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Simulations on a Mathematical Model of Dengue Fever with a Focus on Mobility

Kelly Reagan, Karen A. Yokley, and Crista Arangala

ABSTRACT. Dengue fever is a major public health threat, especially for countries in tropical cli-
mates. In order to investigate the spread of dengue fever in neighboring communities, an ordinary
differential equation model is formulated based on two previous models of vector-borne diseases,
one that specifically describes dengue fever transmission and another that incorporates movement of
populations when describing malaria transmission. The resulting SIR/SI model is used to simulate
transmission of dengue fever in neighboring communities of differing population size with partic-
ular focus on cities in Sri Lanka. Models representing connections between two communities and
among three communities are investigated. Initial infection details and relative population size may
affect the dynamics of disease spread. An outbreak in a highly populated area may spread somewhat
more rapidly through that area as well as neighboring communities than an outbreak beginning in a
nearby rural area.

1. Introduction

Dengue fever is a major public health threat to various countries and is difficult to prevent
or control (Sirisena and Noordeen, 2014). More than 2.5 billion people living in temperate or
tropical climates are at risk for dengue fever. Specific therapy treatments or effective intervention
techniques have not yet been developed to fully control the virus (Laughlin et al., 2012), and
the progression of more severe forms of the disease is only partially understood (Monath, 1994).
Dengue fever research is imperative for public health officials around the world to better understand
the virus dynamics and reduce the number of infections.

Dengue fever and dengue hemorrhagic fever belong to a group of four viruses (DEN-1, DEN-2,
DEN-3, and DEN-4). Being infected by one of the virus serotypes does not mean that the infected
person is immune from the other strains (Gubler and Clark, 1995; Gubler et al., 2014). The four
serotypes spread and develop at different rates, which influences how quickly they cause more se-
rious conditions (Balmaseda et al., 2006). Symptoms of dengue fever include a high fever, severe
headache, severe eye pain behind the eyes, muscle and/or bone pain, rash, mild bleeding manifes-
tation, and/or low white cell count (CDC, 2012). If not treated, the serotypes can develop into more
serious forms of the disease called dengue hemorrhagic fever (DHF) and dengue shock syndrome
(DSS). Individuals who contract a second serotype of the disease also have an increased risk of
developing DHF/ DSS. Because of its severity and the significant increase of DHF reported cases
in the 1980s and 1990s (Gubler, 1998), DHF is a major concern of countries with tropical climates
(Monath, 1994). The virus is transmitted through the mosquitoes Aedes aegypti and Aedes albopic-
tus, which grow and thrive in warm climates. Recent trends of urbanization and globalization have
also increased the populations of these mosquitoes and the prevalence of the disease (Gubler and
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Clark, 1995; Gubler et al., 2014). The mosquitoes that transmit dengue viruses bite during the day
(unlike malaria transmitting mosquitoes), which make interventions like barrier nets ineffective
for reducing dengue infection. Vaccines for dengue fever have not been widely distributed, but
one quadrivalent vaccine has been administered in a few countries (Maron, 2015). Additionally,
the lack of antiviral drugs and effective vaccines make controlling dengue transmission difficult,
and countries such as Sri Lanka currently face a much higher health threat from dengue fever than
from malaria (Sirisena and Noordeen, 2014). Repellents can be used to prevent the contraction of
dengue fever and may be an appropriate strategy for combating the disease (Dorsett et al., 2016).

Malaria has been shown to persist in urban areas due to human transportation to rural areas with
higher malaria prevalence. This persistence suggests that control methods against vector-borne
diseases should specifically consider mobile populations (Osorio et al., 2004), and risk factors for
dengue may vary greatly in similar environmental areas (Van Benthem et al., 2005; Vanwambeke
et al., 2006). Dengue fever was originally more prevalent in densely-populated areas, but the
disease appears to have spread to rural areas in some countries (Sirisena and Noordeen, 2014).
Understanding how vector-borne diseases are transmitted in a mobile population could lead to
more effective interventions and hence better control of these diseases.

