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On game chromatic number analogues of Mycielsians and Brooks’ Theorem

Chris Chamberlin, Jacob DeCapua, Hannah Elser, Dana Gerraputa, and Arran Hamm

ABSTRACT. The vertex coloring game is a two-player game on a graph with given color set in
which the first player attempts to properly color the graph and the second attempts to prevent a
proper coloring from being achieved. The smallest number of colors for which the first player can
win no matter how the second player plays is called the game chromatic number of the graph. In
this paper we initiate the study of game chromatic number for Mycielskians and a game chromatic
number analogue of Brooks’ Theorem (which characterizes graphs for which chromatic number is at
most the maximum degree of the graph). In particular, we determine the game chromatic number of
Mycielskians of complete graphs, complete bipartite graphs, and cycles. In the direction of Brooks’
Theorem, we show that if there are few vertices of maximum degree or if all vertices of maximum
degree are at least three edges apart, then the game chromatic number is at most the maximum degree
of the graph.

1. Introduction

A simple graph is an ordered pair (V,E) where V is a finite nonempty set (the “vertices”) and
E consists of two–element subsets of V (the “edges”). We say vertices v, w ∈ V are adjacent if
{v, w} ∈ E(G). The (open) neighborhood of v ∈ V , denoted N(v), is the set of vertices adjacent
to V and for U ⊆ V , define N(U) = ∪u∈UN(u). The degree of v ∈ V , denoted d(v), is |N(v)|
and ∆(G) is the maximum degree among all vertices in V . A proper coloring is an assignment of
color to each vertex so that no edge joins two vertices of the same color. The chromatic number of
G, denoted χ(G), is the minimum number of colors needed to properly color G.

This paper concerns the vertex coloring game which is defined as follows. The vertex coloring
game is a two-player game between Alice and Bob on a graph G with color set C. The players
alternate turns (with Alice playing first) selecting a vertex from G and coloring it with a color
from C; when coloring a vertex v ∈ V , a player must select a color v is not currently adjacent
to. Alice wins the game if every vertex of G is colored and Bob wins the game otherwise. The
game chromatic number of G, denoted χg(G), is the smallest |C| so that Alice can win the vertex
coloring game on G with color set C no matter how Bob plays.

Game chromatic number is a generalization of chromatic number in that if Bob plays coopera-
tively with Alice, then exactly χ(G) colors will be used. Of course, since in the vertex coloring
game Bob plays as an adversary of Alice, generally more colors are needed compared to chromatic
number. Game chromatic number was introduced in Gardner (1981) and has been well-studied
since. Particular attention has been paid to determining bounds for the game chromatic number of
planar graphs (see Kierstead and Trotter (1994); Dinski and Zhu (1999); Zhu (1999)) and trees (see
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Faigle et al. (1993); Dunn et al. (2015)). More recently the game chromatic number of Cartesian
products of graphs and outerplanar graphs has been studied; see Bartnicki et al. (2008); Raspaud
and Wu (2009) and Guan and Zhu (1999), respectively. For a brief survey of this topic we refer the
reader to Bartnicki et al. (2007).

In this paper we consider game analogues of two classical topics in graph coloring: Mycielskians
and Brooks’ Theorem. Given a graph G = ({v1, . . . , vn}, E), the Mycielskian of G, denoted
M(G), is the graph with vertex set {v1, . . . , vn, v

′
1, . . . , v

′
n, z}withE(M(G)) = E(G)∪{{vi, v′j} :

{vi, vj} ∈ E(G)} ∪ {{z, v′i} : i = 1, . . . n}. The figure below shows a path on four vertices and
the Mycielskian of a path on four vertices.
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A key, well-known property of Mycielskians is that for any graph G, χ(M(G)) = χ(G) + 1. In
Section 3 we determine the game chromatic number of Mycielskians of complete graphs, complete
bipartite graphs, and cycles (c.f. Propositions 2, 5, and 6 in Destacamento et al. (2014)).

The other inspiration for this paper is Brooks’ Theorem which we now state.

Theorem 1.1 (Brooks’ Theorem). If G is a connected graph which is not an odd cycle or complete
graph, then χ(G) ≤ ∆(G).

