North Carolina Journal of Mathematics and Statistics Volume 7, Pages 13–23 (Accepted July 5, 2021, published July 12, 2021) ISSN 2380-7539

## Geometry of a Family of Quartic Polynomials

Christopher Frayer and Lukas Smith

ABSTRACT. For a fixed  $\mathcal{A} \in \mathbb{C}$  with  $|\mathcal{A}| = 1$ , let  $\mathcal{P}$  denote the family of complex-valued polynomials of the form  $p(z) = (z-1)(z-\mathcal{A})(z-r_1)(z-r_2)$  with  $|r_1| = |r_2| = 1$ . By the Gauss-Lucas Theorem, the critical points of a polynomial in  $\mathcal{P}$  lie in the unit disk. This paper characterizes the location and structure of these critical points. We show that the unit disk contains 'desert' regions in which critical points of polynomials in  $\mathcal{P}$  do not occur. In fact, depending on the location of  $\mathcal{A}$ , the unit disk contains one or two desert regions bounded by the curve implicitly defined by

$$|2z - (\mathcal{A} + 1)| = |4z^2 - 3(\mathcal{A} + 1)z + 2\mathcal{A}|.$$

In addition to determining where critical points of polynomials in  $\mathcal{P}$  are located, we also show that almost every c inside the unit disk and outside the desert region(s) is the critical point of a unique polynomial in  $\mathcal{P}$ .

## 1. Introduction

The Gauss-Lucas Theorem (Marden, 1966) guarantees that the critical points of a complexvalued polynomial lie in the convex hull of the roots of that polynomial. Moreover, a critical point lies on the boundary of the convex hull if and only if the critical point is a multiple root of the polynomial. Refinements of the Gauss-Lucas Theorem (see Steinerberger (2020) and the numerous references within) seek to characterize regions which contain all, some, or none of the critical points of a polynomial.

One such refinement (Steinerberger, 2020) shows that if a polynomial p has m + n roots with n roots inside the unit disk and m roots outside the unit disk, then there exists a constant  $d_0 > 1$  such that n - 1 critical points of p lie inside the unit disk and the other m critical points have modulus larger than  $d_0$ . That is, there exists an annular region  $\{z : 1 < |z| \le d_0\}$  containing no critical points of p. Another refinement (Rüdinger, 2014) investigates polynomials with a zero inside the convex hull of its roots. Of particular interest is a degree four polynomial with four distinct roots forming a concave quadrilateral. If p is such a polynomial, then one of the three triangles formed by the roots of p contains no critical points of p.

Investigating polynomials whose roots lie on a circle leads to similar refinements of the Gauss-Lucas Theorem. By changing coordinates, such a polynomial can be normalized to have roots on the unit circle with one root located at z = 1. By the Gauss-Lucas Theorem, the critical points of such a polynomial must lie in the unit disk. Families of polynomials of this form are investigated in (Frayer et al., 2014; Frayer, 2017; Frayer and Gauthier, 2018), and in each case, the unit disk contains 'desert' regions where critical points do not occur. For a fixed  $a \in [-1, 1]$ , Frayer and

Received by the editors June 18, 2021.

<sup>2010</sup> Mathematics Subject Classification. 30C15.

Key words and phrases. geometry of polynomials; critical points; Gauss-Lucas Theorem.

<sup>©2021</sup> The Author(s). Published by University Libraries, UNCG. This is an OpenAccess article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/3.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Thomson (2020) extends these results to the family of complex-valued polynomials

$$\Omega_a = \{ p : \mathbb{C} \to \mathbb{C} \mid p(z) = (z-1)(z-a)(z-r_1)(z-r_2), |r_1| = |r_2| = 1 \}$$

For fixed  $z_1$  and  $z_2$  on the unit circle, it follows from (Rüdinger, 2014) and/or (Steinerberger, 2020), depending on the position of a relative to  $z_1$  and  $z_2$ , that a region inside the unit disk contains no critical points of  $(z - 1)(z - a)(z - z_1)(z - z_2) \in \Omega_a$ . Surprisingly, as  $r_1$  and  $r_2$  vary around the unit circle, the unit disk contains desert regions which contain no critical points of polynomials in  $\Omega_a$ . Furthermore, almost every c inside the unit disk and outside the desert regions is the critical point of a unique polynomial in  $\Omega_a$ .

