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ABSTRACT. Boolean functions are crucial in the design of secure cryptographic algorithms. We
introduce booleantools, an open-source Python package for the analysis and design of boolean
functions. As an example of the software’s functionality, we show how it can be used to find geo-
metric information about the space of all boolean functions on 5 variables.

1. Introduction

Boolean functions are one of the mathematical building blocks used in the construction of al-
gorithms for cryptography and coding theory. As just one example, boolean functions are used in
the Secure Hash Standard developed by the National Institute of Standards and Technology and
required under federal law for securing classified data (National Institute of Standards and Tech-
nology, 2015). In this paper, we present booleantools , a Python package designed to facilitate
the computational analysis of boolean functions.

We let Fo = {0, 1} denote the finite field with two elements, equipped with the usual operations:
addition modulo 2, denoted by &, and multiplication modulo 2, denoted by juxtaposition. We write
F3 for the n-dimensional vector space over Fo. A boolean function is a map from [ to Fy. It is
well-known that such a function can always be represented as a polynomial in n variables with
coefficients in [Fy, and that is the representation we will typically use here. We will provide further
mathematical background in Section 3]

There are several properties that are accepted as being necessary for cryptographic security
of boolean functions, including resiliency, nonlinearity, lack of linear structures, high algebraic
degree, etc. We give definitions of these properties in Section 3} We highly recommend |Carlet
(2010) for an in-depth overview of these topics.

The designer of cryptographically secure boolean functions faces many challenges. Brute force
enumeration of all possible functions on n variables becomes infeasible very quickly as n grows.
Another challenge is that the various necessary properties are in conflict. A result due to [Siegen-
thaler| (1984)) shows that as the resiliency of an n-variable boolean function increases, the algebraic
degree necessarily decreases. Hence, finding suitable boolean functions is a multi-objective op-
timization problem which requires sophisticated computation in conjunction with mathematical
analysis.

The booleantools package offers useful functionality that is not directly available in any
existing open source Python package. The Python packages PyCrypto (Litzenberger, |2018])
and pyca/cryptography (pyca/cryptography Developers, 2018) offer high-level im-
plementations of cryptographic algorithms for software developers, but they do not make boolean
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functions or their properties easily accessible. Another package, PolyBoRi, also works with
polynomial functions over Fy. The booleantools package differs from PolyBoRi1 in two
ways: booleantools is written entirely in Python, and booleantools has built-in support
for many algebraic and computational manipulations of interest in cryptography and coding the-
ory. While packages in GAP (GAP, 2018), SageMath (The Sage Developers, 2018), and other
computer algebra systems could be used to do the same things that booleantools does, they
are large multipurpose tools, with large code bases. Since booleantools is implemented in
Python, it can be seamlessly integrated with other Python packages for machine learning (such
as Scikit-learn (Pedregosa et al.l[2011)) and evolutionary algorithms (such as deap (Fortin
et al., 2012)), both of which are established techniques for search and analysis of boolean func-
tions(see, for instance, |Asthana et al.| (2014) and [Sadoharal (2001})).

2. Technical Description

The booleantools package is a Python package that allows the user to create boolean func-
tions using many different representations. Once the boolean function is created, booleantools
provides built-in methods to analyze the function for various properties discussed in the literature.
Additionally, booleantools provides support for actions of permutation groups on functions,
and geometric tools such as Hamming and Hausdorff distance functions.

2.1. Installation and Requirements

The booleantools package is available on PyPi at
https://pypi.python.org/pypi/booleantools
and can be installed using the standard Python package manager pip, by typing

pip3 install booleantools

from a command line prompt.

The booleantools package requires any version of Python 3. For Python versions before
Python 3.3, the user may need to first install pip by following the instructions available via
https://pip.pypa.io/en/stable/installing/ (The Python Packaging Authority,
2017).

The commands in this paper will be from booleantools version 0.4.2.

3. Background & Examples

In this section we discuss properties of boolean functions that are relevant for cryptographic
research. For each property, we give the definition, as well as a code snippet demonstrating how
booleantools can be used to compute this property. Our discussion of these properties follows
Chapter 4 of |Carlet (2010).

We write [n] for the set {0,1,...,n — 1}. We will use the vector notation x to indicate an
element of a vector space F4, with the variable x; representing the ¢’th coordinate of x for € [n].
A monomial is the product of the elements in some subset of {xg, z1, ..., 2, 1}.

It is well-known that any boolean function from F7 can be represented as a polynomial on the
variables zg, x1,...,x,_1 using Lagrange interpolation (see Lidl and Niederreiter (1994))). This
leads to writing boolean functions as a sum of monomials, and that is the representation we typi-
cally use for booleantools.
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In some instances, it is helpful to identify a vector in [} with its integer interpretation as a
n—1
binary number, via the correspondence x < Z kuk. For instance, under this representation, the
k=0
vector [1,0,1,0] in F% would correspond to (1)2° + (0)2' + (1)2% + (0)2® = 6. This facilitates
the representation of an n-variable boolean functions via a rule table, a list of length L = 2™ with
indices taken from 0 to L — 1, and the value at the k’th index given by the value of f on the
boolean vector corresponding to k. As an example, the 4-variable boolean function f(x) given by
f(x) = xox; would have a rule table of:

x (integerform) 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
f(x) 00000000000 O 1 1 1 1

Before implementing any of the code examples below, the user should import booleantools
into their Python file or session. One approach would be:

from booleantools import

For the remainder of the paper, we will use the functions g and / as examples, defined as follows.

x = (20, X1, ..., T4)
9(x) =21 ® 72 ® 13 D 714 © Ty
h(x) = xox1 & x2x3 B T4

This is easily translated to booleantools code.