The natural game analogue for this theorem would be to identify {G : χg(G) ≤ ∆(G)}. Char-
acterizing this set appears to be quite a lofty goal. In Section 4 we prove two sufficient conditions
for membership in this set. The conditions are: the number of vertices of maximum degree is
bounded by d∆(G)/2e; the distance between all vertices of maximum degree is at least three.

The remainder of the paper is organized as follows. In Section 2 we introduce some more
terminology and a few lemmas. In Section 5 we conclude by mentioning some open problems
related game analogues of Mycielskians and Brooks’ Theorem.

2. Preliminaries

In this section we will gather a few lemmas and some terminology before proceeding to the
proofs. The complete graph, denoted Kn, is the graph on n vertices with all possible edges. A
complete bipartite graph, denoted Km,n, is the graph whose vertex set is partitioned into A ∪ B
with |A| = m, |B| = n, and whose edge set is all pairs with one vertex in A and the other in B.
For n ≥ 3, we refer to K1,n as a star. A cycle on n vertices, denoted Cn, is the graph with vertex
set {v1, v2, . . . , vn} and edge set {vi, vi+1} with indices reduced modulo n.

We next state a few lemmas which will be used throughout the paper. Each is straightforward to
verify based on the definition of game chromatic number and so their proofs are omitted.

Lemma 2.1. For any graph G, χ(G) ≤ χg(G).

Lemma 2.2. For any graph G, χg(G) ≤ ∆(G) + 1.

Lemma 2.3. If G satisfies χg(G) = 2, then G is a disjoint union of one or more stars, any number
of isolated edges, and any number of isolated vertices.
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In order to have concise proofs, we will also make use of the following terminology. Let G be a
graph on V and suppose Alice and Bob play the vertex coloring game with k colors. We say Bob’s
move creates a double-threat at v if Bob colored v, there are distinct x, y ∈ N(v) satisfying: both
x and y are uncolored, both N(x) \N(y) and N(y) \N(x) contain an uncolored vertex, and both
x and y are adjacent to all but one color which can be used on one of their uncolored neighbors.
Notice in particular, that if a double-threat is created, then no matter which vertex Alice colors
Bob can win the vertex coloring game with his next move. We say Bob’s move at v is forcing if
v is adjacent to an uncolored vertex w, N(w) contains all but one color, and N(w) contains an
uncolored vertex which may be assigned the last color. Observe that if Bob makes a forcing move
at v, then, using the notation in the previous sentence, Alice must color a vertex in {w} ∪N(w) or
else Bob can win with his next move.

3. Mycielskian Results

In this section we will state and prove our results about the game chromatic number of Myciel-
skians of complete graphs, complete bipartite graphs, and cycles.

Theorem 3.1. For n ≥ 3, we have χg(M(Kn)) = n+ 1.

Proof. Suppose Alice and Bob play the vertex coloring game onM(Kn) for some n ≥ 3 with n+1
colors. Let {v1, v2, . . . , vn} be the vertices of Kn and {v′1, v′2, . . . , v′n} be the twin vertices. Alice’s
strategy is as follows: Alice will color z with 1 as her first move and will proceed to color the
twin vertex for each of Bob’s moves choosing her color to match the color of Bob’s previous move
if possible and if not, to pick the smallest unused color available. The high degree of symmetry
of M(Kn) along with Alice’s strategy ensures that on each of Bob’s turns, every uncolored vi
“looks like” every other uncolored vj and every uncolored v′i looks like every other uncolored
v′j . This means we may assume that the vertices of M(Kn) are colored in the order: z, {v1, v

′
1},

{v2, v
′
2}, . . . , {vn, v′n}.

Claim: At most t+ 1 colors are used on z, v1, v
′
1, . . . , vt, v

′
t.

To verify the claim, we will proceed inductively on t. First observe that after z, v1, v
′
1 are colored,

for i ≥ 2, vi and v′i are adjacent to exactly two of z, v1, v
′
1 meaning that each is adjacent to at most

two colors. Now suppose the claim holds for t − 1 and that vt and v′t have been colored. Because
Alice colors greedily, the pair {vt, v′t} receives at most one previously unused color which verifies
the claim.