Changes in populations and the transmission of a disease within each population can be de-
scribed using ordinary differential equation (o.d.e.) models. The original model of mosquito-borne
diseases, the Ross-MacDonald model, used rates of change to describe populations of humans and
mosquitoes becoming infected with malaria (Macdonald, 1957) and many subsequent models of
vector-borne diseases use similar equations and assumptions (Reiner et al., 2013). The basic Ross-
MacDonald model included a differential equation describing the rate of change for infected hu-
mans and one for the rate of change of infected vectors, and the overall populations remained fixed.
Many vector-borne o.d.e. models use similar structures based on populations of susceptible (S) and
infected (I) populations (Aneke, 2002; Rodrı́guez and Torres-Sorando, 2001; Torres-Sorando and
Rodrıguez, 1997), sometimes including additional categories for humans such as recovered or re-
moved (R) (Esteva and Vargas, 1998), exposed or incubating (E), or both (Aron and May, 1982;
Pinho et al., 2010). Other models also incorporate time delay (Aron and May, 1982) (Wei et al.,
2008). Additional models have focused on movement of humans to different geographic areas
(Auger et al., 2008; Rodrı́guez and Torres-Sorando, 2001; Torres-Sorando and Rodrıguez, 1997)
or incorporated discrete or probabilistic modeling techniques (Lloyd et al., 2007; MacDonald et al.,
1968; Yokley et al., 2014).

Dengue fever models have been constructed to specifically involve interaction of the differ-
ent serotypes (Esteva and Vargas, 2003; Feng and Velasco-Hernández, 1997) and various incuba-
tion and infection periods (Chowell et al., 2007). Other models have focused on the geographic
movement of dengue using partial differential equations to describe the changes of populations
as functions of time and space (Maidana and Yang, 2008) or using a discrete-time model (Nevai
and Soewono, 2014). Using spatially-separated populations has more commonly been used in
malaria modeling (Auger et al., 2008; Rodrı́guez and Torres-Sorando, 2001; Torres-Sorando and
Rodrıguez, 1997), and the current study will use similarly structured o.d.e. models.

The current study develops and investigates a mathematical model of dengue fever transmission
in populations divided into patches. The developed model combines aspects of an existing model
of dengue fever (Esteva and Vargas, 1998) with the structure representing the movement of popula-
tions from a previous malaria model (Torres-Sorando and Rodrıguez, 1997). After the new model
structure is established and appropriate parameters are identified, various scenarios are simulated
in order to see how movement between populations affects dengue transmission. The current study
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aims to simulate the effects of transportation of individuals between rural and urban settings, pos-
sibly related to employment or education. Therefore, the “visitation” model from (Torres-Sorando
and Rodrıguez, 1997) was used as a basis for the movement of individuals as opposed to other vec-
tor transmission models incorporating more generalized migration (Auger et al., 2008; Rodrı́guez
and Torres-Sorando, 2001; Torres-Sorando and Rodrıguez, 1997). Additionally, time was modeled
continuously in the current study, which differentiates the current work from the model in (Nevai
and Soewono, 2014).

2. Model Background

Since dengue is typically transmitted during the day, many who contract the disease do so while
in their work or school setting. The transmission of dengue fever is highly affected by the mo-
bility of individuals during the vulnerable hours of the day when the mosquitoes are biting. The
objectives of the current study are to construct a model that incorporates movement of individuals
in related communities and to use simulations to determine how dengue fever may spread from
one of these locations to another. In order to model dengue fever transmission among separate but
interacting populations, a model is developed by using the dengue fever model from (Esteva and
Vargas, 1998) merged with the “visitation” concepts from the malaria model in (Torres-Sorando
and Rodrıguez, 1997). The model in (Esteva and Vargas, 1998) was chosen to be the starting point
for the model development in this study in part for its SIR/SI structure (see Section 2.1), and in-
teractions between communities could then be incorporated into the dengue fever model using a
fractional visitation time (see Section 2.2).

