . Our
next result forms the basis of our algorithm.

Proposition 4.1. Let F be a field, f(x) ∈ F [x] an irreducible sextic polynomial, K/F the stem
field of f , G the Galois group of f over F , g(x) a polynomial defining the cubic subfield of K/F
(if it exists), and h(x) a polynomial defining the quadratic subfield of K/F (if it exists). Then,

(1) Let Aut(K/F ) denote the automorphism group of K/F .
(a) The size of Aut(K/F ) is six if and only if G is either C6 or S3.
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(b) The size of Aut(K/F ) is three if and only if G = C3 × S3.
(c) The size of Aut(K/F ) is two if and only if G is either D6, A4, C2 × A4, S+

4 , S−4 , or
C2 × S4.

(d) The size of Aut(K/F ) is one if and only if G is either S3 × S3, E9 o C4, or E9 oD4.
(2) The discriminant of f is a perfect square if and only if G is either A4, S+

4 , or E9 o C4.
(3) The discriminant of f times the discriminant of g is a perfect square if and only if G is

either S3, A4, or S−4 .
(4) The discriminant of f times the discriminant of h is a perfect square if and only if G is

either C6, S3, D6, C3 × S3, or S3 × S3.

Proof. By Awtrey et al. (2015), Aut(K/F ) is isomorphic to the centralizer of G in S6. Direct
computation on the solvable transitive subgroups of S6 proves item (1).

The discriminant of f is a perfect square if and only if G is a subgroup of A6. Item (2) follows
by direct computation on the solvable transitive subgroups of S6.

To prove items (3) and (4), we first suppose G is either C6, A4, C2 × A4, S+
4 , or E9 o C4, since

in these cases either the discriminant of f is a perfect square or the discriminant of g is a perfect
square. Using Table 2.2, we see that the product of the discriminants of f and g is a perfect square
precisely when G = A4. Similarly the product of the discriminants of f and h is a perfect square
precisely when G = C6.

For the remainder of the proof, we assume G is either S3, D6, C3 × S3, S−4 , S3 × S3, C2 × S4,
or E9 o D4. Let df , dg, and dh denote the discriminants of f , g, and h, respectively. Thus the
polynomials x2− df , x2− dg, and x2− dh are all irreducible. Let Gg and Gh denote the subgroups
corresponding to the stem fields of g and h, respectively. By the Galois correspondence, the stem
field of x2− df corresponds to Hf = A6∩G. Similarly, let Kg and Kh denote the normal closures
of g and h, respectively. Then the subgroups fixing Kg and Kh are the normal cores CoreG(Gg)
and CoreG(Gh). It follows that the stem field of x2− dg corresponds to the unique subgroup Hg of
G of index two (up to conjugation) that contains CoreG(Gg). Similarly the stem field of x2 − dh
corresponds to the unique subgroup Hh of G of index two that contains CoreG(Gh). Thus df · dg
is a perfect square if and only if Hf = Hg. Likewise df · dh is a perfect square if and only if
Hf = Hh. Direct computation shows that Hf = Hg precisely when G is either S3 or S−4 , and
Hf = Hh precisely when G is either S3, D6, C3 × S3, or S3 × S3. �

In Table 4.1, we summarize the information presented in Propositions 2.1 and 4.1. This table
forms the basis for our algorithm for computing the Galois group of a solvable sextic polynomial.
Note that if K/F contains a cubic subfield defined by the polynomial g(x), then the Galois group
of g is C3 if and only if the discriminant of g is a perfect square; otherwise the Galois group is S3.

Algorithm 4.2 (Galois groups of solvable sextic polynomials). Let F be a field, f(x) ∈ F [x]
an irreducible sextic polynomial, K/F the stem field of f , and G the Galois group of f over F .
Assume G is solvable. Thus K/F has either a quadratic subfield or a cubic subfield or both.
Let g(x) be a polynomial defining the cubic subfield of K/F (if it exists), and h(x) a polynomial
defining the quadratic subfield of K/F (if it exists). Let m denote the size of the automorphism
group of K/F . Let df , dg, and dh denote the discriminants of f , g, and h, respectively (when they
exist). This algorithm returns the Galois group of f(x).

(1) If m = 6, then
(a) If dg is a perfect square, return C6 and terminate.
(b) Otherwise return S3 and terminate.

(2) Else if m = 3, return C3 × S3 and terminate.
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TABLE 4.1. Invariant data for solvable transitive subgroups of S6. Column Aut
gives the size of the centralizer of the group in S6. Column GalSubs is the same as
Table 2.2. The remaining columns give discriminant data as described in Proposi-
tion 4.1. A blank cell indicates no subfields of that degree.

T Name Aut GalSubs df = � dfdg = � dfdh = �
1 C6 6 C2, C3 no no yes
2 S3 6 C2, S3 no yes yes
3 D6 2 C2, S3 no no yes
4 A4 2 C3 yes yes
5 C3 × S3 3 C2 no yes
6 C2 ×A4 2 C3 no no
7 S+

4 2 S3 yes no
8 S−

4 2 S3 no yes
9 S3 × S3 1 C2 no yes
10 E9 o C4 1 C2 yes no
11 C2 × S4 2 S3 no no
13 E9 oD4 1 C2 no no

(3) Else if m = 2, then
(a) If K/F has both a quadratic and a cubic subfield, return D6 and terminate.
(b) If dg is a perfect square, then

(i) If df is a perfect square, return A4 and terminate.
(ii) Otherwise return C2 × A4 and terminate.

(c) If dg is not a perfect square but df is, return S+
4 and terminate.

(d) Otherwise, if both df and dg are not perfect square, then
(i) If df · dg is a perfect square, return S−4 and terminate.

(ii) Otherwise return C2 × S4 and terminate.
(4) Else if m = 1, then

(a) If df is a perfect square, return E9 o C4 and terminate.
(b) Otherwise if df is not a perfect square, then

(i) If df · dh is a perfect square, return S3 × S3 and terminate.
(ii) Otherwise return E9 oD4 and terminate.

An Example

For example, consider the polynomial f(x) = x6 − x5 − x3 − x + 1 defined over the rational
numbers. Using Magma or Pari/GP, we see that the stem field of f has two automorphisms and
one cubic subfield defined by the polynomial g(x) = x3− 7x2 +13x− 5. The discriminant of g is
dg = 22 · 37, which is not a perfect square. The discriminant of f is df = 24 · 5 · 372, which is also
not a perfect square. It follows that the product of the discriminants of f and g is dfdg = 26 ·5 ·373,
which is not a perfect square either. Algorithm 4.2 thus shows that the Galois group of f is C2×S4.

Another Example

For our final example, consider the polynomial f(x) = x6−3x5+4x4−x3+x2−2x+7 defined
over the rational numbers. We see that the stem field of f has only the identity automorphism and
one quadratic subfield defined by h(x) = x2+5x+7. The discriminant of f is df = −33 ·292 ·1072,
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which is not a perfect square. The product of the discriminants of f and h is dfdh = 34 · 292 · 1072,
which is a perfect square. Algorithm 4.2 shows that the Galois group of f is S3 × S3.
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