In particular the claim gives that after the pair {vn−1, v
′
n−1} is colored, at most n colors have

been used and so each of vn and v′n is adjacent to at most n colors. Since n+1 colors are available,
both may be colored and so this is a winning strategy for Alice; that is, χg(M(Kn)) ≤ n+ 1.

For the reverse inequality, observe that χ(M(Kn)) = n+ 1 and apply Lemma 2.1. �

Theorem 3.2. If m ≤ n, then
{
χg(M(Km,n)) = 3 if m = 1 or m+ n is even,
χg(M(Km,n)) = 4 if m 6= 1 and m+ n is odd.

Proof. Let Km,n have parts A and B with |A| = m, |B| = n, and m ≤ n. First note that M(Km,n)
is not a union of stars and so by Lemma 2.3 we have χg(M(Km,n)) ≥ 3. If m = 1, then Alice has
a winning strategy with three colors by coloring z, the twin of the vertex from A, and the vertex
from A within her first three turns. No matter what Bob’s moves are, each will be adjacent to at
most two colors just before each is colored. Moreover, once these three vertices are colored, every
vertex in B ∪ B′ is adjacent to at most two colors and so can be colored the third color for the
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remainder of the game. Altogether this gives that χg(M(K1,n)) ≤ 3. Now suppose that m ≥ 2,
m + n is even, and suppose Alice and Bob play the vertex coloring game on M(Km,n) with 3
colors. For reference, M(Km,n) looks as follows and consists of the “pods” {z}, A, B, A′, and B′.

z

B′ A B A′

Alice will first color z with 1. There are a few cases to consider.
• If Bob colors a vertex from A with 2, then Alice will color a vertex from B with 3. By

doing so, vertices in A′ will never be adjacent to 2 and vertices in B′ will never be adjacent
to 3. Moreover, every vertex in A, resp. B, may be colored 2, resp. 3, for the duration of
the game. This, therefore, is a winning position for Alice. Alice will make a similar play if
Bob colors a vertex in B with 2.
• If Bob colors a vertex in A′ with 2, then Alice will color a vertex in B with 1. Now if Bob

colors in A ∪ B′, Alice will give a color to the remaining pod which is a winning position
for her. If Bob colors a vertex in B with 3, Alice will color a vertex in A with 2. Similar to
the above, vertices in A′ cannot be adjacent to 3 for the duration of the game and so this is
a winning position for Alice. If neither of these happen, then Alice and Bob will alternate
coloring vertices in A′ ∪B. Since m+ n is even and Bob played in A′ ∪B first, Alice will
be the last to play in A′ ∪ B. So Bob will color a vertex in A ∪ B′ which is covered by a
previous analysis.
• If Bob colors a vertex from A, resp. B, with 1, then Alice will color a vertex in B′, resp.
A′, with 2. From here, this case will proceed in an identical fashion to the second bullet.

In each of these cases, Alice obtains a winning position and therefore χg(M(Km,n)) ≤ 3, which
completes this case.

Now suppose m + n is odd and suppose Alice and Bob play the vertex coloring game on
M(Km,n) with 3 colors. If Alice colors a vertex in A first, Bob will color another vertex from
A with a different color. Now vertices in B and B′ are adjacent to two colors. Depending on what
Alice does, Bob will either color z or a vertex in A′ with the third color which is a winning move.
A similar analysis applies if Alice first colors a vertex other than z. Suppose, then, that Alice colors
z with 1. Bob will color a vertex from A with 1. Alice cannot color vertices from B ∪ A′ or else
Bob will color another vertex from the same pod with the third color. Additionally, Alice cannot
color vertices of A with 2 or 3 or else Bob will color a vertex in A′ with the third color. So as long
as Alice colors vertices from A with 1 or vertices from B′, Bob will mimic Alice’s moves. Since
m+ n is odd and Bob played in A∪B′ first, Alice will make the first play in B ∪A′. However, as
discussed this case leads to a win for Bob. Therefore, if m+ n is odd, then χg(M(Km,n)) ≥ 4.

For the reverse inequality, Alice will color z with 1. Suppose that Bob plays in A or B′. Then
Alice will play in the other. If Bob plays in A′ ∪ B, then Alice will play in the other pod which is
a winning position for her. If not, then Alice will play in B; note that each vertex in B is adjacent
to at most two colors on this play. Now no matter where Bob plays, vertices in A′ are adjacent to
at most three colors and so Alice can color an A′ vertex which is a winning position. Therefore, in
this case χg(M(Km,n)) ≤ 4 and thus overall χg(M(Km,n)) = 4. �
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Theorem 3.3. For n ≥ 7, we have χg(M(Cn)) = 4.