2.1. Dengue SIR/SI Model

Esteva and Vargas (1998) developed a model of humans and mosquitoes contracting dengue
fever, and assumptions used in the model include constant human population size and infection by
only one serotype. The model from Esteva and Vargas (1998) is presented in equations (2.1)-(2.5).

dSh(t)

dt
= µhNh −

βhb

Nh +m
Sh(t)Iv(t)− µhSh(t) (2.1)

dIh(t)

dt
=

βhb

Nh +m
Sh(t)Iv(t)− (µh + γh)Ih(t) (2.2)

dRh(t)

dt
= γhIh(t)− µhRh(t) (2.3)

dSv(t)

dt
= A− βvb

Nh +m
Sv(t)Ih(t)− µvSv(t) (2.4)

dIv(t)

dt
=

βvb

Nh +m
Sv(t)Ih(t)− µvIv(t) (2.5)

Nh and Nv represent the human and vector population sizes, µh represents the per capita birth
and death rate assuming a constant population, µv is a per capita mortality rate of the mosquitoes,
γh is a constant recovery rate for the humans, A is a constant recruitment rate, b is the average
number of bites per mosquito per day, βh is the probability that the disease is transmitted from
vector to human, βv is the transmission probability from human to mosquito, and m is the number
of alternative hosts available for mosquitoes to bite (Esteva and Vargas, 1998).
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Overall, equations (2.1)-(2.5) describe the dynamics between susceptible humans (Sh) and mosquitoes
(Sv), infected humans (Ih) and mosquitoes (Iv), and recovered humans (Rh) for a one serotype in-
fection in a fixed population. The number of infected individuals is multiplied by the bite rate, the
appropriate transition rate, and the proportion of potential hosts that are human to represent the
movement from a susceptible class into an infected one. Susceptible vectors are added through a
constant recruitment rate, A, and both susceptible and infected mosquitoes are modeled to die and
leave the system at the same rate. Death due to dengue fever is not incorporated.

2.2. A Malaria Model Incorporating Mobility

Spatial and temporal factors have been previously incorporated into malaria models (Auger
et al., 2008; Rodrı́guez and Torres-Sorando, 2001; Torres-Sorando and Rodrıguez, 1997). In
(Torres-Sorando and Rodrıguez, 1997), two frameworks were considered to describe movement
of individuals, denoted as “visitation” and “migration” models. Although the models in (Torres-
Sorando and Rodrıguez, 1997) describe malaria transmission, both malaria and dengue fever share
similar transmission patterns based on climate and parasite-host interactions. Torres-Sorando and
Rodrıguez (1997) developed their models to focus on the connection between regions (which can
be thought of as patches or locations on a grid) and how long humans travel to those patches in
two different ways. The “migration” model assumes that individuals leave their patch and do not
return. Alternatively, the “visitation” model allows individuals to travel to another patch for a
certain time period, T , and then return to their patch of origin within a day. Hence, the “visita-
tion” model provides a more appropriate framework for characterizing mosquito/human interaction
when the humans are traveling for portions of each day, such as commuting to school or work. The
equations of the “visitation” model from (Torres-Sorando and Rodrıguez, 1997) are presented in
equations (2.6)-(2.9).

dX1(t)

dt
= βY1(t)

(
N

a
−X1(t)

)
− γX1(t) + βT

(
N

a
−X1(t)

)
Y2(t) (2.6)

dY1(t)

dt
= β (X1(t) + TX2(t))

(
M

a
− Y1(t)

)
− µY1(t) (2.7)

dX2(t)

dt
= βY2(t)

(
N

a
−X2(t)

)
− γX2(t) + βT

(
N

a
−X2(t)

)
Y1(t) (2.8)

dY2(t)

dt
= β (X2(t) + TX1(t))

(
M

a
− Y2(t)

)
− µY2(t) (2.9)

β represents the biting rate, N and M are the population sizes of the humans and mosquitoes
respectively, γ is the per capita rate of recovery in humans, µ is the per capita rate of mortality
in mosquitoes, Xi(t) denotes the number of infected humans in patch i at time t, and Yi(t) is
the number of infected mosquitoes in patch i at time t. T represents the time period for which
the humans leave their home patch and visit a neighboring patch, and two patches (i = 1, 2)
are modeled. If individuals are infected in one patch, the individuals and mosquitoes from the
other patch become infected once interaction occurs between the two patches. The structure of
equations (2.6)-(2.9) is similar to those presented in Section 2.1 but equations (2.6)-(2.9) only
incorporate human hosts.
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3. Developing a Dengue SIR/SI Model Connecting Related Populations

As in the previous study in (Esteva and Vargas, 1998), the human population was assumed to
remain constant. The model also only represents infection with a single serotype. The two models
were merged using the majority of the structure from the model in Section 2.1 and the visitation
aspects of the model described in Section 2.2. A few modifications related to parameters were also
made to more fully integrate the two models, and those parameters are discussed following the
model equations.