For a fixed  $\mathcal{A} \in \mathbb{C}$  with  $|\mathcal{A}| = 1$ , this paper extends the ideas of Frayer and Thomson (2020) to the family of quartic polynomials

$$\mathcal{P} = \{ p : \mathbb{C} \to \mathbb{C} \mid p(z) = (z-1)(z-\mathcal{A})(z-r_1)(z-r_2), |r_1| = |r_2| = 1 \}.$$

Once again, the unit disk contains desert regions where critical points of polynomials in  $\mathcal{P}$  do not occur. In fact, depending upon the location of  $\mathcal{A}$ , the unit disk contains one or two desert regions, and almost every c inside the unit disk and outside the desert region(s) is the critical point of a unique polynomial in  $\mathcal{P}$  (see our Theorem 6).

## 2. Critical Points

Suppose  $\mathcal{A} \in \mathbb{C}$  with  $|\mathcal{A}| = 1$  and  $|r_1| = |r_2| = 1$ . Then, by the Gauss-Lucas Theorem  $p(z) = (z - 1)(z - \mathcal{A})(z - r_1)(z - r_2) \in \mathcal{P}$ 

has three critical points, the zeros of p', that lie in the unit disk.

#### **2.1. Preliminary Information**

We begin our analysis of these critical points by introducing a result from Frayer et al. (2014). Given  $\alpha > 0$ , we let  $T_{\alpha}$  denote the circle of diameter  $\alpha$  that passes through 1 and  $1 - \alpha$  in the complex plane.

**Theorem 1.** (Frayer et al., 2014). Let  $f(z) = (z - 1)(z - z_1) \cdots (z - z_n)$ , where  $z_k = e^{i\theta_k}$  for each k. Let  $c_1, \ldots, c_n$  denote the critical points of f(z), and suppose that  $1 \neq c_k \in T_{\alpha_k}$  for each k. Then

$$\sum_{k=1}^{n} \frac{1}{\alpha_k} = n.$$

Applying Theorem 1 to polynomials in  $\mathcal{P}$  gives a disk,  $|z - \frac{3}{4}| < \frac{1}{4}$ , where critical points cannot occur.

**Theorem 2.** No polynomial in  $\mathcal{P}$  has a critical point strictly inside  $T_{1/2}$ .

*Proof.* Let  $c_1, c_2$ , and  $c_3$  be critical points of  $p(z) = (z - 1)(z - A)(z - r_1)(z - r_2) \in \mathcal{P}$  with  $c_1 \in T_{\alpha_1}, c_2 \in T_{\alpha_2}$ , and  $c_3 \in T_{\alpha_3}$ . Theorem 1 implies

$$\frac{1}{\alpha_1} + \frac{1}{\alpha_2} + \frac{1}{\alpha_3} = 3$$

Suppose to the contrary that  $\alpha_3 < \frac{1}{2}$ . Then,

$$\frac{1}{\alpha_1} + \frac{1}{\alpha_2} = 3 - \frac{1}{\alpha_3} = \beta < 1$$

implies  $\alpha_1 = \alpha_2 = \frac{2}{\beta}$ , or  $\alpha_1 < \frac{2}{\beta}$  and  $\alpha_2 > \frac{2}{\beta}$ . Either possibility is a contradiction as  $\frac{2}{\beta} > 2$  and all three critical points must lie in the unit disk.

Similarly, as a consequence of Theorem 2, no polynomial in  $\mathcal{P}$  has a critical point inside the disk  $|z - \frac{3}{4}\mathcal{A}| < \frac{1}{4}$ .

For  $p(z) = (z - 1)(z - A)(z - r_1)(z - r_2) \in \mathcal{P}$ , rotation about the origin by  $\frac{1}{2}\operatorname{Arg}(A)$  radians in the clockwise direction forces the roots located at A and 1 to become complex conjugates. This symmetry is conducive to further analysis. For a fixed  $A \in \mathbb{C}$  with |A| = 1 we let  $P_A$  denote the family of polynomials

$$P_A = \left\{ p : \mathbb{C} \to \mathbb{C} \mid p(z) = (z - A)(z - \overline{A})(z - r_1)(z - r_2), |r_1| = |r_2| = 1 \right\}.$$

This paper will characterize the critical points of polynomials in  $P_A$  (see Theorem 5), and then apply those results to the original family of polynomials  $\mathcal{P}$  (see Theorem 6).