Proof. Let M(Cn) be the Mycelskian of Cn with n ≥ 7. If n is odd, then we have χ(M(Cn)) = 4
and so by Lemma 2.1, we have χg(M(Cn)) ≥ 4. So we want to show that χg(M(Cn)) ≥ 4 for
even n. Let {v1, v2, ..., vn} be the vertices of Cn and let {v′1, v′2, ..., v′n} be the twin vertices in
M(Cn). To show χg(M(Cn)) ≥ 4, we will show that Bob has a winning strategy with three colors
available. To do so, consider the following cases. If Alice colors vi, then Bob creates a double-
threat by coloring v′i with a different color. If Alice colors v′i, then Bob creates a double-threat by
coloring vi with a different color. If Alice colors z, then Bob creates a double-threat by coloring
v1 with a different color. Note that here we are using that n ≥ 7 to ensure that there is no common
neighbor of the threatened vertices. So no matter which opening move Alice makes, Bob will win
with three colors which completes the claim that χg(M(Cn)) ≥ 4 for n ≥ 7.

We will now show that Alice has a winning strategy with four colors (i.e. χg(M(Cn)) ≤ 4 for
n ≥ 7). Alice will begin by coloring z with 1 and will proceed to color the twin vertex for each
of Bob’s moves (i.e. if Bob colors vi, then Alice will color v′i and vice versa). Alice will choose
her color for each move according to the following and for ease of reading, we will suppose Bob
colored a vertex from {vi, v′i}. If Bob’s color can be copied (that is, the color used is not present
in N(vi) ∪ N(v′i)), Alice will do so. If Bob’s move cannot be copied, then he either colored vi
with 1 or colored v′i with a color found on v′i−1 or v′i+1. We further divide this case depending
on whether zero or one of {vi−1, v

′
i−1}, {vi+1, v

′
i+1} has been colored. (We further remark that if

both {vi−1, v
′
i−1} and {vi+1, v

′
i+1} have been colored, then Alice can make a legal move so long as

she adheres to the coloring strategy being presented.) So in the zero case (i.e. if Bob colored vi
with 1 and no vertex from N(vi) has been colored), Alice will check if either pair {vi−2, v

′
i−2} or

{vi+2, v
′
i+2} has been colored. If neither has, Alice will color v′i with 2. If exactly one has been

colored, then Alice will color v′i so that that pair along with {vi, v′i} contains at most three colors.
This is possible since v′i is only adjacent to color 1 and so can mimic at least one the color found on
that pair. If all of vi−2, v

′
i−2, vi+2, v

′
i+2 are colored, then either {vi−2, v

′
i−2} and {vi+2, v

′
i+2} have a

common color other than 1 or at least one of these pairs contains the color 1. If vi−2 is colored 1,
then Alice will mimic a color v′i with a color found on {vi+2, v

′
i+2}. In the case of a common color

other than 1, Alice will color v′i with a common color. In each of these cases, both N(vi−1) and
N(vi+1) contain at most three colors.

Now suppose that Bob colors a vertex from {vi, v′i}; vi−1 and v′i−1 have been colored; and vi+1

and v′i+1 are uncolored. If vi+2 and v′i+2 are uncolored, Alice will color the other vertex from
{vi, v′i} using any legal color. If vi+2 and v′i+2 are colored, then the state of the game prior to
Alice’s move is one of the following:

α

β

γ

δ

1

1

α

β

γ

δ

1

α

In either case, if γ = δ, then Alice will use any legal color on v′i, resp. vi, and if γ 6= δ, then Alice
will use whichever of those two are not the same as β on v′i, resp. vi. Observe that by coloring in
this way N(vi+1) contains at most three colors. In particular this means that for the duration of the
game no vi will be adjacent to four colors and so Alice will win the vertex coloring game with four
colors; that is, we have χg(M(Cn)) ≤ 4. �
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Note that although they are not covered by the statement of the previous theorem, χg(M(Cn))
for n = 3, 4, 5 are given by Theorems 3.1, 3.2, and Lemma 2.1 along with the upper bound given
in of Theorem 3.3, respectively. To complete the picture, we also have χg(M(C6)) = 4 with the
lower bound found in a similar fashion to, although more ad hoc than, the proof of Theorem 3.3
and upper bound following the proof directly.