3.1. The SIR/SI Model

The resulting system of equations representing the three patch system is presented below.

dSh1(t)

dt
= µhNh1 −

βhb

N∗
h1 +m

(T11Sh1(t)Iv1(t))−
βhb

N∗
h2 +m

(T12Sh1(t)Iv2(t)) . . . (3.1)

− βhb

N∗
h3 +m

(T13Sh1(t)Iv3(t))− µhSh1(t)

dSh2(t)

dt
= µhNh2 −

βhb

N∗
h2 +m

(T22Sh2(t)Iv2(t))−
βhb

N∗
h1 +m

(T21Sh2(t)Iv1(t)) . . . (3.2)

− βhb

N∗
h3 +m

(T23Sh2(t)Iv3(t))− µhSh2(t)

dSh3(t)

dt
= µhNh3 −

βhb

N∗
h3 +m

(T33Sh3(t)Iv3(t))−
βhb

N∗
h1 +m

(T31Sh3(t)Iv1(t)) . . . (3.3)

− βhb

N∗
h2 +m

(T32Sh3(t)Iv2(t))− µhSh3(t)

dIh1(t)

dt
=

βhb

N∗
h1 +m

(T11Sh1(t)Iv1(t)) +
βhb

N∗
h2 +m

(T12Sh1(t)Iv2(t)) . . . (3.4)

+
βhb

N∗
h3 +m

(T13Sh1(t)Iv3(t))− (µh + γh) Ih1(t)

dIh2(t)

dt
=

βhb

N∗
h2 +m

(T22Sh2(t)Iv2(t)) +
βhb

N∗
h1 +m

(T21Sh2(t)Iv1(t)) . . . (3.5)

+
βhb

N∗
h3 +m

(T23Sh2(t)Iv3(t))− (µh + γh) Ih2(t)

dIh3(t)

dt
=

βhb

N∗
h3 +m

(T33Sh3(t)Iv3(t)) +
βhb

N∗
h1 +m

(T31Sh3(t)Iv1(t)) . . . (3.6)

+
βhb

N∗
h2 +m

(T32Sh3(t)Iv2(t))− (µh + γh) Ih3(t)

dRh1(t)

dt
= γhIh1(t)− µhRh1(t) (3.7)

dRh2(t)

dt
= γhIh2(t)− µhRh2(t) (3.8)

dRh3(t)

dt
= γhIh3(t)− µhRh3(t) (3.9)
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dSv1(t)

dt
= A1 −

βvb

N∗
h1 +m

(T11Sv1(t)Ih1(t) + T21Sv1(t)Ih2(t) + T31Sv1(t)Ih3(t)) . . .(3.10)

−µvSv1(t)

dSv2(t)

dt
= A2 −

βvb

N∗
h2 +m

(T22Sv2(t)Ih2(t) + T12Sv2(t)Ih1(t) + T32Sv2(t)Ih3(t)) . . .(3.11)

−µvSv2(t)

dSv3(t)

dt
= A3 −

βvb

N∗
h3 +m

(T33Sv3(t)Ih3(t) + T13Sv3(t)Ih1(t) + T23Sv3(t)Ih2(t)) . . .(3.12)

−µvSv3(t)

dIv1(t)

dt
=

βvb

N∗
h1 +m

(T11Sv1(t)Ih1(t) + T21Sv1(t)Ih2(t) + T31Sv1(t)Ih3(t)) . . . (3.13)

−µvIv1(t)

dIv2(t)

dt
=

βvb

N∗
h2 +m

(T22Sv2(t)Ih2(t) + T12Sv2(t)Ih1(t) + T32Sv2(t)Ih3(t)) . . . (3.14)