As an initial observation, Theorem 2 implies that the unit disk contains two disks in which critical points of polynomials in  $P_A$  cannot occur.

**Corollary 1.** No polynomial in  $P_A$  has a critical point in the open disk  $|z - \frac{3}{4}A| < \frac{1}{4}$  or  $|z - \frac{3}{4}\overline{A}| < \frac{1}{4}$ .

We now investigate several examples. For convenience, let U denote the unit circle.

**Example 1.** A polynomial  $p \in P_A$  has a critical point at A whenever A is a repeated root of p. So, for each  $r \in U$ ,

$$(z-A)^2(z-\overline{A})(z-r) \in P_A$$

has a critical point at A. Similarly, for each  $r \in U$ ,

$$(z-A)(z-\overline{A})^2(z-r) \in P_A$$

has a critical point at  $\overline{A}$ .

As Example 1 describes the only polynomials in  $P_A$  with a critical point at A or  $\overline{A}$ , we will assume that  $c \notin \{A, \overline{A}\}$  as necessary through the remainder of the paper. Before exploring another example, we define and analyze an important family of curves.

**Definition 1.** Let  $A \in U$  with  $Re(A) = \alpha$  and define

$$D_A = \{ z \in \mathbb{C} : |2z^2 - 3\alpha z + 1| = |z - \alpha| \}.$$

The set  $D_A$  depends upon  $A \in U$ . To visualize  $D_A$ , we explain how  $D_A$  changes as A moves around the unit circle. If A starts at z = 1 and moves around the unit circle in the counterclockwise direction,  $D_A$  is a simple closed curve tangent to U at A and  $\overline{A}$ . When  $\operatorname{Re}(A) = \frac{7}{9}$ , the curve bifurcates into two disconnected simple closed curves tangent to U at A and  $\overline{A}$ . See Figure 2.1. By symmetry, as A moves past z = i the two curves come back together when  $\operatorname{Re}(A) = -\frac{7}{9}$ . For future use we note that both  $\frac{3}{4}A$  and  $\frac{3}{4}\overline{A}$  are contained inside  $D_A$ . A GeoGebra animation illustrating  $D_A$  for varying values of A can be found at https://people.uwplatt.edu/~frayerc/DA.html.

Example 1 shows that infinitely many polynomials in  $P_A$  have a critical point at  $c \in \{A, \overline{A}\}$ . Similarly, one might wonder how many polynomials in  $P_A$  will have a critical point at  $r \in U \setminus \{A, \overline{A}\}$ .

**Example 2.** By the Gauss-Lucas Theorem,

$$p_r(z) = (z - A)(z - \overline{A})(z - r)^2 \in P_A$$



FIGURE 2.1. The curve  $D_A$  when  $0 < \operatorname{Re}(A) < \frac{7}{9}$  on the left, and when  $\frac{7}{9} < \operatorname{Re}(A) < 1$  on the right.

is the only polynomial in  $P_A$  with a critical point at  $r \in U \setminus \{A, \overline{A}\}$ . Differentiating and simplifying gives

$$p'_r(z) = 2(z-r)(2z^2 - (r+3\alpha)z + r\alpha + 1).$$

Thus,  $p_r$  has a critical point at z = r, as expected, and two other critical points that satisfy  $2c^2 - (r + 3\alpha)c + r\alpha + 1 = 0$ . Rewriting as  $2c^2 - 3\alpha c + 1 = r(c - \alpha)$ , taking the modulus of both sides, and noting that  $r \in U$  yields

$$|2c^2 - 3\alpha c + 1| = |c - \alpha|.$$

To summarize,  $p_r(z) = (z - A)(z - \overline{A})(z - r)^2$  is the unique polynomial in  $P_A$  with a critical point at  $r \in U \setminus \{A, \overline{A}\}$ . Furthermore, the other two critical points of  $p_r$  lie on the curve  $D_A$ .

