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Mathematical model of Zika virus transmission and control measures

Dewey Taylor

ABSTRACT. Zika virus (ZIKV) is an emerging mosquito-borne flavivirus capable of infecting hu-
mans through mosquito bites as well as through sexual contact between humans. ZIKV mitigation
has traditionally focused on the reduction of the presence and abundance of mosquitoes. As the
mosquitoes adapt to pesticides, the use of personal preventive measures will have to play a crucial
role in controlling the spread of ZIKV. To evaluate different kinds of preventions, we consider a
new mathematical model for ZIKV dynamics that incorporates four control measures, including two
separate prevention measures, one for mosquito bite prevention and one for sexual transmission pre-
vention. We study the model both analytically and numerically. We show that the mosquito bite
control measure is more important for disease elimination and mitigation than the sexual transmis-
sion prevention.

1. Introduction

Zika virus (ZIKV) is an emerging mosquito-borne flavivirus, of the Flaviviridae family, that is
closely related to the Spondweni serocomplex (Hamel et al., 2015). ZIKV was first isolated in 1947
from a febrile rhesus macaque monkey in the Zika Forest of Uganda and later identified in Aedes
africanus mosquitoes from the same forest (Dick et al., 1952). The first cases of human infection
were reported in 1954 in Nigeria (Macnamara, 1954). ZIKV is transmitted to humans through
the bites of infected Aedes mosquitoes, including A. aegypti, A. africanus, A. apicoargenteus, A.
furcifer, A. hensilli, A. luteocephalus and A. vitattus (Agusto et al., 2017a; Giovanetti et al., 2016).
Recent studies show that ZIKV can be transmitted between humans via sexual contact (Foy et al.,
2011).

Historically, symptomatic ZIKV infections were limited to sporadic cases or small clusters of
patients (Plourde and Bloch, 2016). The climate changes may be behind the recent rise of Aedes-
borne infections (Robert et al., 2020, 2019, 2016). The first major outbreak of ZIKV infection
occurred in Yap Island in 2007 Duffy et al. (2009) and since then ZIKV infections have spread
rapidly (Musso et al., 2014; Marcondes et al., 2016; Fauci and Morens, 2016). Serosurveillance
studies in humans suggest that ZIKV is widespread throughout Africa, Asia, Oceania and Latin
America (Plourde and Bloch, 2016; Wikan and Smith, 2017; Wikan et al., 2016). However, these
studies may overestimate the virus’s true prevalence, given serologic overlap between ZIKV and
related flaviviruses (Korhonen et al., 2016; Plourde and Bloch, 2016).

ZIKV infection is predominantly a mild or asymptomatic denguelike disease (Fauci and Morens,
2016) with symptoms that include fever, rash, joint pain, conjunctivitis, muscle pain, and headache
(Duffy et al., 2009; Petersen et al., 2016; Wahid et al., 2018). However, it has also been linked to

Received by the editors June 13, 2020.
2020 Mathematics Subject Classification. 92D30.
Key words and phrases. Zika virus; mosquito control; sexual transmission; basic reproduction number.

©2021 The Author(s). Published by University Libraries, UNCG. This is an OpenAccess article distributed under the terms of the Creative Commons Attribution License
(http://creativecommons.org/licenses/by/3.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

1

http://creativecommons.org/licenses/by/3.0/


2 D. Taylor

Guillain-Barré Syndrome (Sejvar et al., 2011; Oehler et al., 2014) and severe birth defects, includ-
ing microcephaly (Mlakar et al., 2016; Cauchemez et al., 2016). No vaccine, specific treatment, or
fast diagnostic test is available to prevent, treat, or diagnose the ZIKV infection at this time (Gao
et al., 2016). The year 2017 saw a marked decline in reported ZIKV cases and its severe disease
manifestations (WHO, 2017). This decline has been widely attributed to the build-up of immunity
against ZIKV in the wider human population (Ferguson et al., 2016), although it remains unknown
how many people have been infected (O’Reilly et al., 2018).

ZIKV mitigation is closely associated with the reduction of the presence and abundance of A.
aegypti (Basso et al., 2017). Controlling the mosquito population is a very challenging problem
since mosquitoes can adapt to pesticides (Lima et al., 2011; Yakob and Walker, 2016). Moreover,
mosquito control tools must be feasible and practical; community engagement was found to be an
important element of integrated public health strategies (Sommerfeld and Kroeger, 2012).