−µvIv2(t)

dIv3(t)

dt
=

βvb

N∗
h3 +m

(T33Sv3(t)Ih3(t) + T13Sv3(t)Ih1(t) + T23Sv3(t)Ih2(t)) . . . (3.15)

−µvIv3(t)

Nhi and Nvi represent the human and vector population sizes in patch i and Nh is the total human
population size. µh represents the per capita birth and death rate assuming a constant population,
µv is a per capita mortality rate of the mosquitoes, γh is a constant recovery rate for the humans,
b is the average number of bites per mosquito per day, βh is the probability that the disease is
transmitted from vector to human, βv is the transmission probability from human to mosquito, and
m is the number of alternative hosts available for mosquitoes to bite per patch (Esteva and Vargas,
1998).

If T and A were fixed at the same value in all patches, each patch would have similar vector and
traveling dynamics. In order to fully simulate communities having various vector population sizes
and having differing numbers of humans leaving their home patch during the day, T and A should
be specific for each patch. Tij represents the fraction of the day that humans living in patch i spend
visiting a different patch, j, during the day while interacting with mosquitoes in patch j. In order
for a human to be in one patch at a time, the following equation must hold:

Tii =

(
1−

∑
j

Tij

)
.

Similarly, Ai denotes the constant recruitment rate for mosquitoes in patch i.
The number of humans within a patch at a particular time is different than the population that

considers each patch “home.” Hence, the population present must be considered when accounting
for the number of available hosts. The number of persons in a particular patch was calculated

N∗
hj =

∑
i

TijNhi .
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TABLE 3.1. Parameter values used in equations (3.1)-(3.16).

Parameter Symbol Value Source

Per capita human birth and death rate µh 0.0000457 (Esteva and Vargas, 1998)
Per capita mortality rate in mosquitoes µv 0.25 (Esteva and Vargas, 1998)
Average number of bites per mosquito per day b 0.5 (Esteva and Vargas, 1998)
Transmission probability from vector to human βh 0.75 (Esteva and Vargas, 1998)
Transmission probability from human to vector βv 1 (Esteva and Vargas, 1998)
Number of alternative hosts available per patch m 0 (Esteva and Vargas, 1998)
Human recovery rate γh 0.1428 (Esteva and Vargas, 1998)
Recruitment rate for patch i Ai

1
3
Nvi (Soewono and Supriatna, 2001)

Because the Tij values are fractions of the day and the model is based on average populations based
on these fractions, the above calculation was assumed to represent the number of humans present
for each patch.

3.2. Parameter Values

Fixed parameter values used in equations (3.1)-(3.16) are presented in Table 3.1. The number
of humans in each patch, Nhi, were set to represent actual communities in Sri Lanka. Patch 1 will
represent Colombo (Nh1 = 325000), patch 2 will represent Sri Jayawardenepura Kotte (Nh2 =
110000), and patch 3 will represent Peliyagoda (Nh3 = 32000). As will be discussed more fully in
Section 4, values for Tij were based on generalized amounts of time spent working.

The mosquito (or vector) population,Nvi, was assumed to be twice the human population within
each patch, i.e., 2Nhi = Nvi. The proportion of mosquitoes to humans has varied in modeling
with Aedes aegypti, including ratios close to 4 to 1 (Hughes and Britton, 2013) to close to 2 to 1
(Kuniyoshi and dos Santos, 2017).

4. Simulated Outbreak

In order to simulate potential outbreaks in actual settings, population sizes were incorporated
representing two cities and one town in Sri Lanka. As mentioned in Section 3.2, the city of
Colombo has a population of about 325,000 (worldatlas.com, 2015a), and Sri Jayawardenepura
Kotte has a population size of about 110,000 (worldatlas.com, 2015b). The nearby town of Peliyagoda
has a population of about 32,000 (Time.is, 2016).