>>> x = getX (5)
>>> g = BooleanFunction ([[1],[2],[3],[4].[0,1]], 5)
>>> h = x[0]xx[1] + x[2]*xx[3] + x[4]

A BooleanFunction object can be evaluated at a given point by treating the object as a function
and passing in either the vector entries directly or a list of values.
Below are two different methods of evaluating the function ¢ at a point.

>>>g(1,1,0,0,0)
>>>g([1,0,1,0,1])

0
0

The Hamming weight of an n-variable boolean function f is defined as the number of elements
in F} that f maps to 1. We write wt(f) for the Hamming weight of f. An n-variable boolean
function f is balanced if wt(f) = 2771, i.e. if the number of elements that f maps to 1 is exactly
the half the size of the domain. This is implemented in booleantools through the function
is_balanced.

>>> g.is_balanced ()
>>> h.is_balanced ()
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True
True

The Hamming distance between two n-variable boolean functions r and ¢ is defined as

d(r,q) = wi(r @ q)
and gives the number of elements of I, for which r and ¢ disagree. Hamming distance is
implemented in booleantools as follows:

>>> g.hamming_distance (h)

16

The dot product on F} is defined as d(r, ¢) (mod 2) and denoted by 7 - g.

The Walsh transform is a useful tool in the study of boolean functions. For an n-variable boolean
function f, the Walsh transform of f, denoted by W f, is a real-valued function defined for a vector
v € [F7 by:

W) (0) = 3 (10

zelFy

>>> g.walsh_transform ()

(o, o, o, o, o, 0, 0, 16, 0, 0, 0, 0, O, O, O, 16, O, O, O, O, O, O, O, —16,
0o, 0, 0, 0, 0, 0, 0, 16]

A boolean function f is called k-th order correlation immune if when we hold any £ variables
constant, the result (viewed as a function on n — k variables) has the same proportion of 1’s in the
output as the original function. Our implementation for determining k-order correlation immunity
is based on the Walsh transform, utilizing a criterion established by X1ao and Massey|(1988)), which
says that a function f is k-correlation immune if and only if W f(v) = 0 whenever wt(v) < k.

>>> g.is_correlation_immune (k=2)
>>> h.is_correlation_immune (k=2)

True
False

A boolean function f is k-resilient if it is balanced and k’th-order correlation immune. We note
that g(x) is 2-resilient, and h(x) is only 1-resilient.

>>> g.is_k_resilient (k=2)
>>> h.is_k_resilient (k=2)

True
False

If z; is a variable such that flipping the value of z; (i.e. replacing x; with z; @ 1) also changes
the value of f(x) for all x € F}, then z; is called a linear structure for the function f.
The method 1 inear_structures returns the linear structures of a boolean function, as a set.

g.linear_structures ()

{2, 3, 4}
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The algebraic degree of a monomial is defined as the number of variables in the product; the
degree of x; is 1, the degree of xgxix5 is 3, etc. The algebraic degree of an arbitrary boolean
function is defined as the maximum of the algebraic degrees of its monomials; the algebraic degree
of 1 @ x4 is 1,the algebraic degree of x1x5 B x5 is 2,etc.

A boolean function is affine if its algebraic degree is equal to 1. The nonlinearity of a boolean
function f is defined as the minimum distance from f to any element in the space of affine func-
tions. If f is linear, its nonlinearity is 0. We can use the booleantools functions is_affine
and nonlinearity to determine these properties. Our implementation of the nonlinearity
function also relies on the Walsh transform.

>>> g.nonlinearity ()
>>> h.nonlinearity ()
>>> g.is_affine ()
>>> h.is_affine ()

8

12
False
False

The Hamming distance leads us to further geometric considerations on the space of n-variable
boolean functions. The development of the booleantools package arose from our interest in
studying the space of boolean functions using ideas from geometry and group theory. We now
briefly review a few necessary ideas in this vein.

If X is a set, a permutation on X is a bijective function from the set to itself. We write Sym(n)
for the set of all permutations on [n], known as the symmetric group on [n|. Let f be a boolean
function, o be a permutation in Sym(n), and x; an indeterminate in the polynomial ring of Fs.
We define the function f” to be given by f?(z;) = f(zs()), fori € [n] i.e. the coordinates are
permuted before the boolean function is applied.