# 2.2. The General Case

A polynomial of the form  $p(z) = (z - A)(z - \overline{A})(z - r_1)(z - r_2) \in P_A$  has three critical points in the unit disk. To further understand these critical points, we investigate how a critical point of pis related to  $r_1$  and  $r_2$ . For  $\alpha = \text{Re}(A)$ ,

$$p(z) = (z^2 - 2\alpha z + 1)(z - r_1)(z - r_2)$$

and differentiation gives

$$p'(z) = 4z^3 - (3r_1 + 3r_2 + 6\alpha)z^2 + (4\alpha r_1 + 4\alpha r_2 + 2r_1r_2 + 2)z - r_1 - r_2 - 2\alpha r_1r_2.$$

If c is a critical point of p(z), then

 $0 = p'(c) = 4c^3 - (3r_1 + 3r_2 + 6\alpha)c^2 + (4\alpha r_1 + 4\alpha r_2 + 2r_1r_2 + 2)c - r_1 - r_2 - 2\alpha r_1r_2.$ Solving for  $r_1$  gives

$$r_1 = \frac{(3c^2 - 4\alpha c + 1)r_2 - (4c^3 - 6\alpha c^2 + 2c)}{(2c - 2\alpha)r_2 - (3c^2 - 4\alpha c + 1)}$$

**Definition 2.** *Given*  $c \in \mathbb{C}$ *, we define* 

$$f_c(z) = \frac{(3c^2 - 4\alpha c + 1)z - (4c^3 - 6\alpha c^2 + 2c)}{(2c - 2\alpha)z - (3c^2 - 4\alpha c + 1)}$$

and let  $S_c = f_c(U)$ .

Observe that  $f_c$  is a Mobius transformation with  $f_c(r_2) = r_1$ . Furthermore, for  $c \in \mathbb{C} \setminus \{A, \overline{A}\}$ ,  $(f_c)^{-1} = f_c$ , and it follows that  $f_c(r_1) = r_2$ . We have established the following result.

**Theorem 3.** A polynomial  $p(z) = (z - A)(z - \overline{A})(z - r_1)(z - r_2) \in P_A$  has a critical point at c if and only if  $f_c(r_2) = r_1$ .

Since  $r_1, r_2 \in U$ ,  $f_c(r_1) = r_2 \in S_c$  and  $f_c(r_2) = r_1 \in S_c$  implies  $\{r_1, r_2\} \subseteq S_c \cap U$ . Lemma 1 investigates  $|S_c \cap U|$  and is a direct extension of a result from (Frayer and Thomson, 2020).

Lemma 1. Suppose  $c \in \mathbb{C}$ .

- (1) If  $S_c \cap U = \emptyset$ , then no polynomial in  $P_A$  has a critical point at c.
- (2) If  $S_c = U$ , then infinitely many polynomials in  $P_A$  have a critical point at c.
- (3) If  $|S_c \cap U| \in \{1, 2\}$ , then c is the critical point of a unique polynomial in  $P_A$ .

As  $S_c = f_c(U)$ , characterizing the critical points of polynomials in  $P_A$  requires a better understanding of the Mobius transformation  $f_c$ . Direct computations show that the Mobius transformation  $f_c$  has two fixed points, c and  $q = \frac{2c^2 - 3\alpha c + 1}{c - \alpha}$ , and pole  $z_{\infty} = \frac{3c^2 - 4\alpha c + 1}{2c - 2\alpha}$  (also the pole of inversion) which is the midpoint of the line segment connecting c and q. The normal form of the Mobius transformation is given by

$$\frac{f_c(z) - c}{f_c(z) - q} = r e^{i\theta} \frac{z - c}{z - q}.$$

Observing that  $f_c(z_{\infty}) = \infty$  and manipulating algebraically gives  $re^{i\theta} = -1$ . Therefore,  $f_c$  is an elliptic Mobius transformation. See (Hitchman, 2018).

Elliptic Mobius transformations can be expressed as a composition of two inversions about clines (circles or lines). In this case, as  $z_{\infty}$  is on the line L passing through c and q, for  $\Omega$  the circle centered at  $z_{\infty}$  passing through c and q,

$$f_c(z) = i_\Omega(r_L(z))$$

where  $i_{\Omega}$  is inversion about the circle  $\Omega$  and  $r_L$  is reflection about the line L. This allows us to visualize  $S_c = f_c(U)$  geometrically and will be useful for future observations. See Figure 2.2.