Mathematical modeling is now a crucial tool in designing prevention of infectious diseases (An-
derson et al., 1992; Keeling and Rohani, 2011) and many math models have been used to de-
scribe various aspects of ZIKV outbreaks, transmission dynamics and controls (Ding et al., 2016;
Kucharski et al., 2016; Tang et al., 2016; Padmanabhan et al., 2017; Agusto et al., 2017b; Maxian
et al., 2017; Agusto et al., 2017a; Lee et al., 2017; Bonyah et al., 2017; Amoah-Mensah et al.,
2018; Dantas et al., 2018; Bonyah et al., 2019; Amoah-Mensah et al., 2019).

In Bonyah and Okosun (2016), the authors developed a mathematical model of the ZIKV dy-
namics incorporating three control measures, namely mosquito control, treatment control and pre-
vention control. The prevention limited all transmission rates, mosquitoes-to-humans, humans-
to-mosquitoes and humans-to-humans simultaneously. In this article, we build on the work in
Bonyah and Okosun (2016) and extend their model by considering two separate prevention con-
trols: a mosquito bite control that limits transmission between mosquitoes and humans and a con-
tact control that limits human-to-human transmissions. Understanding the role of limiting human-
to-human transmission is important since ZIKV has little impact on sexual activity (Hills, 2016).

We present the mathematical model in Section 2. We analyze the model in Section 3 where we
derive the basic reproduction number, R0, and show that the disease-free equilibrium is locally
asymptotically stable if R0 < 1 while the endemic equilibrium is stable, and unique, if R0 > 1.
We parameterize the model and perform numerical simulations in Section 4. Our analysis and
numerical simulations indicate that controlling mosquito bites is more important than controlling
human-to-human transmissions. We conclude the paper with a discussion in Section 5.

2. Model

We present a simple SIR-SI compartmental ODE model of ZIKV dynamics that extends the
model shown in Bonyah and Okosun (2016). The total human population size at time t, denoted by
Nh(t), is partitioned into susceptible individuals, Sh(t), infectious individuals, Ih(t), and recovered
individuals, Rh(t).

The basic model, without any control measures, is as follows. The human recruitment rate is Λh.
We assume no vertical transmission thus all newly recruited individuals are susceptible. We also
assume that individuals die at a rate of µh and that infectious individuals naturally recover at a rate
of γ. Recovered individuals are assumed to have acquired permanent immunity. The susceptible
individuals can be infected in one of the following ways: (1) directly through contact with an
infected individual which happens at rate βhh, or (2) through a bite by an infected mosquito, the
effective mosquito-to-human transmission rate will be denoted βvh. The mosquito population of
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FIGURE 2.1. Scheme of the ODE model for ZIKV transmission.

sizeNv(t) is divided into susceptible, Sv(t), and infectious, Iv(t). The mosquito recruitment rate is
Λv and we again assume that there is no vertical transmission, all mosquitoes are born susceptible.
The mosquito natural death rate is µv. Mosquitoes are infected via contact with infected humans
at a rate of βhv.

There are four control measures:

(1) The bite control, cb, such as using insecticide treated nets. This control limits the human-to-
mosquito and mosquito-to-human contact rate and causes the effective transmission rates
to be β̃hv(cb) = (1− cb)βhv and β̃vh(cb) = (1− cb)βvh, respectively.

(2) The human-to-human contact control, cc, such as the use of condoms. This control causes
the effective human-to-human transmission rate to be β̃hh(cc) = (1− cc)βhh.

(3) The treatment control, ct, which causes recovery to progress at a faster rate γ̃(ct) = γ +
ctγh,t.

(4) The insecticide control, ci, which increases the mosquito death rate to µ̃v(ci) = µv + ciµv,i.

For simplicity, all control measures are assumed to be constants and in the interval [0, 1].
The dynamics of the compartmental ODE model are summarized in Figure 2.1. See Table 2.1

for a summary of the notation along with its meaning.
The model in Figure 2.1, which is a special case of a system considered in Wei et al. (2008),

yields the following differential equations.

dSh
dt

= Λh −
(
β̃vh(cb)

Iv
Nv

+ β̃hh(cc)
Ih
Nh

+ µh

)
Sh (2.1)

dIh
dt

=

(
β̃vh(cb)

Iv
Nv

+ β̃hh(cc)
Ih
Nh

)
Sh − (µh + γ̃(ct))Ih (2.2)

dRh

dt
= γ̃(ct)Ih − µhRh (2.3)

dSv
dt

= Λv −
(
β̃hv(cb)

Ih
Nh

+ µ̃v(ci)

)
Sv (2.4)

dIv
dt

= β̃hv(cb)
Ih
Nh

Sv − µ̃v(ci)Iv (2.5)
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TABLE 2.1. Model parameters and notation. All rates are per capita per day.