In order to more accurately portray the dynamics of humans traveling in Sri Lanka, the Tij values
(visitation values) were estimated using information about the country and the three communities.
However, the visitation parameter is a value representing how much a fraction of the day in general
would be spent in another patch and would not necessarily represent every individual specifically.
Hence, the values for Tij were calculated incorporating the fact that not every individual will travel
for work and considering the parameter as representing the portion of time the collective indi-
viduals of the patch population spent working in other areas. A little less than half of Sri Lanka’s
population is eligible to be in the workforce (Department of Census and Statistics Sri Lanka, 2001),
and the Shop and Office Employees Act of 1954 in Sri Lanka states that workers may not work
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TABLE 4.1. Visitation parameter values, Tij associated with simulations in Sec-
tion 4. The values are also used in generating Figures 4.1-4.4.

j
TO

Colombo
(Patch 1)

Sri Jayawardenepura
Kotte (Patch 2)

Peliyagoda
(Patch 3)

i
FROM Colombo (Patch 1) 1 0 0

Sri Jayawardenepura
Kotte (Patch 2) 0.05 0.95 0

Peliyagoda (Patch 3) 0.08 0.04 0.88

more than 8 hours in a day and cannot work more than 45 hours in a week (WageIndicator, 2017).
Considering holidays in addition to the limitations on work hours per week, working individuals
likely spend an average 25% or less of their time at work. Colombo is the commerical capital of
Sri Lanka and likely has the most influx of workers from other communities. Sri Jayawardenepura
Kotte, is the legislative capital of Sri Lanka and may also be a location for outsiders to travel for
work. Peliyagoda is much smaller than the other two cities; therefore, fewer individuals likely
travel here for work from Colombo or Sri Jayawardenepura Kotte. Based on Sri Lanka labor in-
formation and the respective sizes of the three communities, the following assumptions were used
when setting the visitation times:

• 12% of the time of the population of Peliyagoda is assumed to be spent in Colombo (8%)
and in Sri Jayawardenepura Kotte (4%).

• 5% of the time of the population of Sri Jayawardenepura Kotte is spent in Colombo, and
the population of Sri Jayawardenepura Kotte. is assumed to spend a negligible percentage
of time in Peliyagoda.

• People in Colombo are assumed to stay in Colombo.

The specific resulting values for Tij are listed in Table 4.1.
Model simulations were generated representing an outbreak caused by a single infected in-

dividual in an otherwise unaffected community. Simulations were performed using Wolfram
Mathematica R©, version 11.1. Figures 4.1, 4.2, and 4.3 present simulation results when an out-
break begins in Colombo, Sri Jayawardenepura Kotte, and Peliyagoda (respectively). Figures 4.4-
4.7 present overlapping simulation results when an outbreak begins in each of the patches. The
proportion of the populations infected is similar for all communities. The peak of infections occurs
earliest (although slightly) in the patch of the outbreak in each of the three cases. For example,
when the outbreak begins in the smallest population (Peliyagoda), the delay is largest between the
peak of infection in Peliyagoda to the peak of infection in Colombo.

5. Reproduction Number

The basic reproduction number, R0 was calculated using the method from Van den Driessche
and Watmough (2002) and outlined in Browne et al. (2014). Because of the many parameters,
specific parameter values were used in generating R0. Parameter values and population numbers
presented in Section 3.2 and Tij values from Table 4.1 were used to calculate R0. The resulting
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Outbreak in Colombo

Colombo

SJK

Peliyagoda

0 20 40 60 80Time (Days)

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Proportion Infected

FIGURE 4.1. Outbreak in Colombo. Colombo (Patch One) has a population of
325,000, Sri Jayawardenepura Kotte (Patch Two) has a population of 110,000, and
Peliyagoda (Patch Three) has a population of 32,000. The initial conditions were
Sh1(0) = Nh1 − 1, Sh2(0) = Nh2, Sh3(0) = Nh3, Ih1(0) = 1, Ih2(0) = 0, Ih3(0) =
0, Rh1(0) = 0, Rh2(0) = 0, Rh3(0) = 0, Sv1(0) = 2Nv1, Sv2(0) = 2Nv2, Sv3(0) =
2Nv3, Iv1(0) = 0, Iv2(0) = 0, Iv3(0) = 0. The simulation was run over a period of
200 days.

value, 3.29, was consistent with previously determined dengue fever values in various areas of the
world Chowell et al. (2007) Hsieh and Ma (2009) Marques et al. (1994).