>>> perms = Sym(5)
>>> h.apply_permutation (perms[0])

BooleanFunction ([[0O, 1], [2, 3], [41], 5)

The diameter of a set with respect to some distance function is the maximum distance obtained
by any pair of points in the set. We can define a distance between two sets of boolean functions as
well. If X and Y are two sets of n-variable boolean functions, the Hausdorf{f distance between X
and Y is defined as:

X,Y) = i i .
dp(X,Y) = max{max min d(z, y), max min d(z, y) }

Below we show how to obtain the Hausdorff distance between the equivalence classes of our
example boolean functions:

>>> hausdorff_distance(g.get_orbit(), h.get_orbit())

12
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It is worth noting that the nonlinearity of an n-variable boolean function f is exactly the Haus-
dorff distance from the singleton set { f } to the set of all affine functions on n variables.

The deep relationships between algebraic structure, geometry, and group theory in coding theory
and cryptography remain a subject of active research. We suggest the classic Conway and Sloane
(2013)) as a starting point for the interested reader.

3.1. Other Functions and Features

In addition to the functions given in the previous subsection, there are a large number of other
functions which ease the ability to analyze particular classes of functions. We have included doc-
umentation for a list of them below. The most recent documentation is available on the package
github page.

Sym(n)

Input: an integer (int) n
Returns: a list of all possible permutations as a list

>>>Sym (2)

[C0,1), (1, 0)]

getX(n)

Input: an integer (int) n
Output: a list of functions of the form f(x) = x;, for 0 < i < n.

>>> getX (2)

[BooleanFunction ([[0]], 1), BooleanFunction ([[1]], 2)]

generate_function(rule_number, n)

Input: a rule number, which is an integer given by the base-2 encoding of the rule table.
Output: a boolean function on n variables with the specified rule number.

>>> generate_function (120, 3)

BooleanFunction ([[1, 2], [O0]], 3)

weight _k_vectors(k, nbits)

Input: £, the desired weight, and nbits, the number of bits
Output: a list containing all vectors in ] with weight exactly equal to k&

>>> weight_k_vectors (2, 3)

[rr, 1, o], 1, o, 1], [0, 1, 17]
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weight _k_or_less_vectors(k, nbits)

Input: k, the desired weight, and nbits, the number of bits
Output: a list containing all vectors in I} with weight less than or equal to k&

>>> weight_k_or_less_vectors (2, 3)

(o, o, o, 1, o, oj, o, 1, ojJj, o, o, 1j, 1, 1, oJ, 1, O, 11, [0, 1, 1]]

duplicate_free_list_polynomials(list_of_polys)

Input: A list of polynomials.
Output: The duplicate_ free list polynomials function takes a list of polynomials,
and returns the list with duplicates removed.

>>> duplicate_free_list_polynomials ([ BooleanFunction ([[1], [1,2]], 3),
BooleanFunction ([[1,2], [1]1], 3)1])

[BooleanFunction ([[1], [1, 2]], 3)]

orbit_polynomial(polynomial, permset)

Input: a polynomial (represented as a BooleanFunction object) and optionally a set of permuta-
tions

Output: the orbit of the polynomial under the permutation set

>>> orbit_polynomial (BooleanFunction ([[1]], 2), Sym(2))

[BooleanFunction ([[1]], 2), BooleanFunction ([[0]], 2)]

orbit_polynomial list(polynomial list, permset)

Similar to orbit_polynomial, but for a list of polynomials.
Input: list of polynomials (with each polynomial represented as a list of monomial lists) and a set
of permutations

Output: the orbit of the polynomials in polynomial_1ist under the set of all permutations in
permset.

>>> orbit_polynomial_list ([ BooleanFunction ([[1]], 2), BooleanFunction ([[0]],
2)1, Sym(2))

[ BooleanFunction ([[1]], 2), BooleanFunction ([[0]], 2),
BooleanFunction ([[0]], 2), BooleanFunction ([[1]], 2) ]
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siegenthaler_combination(f1,f2,new_var)

Input: two n-variable boolean functions, f; and f;, represented as booleanfunction objects
Output: A booleanfunction representing what we call the Siegenthaler combination of f;
and f5, both of which are boolean functions on n variables. This was introduced in Siegenthaler
(1984), and is defined as
9(x) = znfr(x) © (1 © z0) fo().

The Siegenthaler combination has the property that it increases the number of variables from
n to n + 1, while keeping the resiliency the same, and without introducing any additional linear
structures.

>>> fl1 = BooleanFunction ([[1]], 2)
>>> f2 = BooleanFunction ([[O], [0,1]], 2)
>>> nv = BooleanFunction ([[2]], 3)
>>> siegenthaler_combination (fl, f2, nv)

BooleanFunction ([[1, 2], [O], [O, 1], [O, 2], [0, 1, 2]], 3)

generate_all_seigenthaler_combinations(func_list,new_var)

Input: alist of booleanfunction objects
Output: a list giving all possible Siegenthaler combinations of the functions, without removing
duplicates.