Notation Meaning Base value Reference(s)

Λh Human recruitment rate 0.01392
365

World Bank (2020)
Λv Mosquito recruitment rate 3000 Andraud et al. (2012)
µh Human natural death rate 1

74·365
CIA (2020)

µv Mosquito natural death rate 1
11

Otero et al. (2006)
γ Natural recovery rate 1

7.9
Lessler et al. (2016); Ferguson et al. (2016)

γh,t Treatment recovery rate 1
5

Gao et al. (2016)
µv,i Insecticide related death rate 1 Momoh and Fügenschuh (2018)
βvh Mosquito-to-human transmission 1

11.3
Dantas et al. (2018); Ferguson et al. (2016)

rate (without control)
βhv Human-to-mosquito transmission 1

8.6
Dantas et al. (2018); Ferguson et al. (2016)

rate (without control)
βhh Human-to-human transmission 1

20
Gao et al. (2016)

rate (without control)
cb Mosquito bite control variable
cc Contact control variable
ct Treatment control variable
ci Insecticide control variable

β̃vh(cb) Mosquito-to-human transmission (1− cb)βvh
rate with control

β̃hv(cb) Human-to-mosquito transmission (1− cb)βhv
rate with control

β̃hh(cc) Human-to-human transmission (1− cc)βhh
rate with control

γ̃(ct) Recovery rate with γ + ctγh,t
treatment control

µ̃v(ci) Mosquito death rate with µv + ciµv,i
insecticide control
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3. Analysis

There are two equilibria of the differential equations given in (2.1)-(2.5). We find those equilibria
by solving the following system of algebraic equations.

0 = Λh −
(
β̃vh(cb)

Iv
Nv

+ β̃hh(cc)
Ih
Nh

+ µh

)
Sh (3.1)

0 =

(
β̃vh(cb)

Iv
Nv

+ β̃hh(cc)
Ih
Nh

)
Sh − (µh + γ̃(ct))Ih (3.2)

0 = γ̃(ct)Ih − µhRh (3.3)

0 = Λv −
(
β̃hv(cb)

Ih
Nh

+ µ̃v(ci)

)
Sv (3.4)

0 = β̃hv(cb)
Ih
Nh

Sv − µ̃v(ci)Iv (3.5)

By adding (3.1)-(3.3) we see that

Nh =
Λh

µh
. (3.6)

Moreover, adding (3.4)-(3.5) yields

Nv =
Λv

µ̃v(ci)
. (3.7)

3.1. Disease-free equilibrium

We will denote the disease-free equilibrium by E0 = (S0
h, I

0
h, R

0
h, S

0
v , I

0
v ). In the disease-free

equilibrium we assume that I0
h = 0. By (3.1) we see that S0

h = Λh

µh
. It follows immediately from

(3.5) and (3.3) that I0
v = 0 and R0

h = 0. Finally, by (3.4) we have S0
v = Λv

µ̃v(ci)
. Hence we see that

the disease free equilibrium is given by

E0 =

(
Λh

µh
, 0, 0,

Λv

µ̃v(ci)
, 0

)
. (3.8)

The basic reproduction number,R0, is given by

R0 =
1

µh + γ̃(ct)
·

(
β̃hh(cc) +

β̃hv(cb)β̃vh(cb)

µ̃v(ci)

)
. (3.9)

This formula for the basic reproduction number can be derived using the next generation matrix
method (van den Driessche and Watmough, 2002), but can also be derived as follows. A single
infectious individual stays infected for a period 1

µh+γ̃(ct)
. During that time, that individual directly

infects other individuals at a rate of β̃hh(cc) and directly infects mosquitoes at rate of Nv
β̃hv(cb)
Nh

.
Each of the infected mosquitoes stays infected for a time 1

µ̃v(ci)
. One infected mosquito infects

humans at the rate β̃vh(cb)
Nv

Nh.