We conclude this section with the following theorem which demonstrates that the game chro-
matic number of the Mycielskian of a graph does not necessarily have larger game chromatic
number as compared to the graph which contrasts with the fact that for any graph G we have
χ(M(G)) = χ(G) + 1.

Theorem 3.4. Let P4 be the path on four vertices. Then we have χg(M(P4)) = χg(P4) = 3.

Proof. Let M(P4) be a graph with input vertices labeled v1, v2, v3, v4 from left to right and twin
vertices labeled v′1, v

′
2, v
′
3, v
′
4 from left to right. With 3 colors, Alice’s first move is to color z with

1. Thereafter, if Bob colors vi, Alice will use the same color on vi+2 and if Bob colors v′i, Alice will
use the same color on v′i+2 in both cases with the index reduced modulo four. A straightforward
exhaustive search shows that this is a winning strategy for Alice and so χg(M(P4)) ≤ 3. Observe
that χ(M(P4)) = 3 and so we may apply Lemma 2.1 for the reverse inequality. Proposition 1 of
Destacamento et al. (2014) gives that χg(P4) = 3 which completes the proof. �

4. Toward Brooks’ Theorem for Game Chromatic Number

In this section we will state and prove our results concerning a game analogue of Brooks’ The-
orem. Throughout this section, for a graph G = (V,E), we will let Vt := {v ∈ V | d(v) ≥ t} and
will let ∆ := ∆(G). Our first result is similar in spirit to the proof that χg(M(K1,n)) = 3. For that
proof, we gave a strategy for Alice which was too “fast” for Bob in that the vertices at which Bob
could have won were colored before Bob had a chance to surround any of them. In the context of
a game analogue of Brooks’ Theorem, this theorem is that Alice can win with ∆ colors provided
that there are few enough vertices of degree ∆.

Theorem 4.1. For a graph G, if |V∆| ≤ d∆/2e, then χg(G) ≤ ∆.

Proof. Let G be a graph with |V∆| ≤ d∆/2e and suppose Alice and Bob play the vertex coloring
game on G with ∆ colors. Notice that with this many colors, Bob can only win at vertices in V∆.
Alice’s strategy is to colors vertices in V∆ before Bob can threaten any of them and so her strategy
is to color one on every turn. To see why this is a winning strategy for Alice, observe that after
Bob’s j th turn any vertex in G can be adjacent to at most 2j colors. Furthermore, after Bob’s j th

turn, at least j vertices in V∆ are colored due to Alice’s strategy. Therefore, on Alice’s |V∆|th move,
the last vertex in V∆ is adjacent to at most 2 · (|V∆|− 1) colors. By assumption, |V∆| ≤ d∆/2e and
so 2 · (|V∆| − 1) < ∆. Thus using this strategy Alice wins the game and so χg(G) ≤ ∆. �

Our next result is essentially that if Bob is too “slow” in pressuring vertices in V∆, then Alice will
win with ∆ colors. To state the next result, we introduce the following terminology and notation.
The distance between v, w ∈ V , denoted ρ(v, w), is the smallest number of edges one must move
along in G to get from v to w.

Theorem 4.2. If G is a graph with maximum degree ∆ ≥ 2 such that for all distinct vertices
v, w ∈ V∆ we have ρ(v, w) ≥ 3, then χg(G) ≤ ∆.