>>> fl1 = BooleanFunction ([[1]], 2)

>>> f2 = BooleanFunction ([[O0], [0,1]], 2)
>>> f3 = BooleanFunction ([[2]],2)
>>> nv = BooleanFunction ([[3]], 3)

>>> generate_all_siegenthaler_combinations ([fl,f2,f3],nv)

[ BooleanFunction ([[1]], 4),
BooleanFunction ([[1, 3], [0], [O, 1], [O, 3], [O, 1, 3]1], 4),
BooleanFunction ([[1, 3], [2], [2, 3]1], 4),
BooleanFunction ([[O, 3], [0, 1, 3], [1], [1, 311, 4),
BooleanFunction ([[0], [0, 1]], 4),
BooleanFunction ([[O0O, 3], [0, 1, 3], [2], [2, 3]1], 4),
BooleanFunction ([[2, 3], [1], [1, 311, 4),
BooleanFunction ([[2, 3], [0], [O, 1], [O, 3], [O, 1, 3]1], 4),
BooleanFunction ([[2]], 4)]

reduce_to_orbits(f_list, permset)

Input: a list of functions £_11ist and a set of permutations permset

Output: a list of representatives from each class, under the action of permset on £ _1ist

>>> reduce_to_orbits ([ BooleanFunction ([[0]], 2), BooleanFunction ([[1]], 2)],
Sym(2))

[BooleanFunction ([[0]], 2)]
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In addition to the methods for the analysis of boolean functions, there are several convenience
functions.

Addition and multiplication of functions

The addition and multiplication of functions is fully supported, using standard Python notation for
addition and multiplication. This is seen above, in the Python construction of function h.

BooleanFunction.tex_str(math_mode=False)

Output: a IXTEX representation of this function, along with proper math mode support if math_mode
is set to True.
Example:

>>> print(g.tex_str())
>>> print(h. tex_str (math_mode=True) )

x_{1} \oplus x_{2} \oplus x_{3} \oplus x_{4} \oplus x_{0}x_{1}
$x_{0}x_{1} \oplus x_{2}x_{3} \oplus x_{4}$

When rendered in IXTEX, we get the representations
9(xX) =21 B a2 B x3 B Ty B TTy

h(x) = xox1 G x2x3 B T4

3.2. Source Code

The full source code of the booleant ools package is available in[Appendix B and on GitHub
athttps://github.com/MagicalAsh/BooleanFunctions.

4. Example - Geometry of 2-Resilient Boolean Functions

As an example of the utility of the booleantools package, we demonstrate how we used
it explore the geometry of the space of 2-resilient nonlinear boolean functions on 5 variables.
We only consider nonlinear functions, since affine functions are known to be cryptographically
insecure.

It should be noted that we are not the first to consider these functions. All 5-variable 2-resilient
boolean functions were examined in Braeken et al. (2005), which determined cryptographic prop-
erties of all boolean functions on six variables or less.

Using the booleantools package, we were able to determine all nonlinear 2-resilient Boolean
functions on five variables by exhaustive search. We then sorted the functions into their orbits
under the symmetric group. The following table summarizes our findings for the orbits of the non-
linear 2-resilient boolean functions on five variables. The code we used is available in
[A] and took approximately 20 minutes to run on a personal computer running Debian 4.14 on a
twenty core Intel Xeon. Additionally, after verifying the classes of 2-resilient Boolean functions,
we calculated the diameter of each class, along with the linear structures of each class.

The code in works by producing every possible quadratic polynomial on five vari-
ables, then sorting the resulting polynomials based on their resiliency. After processing all possible
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TABLE 4.1. The class representatives, diameter, orbit size, and linear structures of
5-variable 2-resilient boolean functions

Orbit Representative Linear Structures Number in Orbit
xo@xl@xQ@xg@x4@xox1 Lo, T3, T4 10
xl@I3@$4@l’0[E2 T1,T3,T4 10
T1 D T2 D3 DTy D 0T T, X3, Ty 20
To D x4 @ZL‘QIl @CI)O{L’;; @Ill'g T, T4 10
LoD x1 Dxo D T3 D x9x1 D Tpxg D X124 To, T4 30
1 Dx3D xs D x9T1 D ToT2 T3, T4 60
To D1 D X2 D T3 D ToTo D X1 T2, T3 60
1D 3D g D Tox1 D T2 D 173 D X2x3 Ty 60
Orbit Number Orbit Representative Diameter of Orbit
1 LoD 11 Dro D a3 Py P xor: 12
2 T1 D T3 D Ty D Tox2 12
3 xl@I2@$3@ZB4@I0$1 16
4 To D x4 D Tox1 D Tpx3 G X123 12
5 To D x1 D 2D x3D Tox1 D ToTy D 174 16
6 1D x3 D x4 D xox1 D ToT2 24
7 T1 DTy DT3P Ty D Toxr P 172 20
8 To D xy D x5 D172 D 11703 D T2y D X374 24

quadratic functions, it then sorts the functions into their orbits under the action of the symmetric
group, i.e. permutation of variables. The resulting output is a representative from each class of
functions, output as a json file.