6. Discussion and Conclusions

The dynamics of the spread of dengue can be investigated when humans travel to other commu-
nities by modeling a portion of the individual’s day spent elsewhere. Population size and conditions
related to the initial outbreak can affect the timing of the peak of infection although proportions of
communities infected appear to be similar regardless of the location of the initial outbreak. Simula-
tion results suggest that an outbreak in a rural area can lead to significant infections in neighboring,
more densely populated areas.

Different prevention methods may be more effective based on the type of community. For
example, an intervention of one kind may work better in an urban setting than in a rural one.
Because transmission of dengue fever in one area is affected by actions within that region as well
as actions in neighboring areas, community-specific strategies for intervention may better lower
infections in multiple regions. In other words, a mixed intervention strategy may have a greater
impact that a single strategy over a large region.

More sophisticated modeling related to time spent in each patch could be used to improve the
model. Using fractions of populations to represent movement is a simplification, and future studies
could incorporate functions of time for Tij or more agent-based approaches. Environmental factors
were not incorporated in the current study, but rural and urban environments may have different
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Outbreak in SJK

Colombo

SJK

Peliyagoda
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FIGURE 4.2. Outbreak in Sri Jayawardenepura Kotte. Colombo (Patch One)
has a population of 325,000, Sri Jayawardenepura Kotte (Patch Two) has a popu-
lation of 110,000, and Peliyagoda (Patch Three) has a population of 32,000. The
initial conditions were Sh1(0) = Nh1, Sh2(0) = Nh2−1, Sh3(0) = Nh3, Ih1(0) = 0,
Ih2(0) = 1, Ih3(0) = 0, Rh1(0) = 0, Rh2(0) = 0, Rh3(0) = 0, Sv1(0) = 2Nv1,
Sv2(0) = 2Nv2, Sv3(0) = 2Nv3, Iv1(0) = 0, Iv2(0) = 0, Iv3(0) = 0. The simulation
was run over a period of 200 days.

conditions related to mosquito populations. Differences in weather conditions and mosquito habi-
tats may affect dengue spread. Incorporation of more patch specific parameters, such as related to
the recruitment rate A, could improve model predictions. Additionally, the mosquito populations
may be higher per person in rural areas, which was not incorporated in the current study.

The model could additionally be improved by adding an exposed class between the susceptible
and infected class because dengue does have a latency period. Conducting a stability analysis of the
system of equations would also be useful in understanding the spread of the disease among patches.
The work as a whole describes the dynamics in separate patches with the assumptions of fixed
population sizes, uniform density, and a one serotype infection. Incorporating multiple serotype
infection would more fully describe dengue transmission. The model aids in understanding the
urgency needed for preventative measures in order to slow or reduce the impact of the disease on a
community.

7. Acknowledgments

The authors would like to thank the reviewer for valuable comments in the improvement of this
manuscript. The authors would also like to thank the Undergraduate Research Program at Elon
University and the Elon College Fellows Program for providing scholarships and funding for this
project. A portion of the research was completed as a part of Elon’s 2015 Summer Undergraduate
Research Experience (SURE) Program. The authors would also like to thank Dr. Nicholas Luke
for helpful conversations during the development of this manuscript.



Dengue Fever Model with Mobility 11

Outbreak in Peliyagoda

Colombo

SJK

Peliyagoda

0 20 40 60 80Time (Days)0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Proportion infected

FIGURE 4.3. Outbreak in Peliyagoda. Colombo (Patch One) has a population
of 325,000, Sri Jayawardenepura Kotte (Patch Two) has a population of 110,000,
and Peliyagoda (Patch Three) has a population of 32,000. The initial conditions
were Sh1(0) = Nh1, Sh2(0) = Nh2, Sh3(0) = Nh3 − 1, Ih1(0) = 0, Ih2(0) = 0,
Ih3(0) = 1, Rh1(0) = 0, Rh2(0) = 0, Rh3(0) = 0, Sv1(0) = 2Nv1, Sv2(0) = 2Nv2,
Sv3(0) = 2Nv3, Iv1(0) = 0, Iv2(0) = 0, Iv3(0) = 0. The simulation was run over a
period of 200 days.
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