Proof. Let G be a graph with maximum degree ∆ ≥ 2 such that for all distinct v, w ∈ V∆ we
have ρ(v, w) ≥ 3. Alice and Bob will play the vertex coloring game on G with ∆ colors. As in
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the previous proof we have that Bob can only win at vertices in V∆. Let Wj be the set of colored
vertices after turn j. Alice’s strategy is to color a vertex in V∆ on every turn chosen by the following
protocol. For her first turn, she will choose one vertex from V∆ arbitrarily. Thereafter, her move
will be decided by the following two possibilities. If on Bob’s ith turn (so turn 2i overall) he colors
a vertex in N(V∆ \W2i−1), then Alice will color the vertex in V∆ that is adjacent to Bob’s ith move.
We note that this is well-defined since no vertex is adjacent to more than one vertex in V∆ because
of the distance condition. Otherwise, Alice will arbitrarily color an uncolored vertex in V∆. Notice
that Alice’s strategy is such that when she colors v ∈ V∆, at most one vertex in N(v) is colored
(namely the vertex colored by Bob on the previous turn). Since ∆ ≥ 2, this strategy ensures that
Alice can color each vertex in V∆ (and hence she wins the game). �

Before stating the next result, we need to introduce a bit of terminology. We sayG is homeomor-
phic to H if we can obtain H from G by replacing some number of edges of G with vertex-disjoint
paths. The following is a corollary of Theorem 4.2 and serves as a game analogue of the fact that
every graph is homeomorphic to graph with chromatic number two.

Corollary 4.3. Every graphGwith at least one edge is homeomorphic to a graphG′ with χg(G
′) =

3.

Proof. Let G be a graph and let G′ be the graph resulting from replacing every edge of G with a
path consisting of three edges. Let V be the set of vertices in G′ corresponding to vertices in G
and W = V (G′) \ V . Suppose Alice and Bob play the vertex coloring game with 3 colors. On
every turn Alice will color a vertex in V . She will decide which of these to color based upon Bob’s
move as follows: if Bob colors a vertex in V , Alice will arbitrarily color an uncolored vertex in V
and if Bob colors a vertex in W , Alice will color the closest vertex in V to Bob’s move (which is
well-defined by the definition of G′).

In particular, notice that by using this strategy, when Alice colors a vertex in V it is adjacent to at
most one colored vertex and so, with three colors available, she will win the game. We should also
note that no vertex in W can prevent a proper coloring since each has degree two. Therefore, using
this strategy Alice will win with three colors; that is, χg(G

′) ≤ 3. Also observe that χg(G
′) > 2

since G′ fails the condition of Lemma 2.3 and so χg(G
′) = 3. �

We next remark that although the distance condition in Theorem 4.2 is rather restrictive, it is
the best global distance condition which gives the conclusion that χg(G) ≤ ∆(G). This is so
because cycles are 2-regular and have game chromatic number three. Additionally we will show
in Theorem 4.5 that there are graphs whose maximum degree vertices have distance two and for
which χg(G) 6≤ ∆(G). The next two theorems give game chromatic numbers of families of
graphs which highlight the possible need to have vertices of V∆ separated in order to conclude that
χg(G) ≤ ∆(G).

Theorem 4.4. If n ≥ 14, then χg(C
2
n) = 5.

Proof. Suppose Alice and Bob play the vertex coloring game on C2
n for n ≥ 14 with 4 colors and

that V (C2
n) is labeled v1 . . . vn clockwise. Since the graph is vertex transitive, we may assume that

Alice’s first move is to color v1 with 1. Bob will color v4 with 2. From here, there are three cases
to consider.

• Suppose Alice next colors a vertex from {v7 . . . vn−2}. If Alice colored a vertex from
{v10 . . . vn−2}, then Bob will color v7 with 1 and otherwise Bob will color vn−2 with 2.
Note that the restriction on n is to ensure that Alice’s second move cannot be adjacent to
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both vn−2 and v7. Whichever Bob colors, there is now an interval of length nine as in the
figure below where {α, β} = {1, 2}.

α z
w
β

vu

β
x

y

Notice that Alice’s third turn cannot be to color x or y because if she does, Bob will win
by coloring z or w, respectively. By symmetry, Alice cannot color z or w on her third turn
either. If Alice colors u from {3, 4}, Bob will color y the remaining color to surround x;
the same holds if Alice colors v from {3, 4}. It remains, therefore, to consider the cases
where Alice colors so that c(u) = α, c(v) = α, or u and v are uncolored. Bob will address
these cases by coloring z with 3, y with 3, or z with 3, respectively. In each of these cases,
Bob has created a double-threat and therefore wins the game.
• Suppose Alice colors a vertex from {v6, vn−1} with the color γ ∈ {3, 4}. Bob will color v3