It may be executed from a command line as

python3 generate_classes.py 5

5. Conclusion, Future Work, and an Invitation

The reality is that any software package can be extended and improved. We intend to continue
to develop booleantools, adding more support for cryptographic tests, methods for properties
from coding theory, and support for group theory and group actions. We also intend to further
optimize the existing methods for efficiency, as well as providing more support for multithreading
and parallelization.

The code will be maintained at the second author’s Git Hub repository (athttps://github.
com/MagicalAsh/BooleanFunctions)and as apackage on PyPi (https://pypi.python.
org/pypi/booleantools).

We invite questions, suggestions and feature requests from interested parties. Those interested
in contributing code or ideas for improvement are welcome to do so through a pull request at the
GitHub repository.
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Appendix A. Code for Class Verification

from booleantools import BooleanFunction
import sys

import booleantools as bt

import itertools

import multiprocessing as mp

import json

# linear part + quadratic part
def analyze_polys(poly_gens, que, thread_no, n):
for polys in poly_gens:
for poly in polys:
func = BooleanFunction (poly, n)
if func.is_k_resilient (k=n—3) and not func.is_affine ():
que . put(poly)

# Once all of the generators have executed
que . put(thread_no)

def reduce_classes_dgen(class_list , new_f, n):
Produces a «MINIMALLY* reduced function list. This is by no means fully
reduced .
for f in class_list:
if new_f in f:
return None

class_list.append(get_class (new_f, n))
return None

def reduce_classes(func_list):
class_list = []
for f in func_list:
in_one = False
for g in class_list:
if f in g:
in_one = True
if in_one == False:
class_list.append(f.get_orbit())
return class_list

def get_class(f, n):
perms = bt.Sym(n)



https://pip.pypa.io/en/stable/installing/
https://pip.pypa.io/en/stable/installing/
http://ieeexplore.ieee.org/document/6037/
http://ieeexplore.ieee.org/document/6037/
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return [apply-permutation (f,

apply_permutation (poly, perm):
def apply_perm_to_monomial (perm, monomial):
out [1
for var in monomial:
out.append(perm|[ var])
return out

out [apply_-perm_to_monomial (perm, i) for i

return out

powerset(iterable):

s = list(iterable)
return list(itertools.chain.from_iterable(itertools.combinations(s,
r in range(len(s)+1)))

func_generator(lin_part, non_lin_parts):
lin [[mon] for mon in lin_part]
for nonlinear in non_lin_parts:

yield lin + list(nonlinear)

main () :

n = int(sys.argv([1l])
nonlin = powerset(itertools.combinations(list
nonlin .remove (())

lin powerset(list (range(n)))

generator_list [func_generator(linear ,
size len(generator_list)//16

chunked [generator_list[i:i+size] for i
size) ]

= in

que mp. Queue ()
threads [1
for generators in chunked:
thred mp. Process (target=analyze_polys ,
threads), n))
thred . start ()
threads .append(thred)

deadCnt = 0
f_out = []
while deadCnt < len (chunked):
f = que.get()
if isinstance (f, list):
reduce_classes_dgen (f_out, f, n)
else: # it’s an int
deadCnt += 1

threads[f].join ()

f_out reduce_classes ([ BooleanFunction (f[0],

nonlin) for

41

sigma) for sigma in perms]

in poly]

r) for

(range(n)), 2))

linear in lin]

range (0, len(generator_list),

args=(generators , que, len(

n) for f in f_out])
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94

95 with open(”out/classes_%dv.json” % n, "w”’) as outfile:

96 outfile.write (json.dumps({i: f_out[i][O0].listform for i in range(len(
f_out))}, indent=4))

97

98| if __nmame__ == ”__main__":

99 if (len(sys.argv) != 2):

100 print ("USAGE: python3 generate_classes.py <n>")

101 else:

102 main ()

Appendix B. Full Source Code for booleantools Package

import copy as _copy

import booleantools.fields as _fields

from itertools import combinations as _combs
4/ from itertools import permutations as _perms
5

W N =

6| def Sym(n):

7 259

8 Creates a set containing all permutations in the symmetric group $S_n$.

9 Returns:

10 list: A set containing every permutation in $S_n$, in one—line
notation .

11 e

12 return list(_-perms([i for i in range(n)]))

14]GF2 = _fields .PrimeField (2)

15

16| class FieldFunction:

17

18 Represents a function over a Finite Field.

19

20

21 def __init__(self, listform , n, field):

22 self.listform = listform

23 self.n = n

24 self.field = field

25 self.__reduce ()

26

27 def __call__(self, xargs):

28 args = list(args)

29 if len(args) == 1 and hasattr (args[0], ’~__getitem__"):
30 args = args|[0]

31 elif len(args) == 1 and isinstance (args[0], int):

32 args = _dec_to_base(args[0], self.n, self.field.order)
33

34 for pos, val in enumerate(args): #Simplification for inputs
35 args[pos] = self.field.get(val)

36

37 value = self.field.get(0)

38 for monomial in self.listform:
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if monomial not in self.field:
prod = self.field.get(1l)
for var in monomial:
if var not in
prod %= args[var]
else:
prod *= var
value += prod
else:
value += monomial

return self.field.value_of(value)

def apply_-permutation(self, perm):