Theorem 3.1. The disease-free equilibrium is locally asymptotically stable if R0 < 1. It is unsta-
ble ifR0 > 1. IfR0 ≤ 1, it is globally asymptotically stable.

Proof. The statement follows from Theorems 2.1.1 and 2.1.2 of Wei et al. (2008). �
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3.2. Endemic equilibrium

In this section we assumeR0 > 1. The endemic equilibrium is given byE∗ =(S∗
h, I

∗
h, R

∗
h, S

∗
v , I

∗
v )

where I∗h is a positive solution of

a(I∗h)2 + bI∗h + c = 0 (3.10)

where

a =

(
γ̃(ct) + µh

µh

)(
β̃hh(cc)β̃hv(cb)

N2
h

)
(3.11)

b =
γ̃(ct) + µh

µh

(
β̃vh(cb)β̃hv(cb)

Nh

+
β̃hh(cc)

Nh

µ̃v(ci) +
β̃hv(cb)

Nh

µh

)
− β̃hh(cc)β̃hv(cb)

Nh

(3.12)

c = µ̃v(ci)
(
γ̃(ct) + µh − β̃hh(cc)

)
− β̃vh(cb)β̃hv(cb) (3.13)

and

S∗
h =

Λh

µh
− (γ̃(ct) + µh)I

∗
h

µh
(3.14)

R∗
h =

γ̃(ct)

µh
I∗h (3.15)

I∗v =
Λv

µ̃v(ci)
·

β̃hv(cb)
I∗h
Nh

β̃hv(cb)
I∗h
Nh

+ µ̃v(ci)
(3.16)

S∗
v =

Λv

µ̃v(ci)
− I∗v . (3.17)

Indeed, by (3.3),

R∗
h =

γ̃(ct)

µh
I∗h. (3.18)

By (3.6),

S∗
h = Nh − I∗h −R∗

h =
Λh − (γ̃(ct) + µh)I

∗
h

µh
. (3.19)

By (3.5) and (3.7), we get

0 = β̃hv(cb)
I∗h
Nh

(Nv − I∗v )− µ̃v(ci)I∗v (3.20)

and thus

I∗v = Nv

β̃hv(cb)
I∗h
Nh

β̃hv(cb)
I∗h
Nh

+ µ̃v(ci)
. (3.21)
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By (3.1), (3.19), and (3.21) we get

0 = Λh − S∗
hβ̃vh(cb)

β̃hv(cb)
I∗h
Nh

β̃hv(cb)
I∗h
Nh

+ µ̃v(ci)
− S∗

hβ̃hh(cc)
I∗h
Nh

− µh
Λh − (γ̃(ct) + µh)I

∗
h

µh
(3.22)

which yields

0 = −S∗
hβ̃vh(cb)

β̃hv(cb)
1
Nh

β̃hv(cb)
I∗h
Nh

+ µ̃v(ci)
− S∗

h

β̃hh(cc)

Nh

+
(
γ̃(ct) + µh

)
(3.23)

and thus(
Nh −

γ̃(ct) + µh
µh

I∗h

)
·

[
β̃vh(cb)β̃hv(cb)

1
Nh

β̃hv(cb)
I∗h
Nh

+ µ̃v(ci)
+
β̃hh(cc)

Nh

]
= (γ̃(ct) + µh). (3.24)

The last equation yields a quadratic equation (3.10) for I∗h.

Theorem 3.2. IfR0 > 1, the endemic equilibrium is unique.

Proof. If R0 > 1, then c < 0, where c = µ̃v(ci)
(
γ̃(ct) + µh − β̃hh(cc)

)
− β̃vh(cb)β̃hv(cb) is as in

(3.13). Since a > 0, there is only one positive root of (3.10). �

Theorem 3.3. IfR0 > 1, the endemic equilibrium is locally asymptotically stable.

Proof. Follows from Wei et al. (2008), Theorem 2.2.1. �

4. Numerical simulations

4.1. Parameter estimation

We follow the general parameter estimation presented in Dantas et al. (2018) which fits the
ZIKV transmission model to data from Brazil.