or v2, respectively, with the fourth color. Doing so creates a double-threat and so Bob will
win in this case.
• It remains to consider the case where Alice colors v5 or vn. Given the symmetry of the

state of the graph, we may assume that Alice colors v5 with 1 (if c(v5) 6= 1, then Bob
will win with his second move). Now Bob will color v8 with 3 which forces Alice to
color v7 with 2. On each of Bob’s subsequent turns, he will color along the sequence of
vertices v11, v14, v17, . . . with color sequence 1, 3, 1, 3, . . . until he colors a vertex from
{vn−5, vn−4, vn−3}. Note that by inserting the color 4 into the sequence of colors as needed,
Bob can ensure that the vertex he colors from {vn−5, vn−4, vn−3} receives the color 1. Also
notice that these moves force Alice to color v10, v13, v16, . . . each with the color 2. If Bob
colored vn−3, he will next color vn with 3 which creates a double-threat. If Bob colored
vn−4, he will next color vn−2 with 3. Alice has three moves which prevent her from losing
immediately which are: color vn−3 with 4, color vn−1 with 2, color vn with 4. In response,
Bob will: color vn with 2, color v2 with 4, color v3 with 3. In each case, Bob will have
surrounded a vertex with four colors. If Bob colored vn−5, he will next color vn with 3
which forces Alice to color v2 or v3. Bob will next color vn−2 with 4. No matter what
Alice does, Bob will win from here since in order to have a proper coloring of C2

n from
here, we must have all of c(vn−1) = 2, c(vn−4) = 3, and c(vn−3) ∈ {2, 3} but these cannot
all happen simultaneously.

Since Bob has a winning strategy on C2
n with four colors available, we have χg(C

2
n) ≥ 5. The

reverse inequality follows from Lemma 2.2 since ∆(C2
n) = 4 which completes the proof. �

We conclude this section by calculating the game chromatic number of a graph homeomorphic
to a generalized Petersen graph. Before stating the next theorem, we will need one last term with its
notation. The closed neighborhood of v ∈ V , denotedN [v], isN(v)∪{v}withN [U ] = ∪v∈UN [v]
for U ⊆ V .

Theorem 4.5. If G is the graph resulting from subdividing every edge of GP (8, 3) once, then
χg(G) = 4.

Proof. Let G be the graph resulting from subdividing every edge of GP (8, 3) once. For ease of
exposition, we assign the following labels to the vertices of G:

• the outer C8 are v1 . . . v8 starting at the top left and moving clockwise,
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• the inner eight vertices are w1 . . . w8 so that each subscript matches the outer counterpart,
• the subdivision vertex between vi and vi+1 is v′i with indices reduced modulo eight,
• the subdivision vertex between vi and wi is ui,
• we order the inner C8 as w1, w4, w7, w2, w5, w8, w3, w6 and the subdivision vertices along

the cycle in this order are w′1, w
′
4, w

′
7, w

′
2, w

′
5, w

′
8, w

′
3, w

′
6, respectively.

Suppose Alice and Bob play the vertex coloring game on G with three colors. We will show that
Bob has a winning strategy. Without loss of generality, Alice’s first move is to color a vertex from
{v1, v

′
1, u1} 1; we will refer to the vertex she colored as a1. Then Bob will then color v′5 with 1.

Before examining Alice’s second move, we will establish the following claim.

Claim: If there is a path on an odd number of vertices in G such that:
• the path starts and ends at degree two vertices;
• the endpoints are colored and other than those, each closed neighborhood of the interior

vertices along the path is completely uncolored;
• it is Bob’s turn,

then Bob will win the game.

Proof of the Claim: Suppose the vertices of the path are labeled p1 . . . pk so that p1 and pk are
colored. Bob will color p3 so that c(p1) 6= c(p3). This is a forcing move and so Alice must color a
vertex in N [p2]. Supposing she does so, Bob will next color p5 so that c(p3) 6= c(p5) which forces
Alice to play in N [p4]. Bob will proceed to color in this fashion until he creates a double-threat at
pk−2 which wins the game for Bob.