999999

Applies a permutation to this

ML
£\ sigma(x)
A

where sigma is in one
Args:

perm (list): The permutation to
Returns:

FieldFunction: A function where

993939

line notation.

self.field:

function .

apply, in one line notation.

the permutation was applied.

def apply_perm_to_monomial (perm, monomial):

out = []
for var in monomial:
if var in self.field:
out.append(var)
else:
out.append (perm|[var])
return out

out =
return FieldFunction (out,

[apply_perm_to_monomial (perm,
self .n,

def __add__(a, b):
if a.field != b.field:
raise ValueError (”Summands from
if isinstance (b,
return FieldFunction(a.listform
else:
return FieldFunction(a.listform
field)

def __mul__(a, b):
if a.field != b.field:
raise ValueError(”Multiplicands

_fields .PrimeField.

i) for i in self.listform]

self . field)

different fields.”)
_FieldElement):
+ [[b]], a.n, a.field)

+ b.listform , max(a.n,

are not from the same field.”)

b.n), a.
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if isinstance (b, _fields.PrimeField. _FieldElement):

out = [monomial + [b] for monomial in a.listform ]
return FieldFunction(out, a.n, a.field)

else:
out = []

for monomial in a.listform:
out += [monomial + monomial_-b for monomial_b in b.listform ]

return FieldFunction (out, max(a.n, b.n), a.field)

def tex_str(self, math_mode=False):

99399

Creates a TeX String from this FieldFunction.
Args:

math_mode (bool, optional): Whether to return with surrounding ’$
Returns :
str: A proper TeX String representing this function.
out = 7”7 if not math_mode else ”$”
flag = False
for monomial in self.listform:
out += ” \\oplus ” if flag else 77
for term in monomial:
out += "x_{” + str(term) + 7}”
flag = True
return out if not math_mode else out + 7$”
def __str__(self):
return self.tex_str ()
def __repr__(self):
return ”FieldFunction(%s, %s, %s)” % (str(self.listform), str(self.n),
\
str(self.field))
def __reduce(self):
for i in range(len(self.listform)):
self.listform[i] = [val for val in self.listform[i] if val != self

.field.get(1)]

class BooleanFunction(FieldFunction):

999393

This class represents a boolean function ($\\mathbb{F}_2"n \\rightarrow
\\mathbb{F} _2) and implements a large amount of useful functions.

999399

def __init__(self, listform , n):

999999

Creates a boolean function on n variables.
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Attributes :
listform (list): A list of the monomials this polynomial contains.
Ex. \[x_1 \oplus x_2x_3\] is [[O0], [1l, 2]].
n (int): The number of variables, where n — 1 is the highest

term in the list form.

993939

super (). __init__(listform , n, GF2)
_copyList = []

#This is done for space efficiency. Basically reduces coefficient mod

for i in listform:
if 1 not in _copyList:
_copyList.append (i)
else:
_copyList.remove (i)

self.listform = _copyList
self .update_rule_table ()

hamming_weight(self):

Returns the Hamming Weight of this function.

Returns:
int: The hamming weight of this function.

993939

return sum(self.tableform)

hamming_distance (self , other):

999999

Determines the hamming distance of a function or a list of functions.

Args:

other (BooleanFunction): function or list of functions to find
distance to.

Returns:
int: A list of distances if #other is a list, or a float

another function.

99999

if hasattr(other, ”__getitem__"): #If other is a list
return [self.hamming_distance(f) for f in other]
else:
u self .tableform
% other.tableform
s = sum([ _delta(ul[k],v[k]) for k in range(len(u))])
return s

walsh_transform (self):

99999

Performs a Walsh transform on this function.
Returns:

if #other
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list: A list containing the walsh transform of this function.

993999

f = self.tableform

nbits = self.n
vecs = [(-dec_-to_bin(x,nbits), x) for x in range(len(f))]
def Sf(w):

return sum([(—1)*x(f[x]" _dot_product(vec,w)) for vec,x in vecs])

Sflist = [Sf(vec) for vec,x in vecs]
return Sflist

def walsh_spectrum(self):

Generates the Walsh spectrum for this function.
Returns:

float: The Walsh spectrum of this function.
f = self.tableform
walsh_transform_f = self.walsh_transform ()
spec = max([abs(v) for v in walsh_transform_f])
return spec

def is_balanced (self):

993939

Determines whether this function is balanced or not.

# Returns

bool: True if balanced, False otherwise.
f = self.tableform
return sum(f) == len(f)/2

def is_correlation_immune (self ,k=1):

LIXIXT)

Determines if this function is k correlation immune.