The birth rate in Brazil is 13.92 per year per 1000 people (World Bank, 2020). The life ex-
pectancy, µ−1

h , in Brazil is 74 years (CIA, 2020). An individual stays infectious for γ−1 = 7.9
days; this estimate was derived in Dantas et al. (2018) from the fact that it takes on average 9.9
days for the infected individual to have no detectable virus in the blood (Lessler et al., 2016)
and the infectiousness in ZIKV infection ends 1.5–2 days before the virus becomes undetectable
(Ferguson et al., 2016). The recovery rate, if treated, was estimated by 1

5
as the reciprocal of the

duration of the acute ZIKV phase considered in Gao et al. (2016).
About 1000-5000 mosquitoes are born a day, with an average of 3000 a day (Andraud et al.,

2012). The mosquito life span µ−1
v is assumed to be 11 days (Otero et al., 2006). This is consistent

with the usual life expectancy for the mosquito in Rio de Janeiro, Brazil (Maciel-De-Freitas et al.,
2007), and close to the average of 2–3 weeks considered in biological studies (Nelson, 1986).

The time between a mosquito being infected and it infecting a human, β−1
vh , and the time between

a human infection and a mosquito taking an infectious blood meal, β−1
hv , are estimated as an average

of 11.3 days and 8.6 days, respectively (Dantas et al., 2018; Ferguson et al., 2016). The human-to-
human transmission rate was estimated by 1

20
as in Gao et al. (2016).

We assumed the insecticide related death rate, µv,i is 1, about 10 times the natural mosquito
mortality rate, which is in line with the estimates done in Momoh and Fügenschuh (2018).
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FIGURE 4.1. Annual incidence rates when the treatment control, ct and insecticide
control ci are as specified.

4.2. Incidence rates

Figure 4.1 shows incidence rates for varying control measures. We note that during 2018, the
incidence rate of suspected cases in Brazil was about 9.1/100,000 population, in Panama it was
66/100,000 population and in Bolivia 15/100,000 population (WHO, 2019).

It follows that the bite control measure cb is much more important than the contact control
measure cc. We can also see that the incidence rate rapidly decreases with the insecticide control
ci and the treatment control ct.

5. Conclusions and discussion

We considered a new mathematical model for ZIKV dynamics that incorporates mosquito trans-
mission as well as sexual transmission. Our model incorporates four control measures and extends
a model developed in Bonyah and Okosun (2016). We explicitly split the personal protection con-
trol measure considered in Bonyah and Okosun (2016) into bite control (preventing mosquito bites)
and contact control (preventing transmission between humans).

We studied the model both analytically and numerically. We derived the basic reproduction
number, R0 as a function of the control measures. Through numerical simulations, we were able
to see that the bite control measure is more important for the disease elimination and mitigation
than the contact control measure.
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We saw that, in theory, ZIKV can be effectively mitigated and perhaps eliminated with the use
of insecticide control. However, controlling the mosquito population is a very challenging problem
since mosquitoes can adapt to pesticides (Padmanabhan et al., 2017; Lima et al., 2011; Yakob and
Walker, 2016). Consequently, the use of personal protections and effective bite control measures
will have to play a crucial role in controlling the spread of ZIKV.

References

F. B. Agusto, S. Bewick, and W. Fagan. Mathematical model of Zika virus with vertical transmis-
sion. Infectious Disease Modelling, 2(2):244–267, 2017a.

F. B. Agusto, S. Bewick, and W. F. Fagan. Mathematical model for Zika virus dynamics with
sexual transmission route. Ecological Complexity, 29:61–81, 2017b.

J. Amoah-Mensah, I. Dontwi, and E. Bonyah. Stability analysis of Zika–malaria co-infection
model for malaria endemic region. Journal of Advances in Mathematics and Computer Science,
pages 1–22, 2018.

J. Amoah-Mensah, I. K. Dontwi, and E. Bonyah. Stability analysis of multi-infections (malaria,
Zika-virus and elephantiasis) model. Journal of Advances in Mathematics and Computer Sci-
ence, pages 1–25, 2019.

R. M. Anderson, B. Anderson, and R. M. May. Infectious diseases of humans: dynamics and
control. Oxford University Press, 1992.

M. Andraud, N. Hens, C. Marais, and P. Beutels. Dynamic epidemiological models for dengue
transmission: a systematic review of structural approaches. PloS One, 7(11), 2012.

C. Basso, E. G. da Rosa, R. Lairihoy, R. M. Caffera, I. Roche, C. González, R. da Rosa, A. Gularte,
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