For Alice’s second move there are cases to consider.
(1) If Alice colors a vertex from V \ ({a1} ∪ N [v5] ∪ N [v6]), then at least one of u8, w′4,

and u3 has the property that Bob can color it to create two disjoint paths on seven vertices
(between it and v′5) which satisfy the conditions of the claim. By coloring that vertex, no
matter what Alice does next, Bob will have at least one path as in the claim for his next
turn and hence he will win.

(2) If Alice colors a vertex from {v′4, v′6, u5, u6}, then there is a path on eleven vertices which
starts at v′5 and ends at the Alice’s second vertex which satisfies the conditions of the claim
and hence Bob will win in this case.

(3) If Alice colors v5, then Bob will color u3 with 1 and if Alice colors v6, then Bob will color
u8 with 1. We will analyze the former of these and note that the argument for the latter is
identical. Now notice that Alice must color a vertex from {w3, w

′
8, w

′
3, w6, w

′
6, u6, v6, v

′
6}

because otherwise the path v′5, v6, u6, w6, w
′
3, w3, u8 satisfies the conditions of the claim.

If Alice colors any vertex from {w3, w
′
8, w

′
3, w6, w

′
6}, then Bob will color w′4 with 1 which

creates two disjoint paths on seven vertices (from v′5 to w′4 and from u3 to w′4) which satisfy
the conditions of the claim and hence Bob will win in this case. If Alice colors a vertex
from {u6, v

′
6}, then that vertex along with u3 creates a path as in the claim and, again, Bob

will win in this case. Finally, if Alice colors v6, then Bob will color v′3 with 2. Notice that
the path v′3, v4, u4, w4, w

′
4, w7, u7, v7, v

′
7, v8, u8, w8, w

′
8, w3, u3 will satisfy the conditions of

the claim since Alice will need to color a vertex from {v′2, v3} otherwise she will lose.
In all cases, Bob wins the game with three colors available and therefore χg(G) ≥ 4. The reverse
inequality holds by Lemma 2.2 since ∆(G) = 3 and so we have χg(G) = 4. �

We would like to point out that working with a subdivision of GP (8, 3) in Theorem 4.5 was
largely for convenience. That is, using an analysis essentially identical to the above, it can be
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shown that subdividing each edge of GP (n, k) with n large enough and gcd(n, k) = 1 gives a
graph with game chromatic number four.

5. Concluding Remarks

Throughout this paper we have considered problems related to the game chromatic number
of Mycielskians of graphs and a game analogue of Brooks’ Theorem. Although we have made
some progress against each of these problems, many, many problems remain unresolved. First,
as mentioned above, a key property of M(G) as compared to G is that χ(M(G)) = χ(G) + 1.
Each of our results suggests the following relationship between χg(M(G)) and χg(G) which we
put forth as a conjecture.

Conjecture 5.1. Every graph G satisfies χg(M(G)) ≥ χg(G).

Next we propose a game analogue of Brooks’ Theorem.

Problem 5.2. Identify all G for which χg(G) ≤ ∆(G).

In contrast to Brooks’ Theorem, it appears that this problem may be too ambitious. For one, a
game-Brooks condition would need to exclude essentially all graphs with maximum degree at most
three since maximum degree one, resp. two, means the graph is a matching along with isolated
vertices, resp. cycles along with a matching and isolated vertices. Since each of these has game
chromatic number one larger than the maximum degree, all would need to be excluded. Addi-
tionally, in Frieze et al. (2013) it was shown that almost all 3-regular graphs have game chromatic
number four which means that essentially all of these need to be excluded as well. To further the
characterization of graphs satisfying χg(G) ≤ ∆(G), it would be worthwhile to determine the
game chromatic number of a typical 4-regular graph.

Another potential direction of research is to restrict the class of graphs to be examined. One
reasonable restriction follows from the observation that it is possible for a bipartite graph to have
χg(G) = ∆(G) + 1 (e.g. Kn,n minus a perfect matching). Indeed in Theorem 4.5 the graph under
consideration is a (2, 3)-biregular bipartite graph which means that all vertices in one partition
set have degree two and all vertices in the other have degree three. Given the delicate nature of
determining the game chromatic number of a graph, we put forth the following question with the
hope that the restriction on graphs under consideration is enough to gain some traction.

Question 5.3. Is there a (t− 1, t)-biregular bipartite graph with χg(G) = t+ 1?
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