Args:
k (int): immunity level

LIXIXT)

if k > self.n:

raise BaseException(”Correlation immunity level cannot be higher

than the number of variables.”)
f = self.tableform

walsh_transform = self.walsh_transform ()

nbits = self.n

vectors_to_test = [_bin_to_dec(vec) for vec in
weight_k _or_less_vectors (k,nbits )]

walsh_transform_at_weight_k = [walsh_transform[vec] for vec
vectors_to_test ]

return walsh_transform_at_weight_k == [0]x*len (

walsh_transform_at_weight_k)

def is_k_resilient(self ,k=1):

999999

Determines if this boolean function is k—resilient.

in




def

def
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def

def
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Args:
k (int): immunity level

99999

return self.is_balanced () and self.is_correlation_immune (k=k)

is_affine (self):
Determines if this function is affine.
Returns :
True if this function is affine, false otherwise.

993939

return True if self.nonlinearity () == 0 else False

get_orbit (self , perms=None):

999999

Gets the orbit of this function under action of the symmetric group.

Args:
perms — default None. Uses this as a permutation set, otherwise

full symmetric group on n symbols.
Returns :
A list containing all functions in the orbit of this function.

993999

return orbit_polynomial (self, perms)

nonlinearity (self):

993939

Gets the nonlinearity of this boolean function.

Returns:
int: Nonlinearity of this boolean function.

993939

return int(2xx(self.n—1) — 0.5xself.walsh_spectrum () )

linear_structures (self):

LIXIXT)

Creates a set of values that exist as linear structures of this

polynomial .
Returns :
set: Set of linear structures.
flatten = lambda 1: [item for sublist in 1 for item in sublist]
linear_structs = set(flatten(self.listform))

def

for monomial in self.listform:
if len(monomial) > 1:
linear_structs —= set(monomial)

return linear_structs

apply_permutation (self , perm):

999999

47
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295 Applies a permutation to the ordering of the variables to this
function .

296 Args:

297 perm — The permutation to apply.

298 Returns:

299 The newly permuted function.

300

301 f = super().apply_permutation (perm)

302 return BooleanFunction(f.listform , f.n)

303

304 def __str__(self):

305 return self.tex_str ()

306

307 def __add__(a, b):

308 sum_f = FieldFunction.__add__(a, b)

309 return BooleanFunction(sum_f.listform , sum_f.n)

310

311 def __mul__(a, b):

312 prod_f = FieldFunction.__mul__(a, b)

313 return BooleanFunction (prod_f.listform , prod_f.n)

314

315 def __eq--(self,poly2):

316 return self.tableform == poly2.tableform

317

318 def __repr__(self):

319 return ”“BooleanFunction(%s, %s)” % (str(self.listform), str(self.n))

320

321 def update_rule_table(self):

322 rule_table_length = 2%xself.n

323 rule_table = [0O]+xrule_table_length

324 for k in range(rule_table_length):

325 point_to_evaluate = _dec_to_bin(k, self.n)

326 rule_table[k] = self(xpoint_-to_evaluate)

327 self.tableform = rule_table

328

329 def __hash__(self):

330 return _bin_to_dec (self.tableform)

331

332

333 def getX(n, field=GF2):

334

335 Gets a list of all possible x_-i in order, from O to n—1.

336 v

337 if field == GF2:

338 return [BooleanFunction ([[i]], i+1) for i in range (0, n)]

339 else:

340 return [FieldFunction ([[i]], i+1, field) for i in range(0, n)]

341

342| def _gen_atomic(n, pos):

343 prod = BooleanFunction ([[GF2.get(1)]], n)

344 for position, val in enumerate(_dec_to_bin(pos, n)):

345 if val == 1:

346 f = BooleanFunction ([[ position]], n)

347 prod x= f
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else:
f = BooleanFunction ([[ position], [GF2.get(1)]], n)
prod x= f
if prod.tableform[pos] != 1:

raise BaseException(”_gen_atomic failed! Please report on Github!”)
return prod

_GF2_to_ints (Ist):
return [1 if x == GF2.get(1l) else 0 for x in l1st]

generate_function (rule_no, n):

endFunc = BooleanFunction ([], n)

binary_list = _dec_to_bin(rule_no, 2xx*n)

for pos, val in enumerate(binary_list[:: —1]):
if val == 1:

endFunc += _gen_atomic(n, pos)
return endFunc

_bin_to_dec (num) :

999399

Converts a binary vector to a decimal number.

return sum([num[i]*2%%i for i in range(len (num))])
_dec_to_bin (num, nbits):

Creates a binary vector of length nbits from a number.

999999

new_num = num

bin = []
for j in range(nbits):
current_bin_mark = 2xx(nbits —1—j)

if (new_num >= current_bin_mark):
bin.append (1)
new_num = new_num — current_bin_mark
else:
bin .append (0)
return bin

_dec_to_base (num, nbits , base):

999399

Creates a binary vector of length nbits from a number.

999999

néew_num = num

bin = []
for j in range(nbits):
current_bin_mark = basexx(nbits —1—j)

if (new_num >= current_bin_mark):
bin.append (1)
new_num = new_num — current_bin_mark
else:
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bin.append (0)
return bin

_delta(x,y):

Returns 1 if x and y differ, O otherwise.

999399

return x =y

_hausdorff_distance_point(a,B):

999393

Calculates the minimum distance between function a and the functions in

the set B.

999999

return min([a.hamming_distance(b) for b in B])

_hausdorff_semidistance_set (A,B):
return max ([ _hausdorff_distance_point(a,B) for a in A])

hausdorff_distance (X,Y):

999393

Calculates the Hausdorff distance between two sets of boolean functions.
HD1 _hausdorff_semidistance_set (X,Y)

HD2 _hausdorff_semidistance_set (Y,X)

return max ([HD1,HD2])

_dot_product(u,v):

999399

Basic mod 2 dot product.
s = sum(ul[k]*xv[k] for k in range(len(u)))
return s%?2

weight_k_vectors (k, nbits):

999999

Generates all vectors with hamming weight k.

nums = range (nbits)

vector_set_to_return = []

k_combinations = [list(x) for x in _combs(nums,k)]

for j in k_combinations:
vec_to_add = [int(y in j) for y in range(nbits)]
vector_set_to_return .append(vec_to_add)

return vector_set_to_return

weight_k_or_less_vectors(k, nbits):

999393

Generates all vectors of weight k on nbits bits.

Args:

k — weight

nbits — the number of bits
Returns:

All vectors of weight k on nbits bits.
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999399

output = []
for i in range (0, k+1):
output += weight_k_vectors (i, nbits)

return output

def _product(x):
return reduce ((lambda y,z : yxz), Xx)

def duplicate_free_list_polynomials(list_.of_polys):
Takes a list of boolean functions and generates a duplicate free list of
polynomials .

# Arguments
list_of _polys (BooleanFunction): A list of polynomials.

# Returns
list: A duplicate free list of functions
outlist = []
for poly in list_of_polys:
if True not in [poly == poly_in_out for poly_in_out in outlist]:
outlist.append(poly)
return outlist

def orbit_polynomial (polynomial, permset=None):

999399

Orbits a polynomial using the given permutation set.

Args:
permset: A set of permutations to apply to the function
Returns:
A list of the polynomials created by the given orbits.
if permset is None:
permset = Sym(polynomial.n)
return duplicate_free_list_polynomials ([ polynomial.apply_permutation (i)
for i in permset])

def orbit_polynomial_list(polynomial_list, permset=None):

999393

Orbits a list of polynomials using the given permutation set.

Returns:

A list of lists of the polynomials created by the given orbits.
return [orbit_polynomial (polynomial, permset) for polynomial in
polynomial_list]

def siegenthaler_combination (fl,f2,new_var):

999399
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Generates a Siegenthaler Combination of two functions.

Args:
f1 (BooleanFunction): The first function
f2 (BooleanFunction): The second function
new_var (int): New variable for the combined function.

Returns :
The Siegenthaler combination of $f_1$ and $f 2%

999393

fl_times_new_var = fl % new_var
f2_times_one = f2
f2_times_new_var = f2 x new_var

return fl_times_new_var + f2_times_one + f2_times_new_var

generate_all_siegenthaler_combinations (func_list ,new_var):
Generates all of the possible Siegenthaler combinations
of the given functions.

Args:
func_list — A list of functions to perform the Siegenthaler
combination function on.

Returns :
A list of all possible Siegenthaler combinations for the given
functions .
all _siegenthaler_combinations = []
for f1 in func_list:
for f2 in func_list:
flf2siegenthalercombination = siegenthaler_combination (fl,f2,
new._var)
all _siegenthaler_combinations .append(flf2siegenthalercombination)
return all_siegenthaler_combinations

min_nonzero_dist(polyl, classA):
Determines the minimum nonzero distance between a polynomial and its
nearest neighbor.

Args:
polyl — A boolean function
classA — A class of boolean functions.

Returns:
The minimum nonzero distance between polyl and every element of classA

999399

dists = [polyl.hamming_distance(f) for f in classA]
min_nonzero = float(”inf”)
for dist in dists:

if dist != 0 and dist < min_nonzero:
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min_nonzero = dist
return dist

def reduce_to_orbits(f_list , permset):
Reduces a list of functions to a list of function classes given a
permutation set.
basic_polys = []
flatten = lambda 1: [item for sublist in 1 for item in sublist]
for f in f_list:
if f not in flatten ([orbit_polynomial (permset, basic) for basic in
basic_polys]):
basic_polys.append(f)
return basic_polys

DEPARTMENT OF MATHEMATICS AND COMPUTER SCIENCE, WESTERN CAROLINA UNIVERSITY, CULLOWHEE,
NC 28723
E-mail address: adpenland@email .wcu.edu

DEPARTMENT OF MATHEMATICS AND COMPUTER SCIENCE, WESTERN CAROLINA UNIVERSITY, CULLOWHEE,
NC 28723

E-mail address: wsrogers3@catamount .wcu.edu



	1. Introduction
	2. Technical Description
	2.1. Installation and Requirements

	3. Background & Examples
	3.1. Other Functions and Features
	
	3.2. Source Code

	4. Example - Geometry of 2-Resilient Boolean Functions
	5. Conclusion, Future Work, and an Invitation
	Acknowledgments.
	References
	Appendix A. Code for Class Verification
	Appendix B. Full Source Code for booleantools Package