#### **3. Properties of** $S_c$

Suppose  $c \notin \{A, \overline{A}\}$ . Since  $f_c$  is a Mobius transformation and U is a circle,  $S_c = f_c(U)$  is a circle or a line. To further understand  $S_c$ , we begin with a special case. To determine the values of c for which  $S_c = U$ , we make use of the following result.

**Theorem 4.** (see Frayer, 2017, Theorem 2) A Mobius transformation T sends the unit circle to the unit circle if and only if

$$T(z) = \frac{\overline{\alpha}z - \overline{\beta}}{\beta z - \alpha}$$

for some  $\alpha, \beta \in \mathbb{C}$  with  $|\frac{\alpha}{\beta}| \neq 1$ .

Applying Theorem 4 to

$$f_c(z) = \frac{(3c^2 - 4\alpha c + 1)z - (4c^3 - 6\alpha c^2 + 2c)}{(2c - 2\alpha)z - (3c^2 - 4\alpha c + 1)}$$



FIGURE 2.2. The Mobius transformation  $f_c$  can be visualized as the composition of two inversions: reflection about the line L and inversion about the circle  $\Omega$ .

implies that  $S_c = U$  whenever c satisfies

$$\overline{3c^2 - 4\alpha c + 1} = 3c^2 - 4\alpha + 1$$
 and  $\overline{2c - 2\alpha} = 4c^3 - 6\alpha c^2 + 2c.$  (3.1)

Manipulating the left equation in (3.1) and setting c = x + iy gives

$$3\overline{c}^2 - 4\alpha\overline{c} + 1 = 3c^2 - 4\alpha c + 1$$
$$(\overline{c} - c)(6x - 4\alpha) = 0$$
$$(-2yi)(6x - 4\alpha) = 0.$$

Therefore c = x + iy satisfies the left equation in (3.1) whenever y = 0 or  $x = \frac{2}{3}\alpha$ . Substituting  $c = \frac{2}{3}\alpha + iy$  into the right equation in (3.1) and equating real and imaginary parts eventually gives

Re: 
$$2y^2 + \frac{40}{27}\alpha^2 - 2 = 0$$
  
Im:  $4y^3 + \frac{24}{9}\alpha^2 y - 4y = 0.$ 

Since this system of equations has no solution,  $c = \frac{2}{3}\alpha + iy$  does not satisfy (3.1), and the only remaining possibility is y = 0. Substituting c = x into the right equation in (3.1) gives

$$4x^3 - 6\alpha x^2 + 2\alpha = 0. (3.2)$$

For  $\alpha \in (-1, 1)$ , (3.2) has a unique solution, call it  $c_{\infty}$ , with  $c_{\infty} \in (-1, 1)$ . Furthermore, when  $\alpha = 1$  we have  $A = \overline{A} = 1$  and (3.2) has two solutions:  $-\frac{1}{2}$  and 1. As Example 1 characterized the polynomials in  $P_A$  with a critical point at A (or  $\overline{A}$ ) we only have one solution of interest,  $c_{\infty} = -\frac{1}{2}$ . Similarly, when  $\alpha = -1$  we have  $A = \overline{A} = -1$  and  $c_{\infty} = \frac{1}{2}$ . We have established the following result.

**Lemma 2.** Suppose  $A \in U$  with  $Re(A) = \alpha$  and  $c_{\infty}$  the unique value in (-1, 1) with  $4(c_{\infty})^3 - 6\alpha(c_{\infty})^2 + 2\alpha = 0$ . Then,  $S_c = U$  if and only if  $c = c_{\infty}$ .

As another special case, note that  $S_c$  is a line whenever there exists a  $z_0 \in U$  with

$$(2c - 2\alpha)z_0 - (3c^2 - 4\alpha c + 1) = 0.$$

Adding the right term to both sides, taking the modulus, and noting that  $|z_0| = 1$  implies  $S_c$  is a line if and only if

$$|2c - 2\alpha| = |3c^2 - 4\alpha c + 1|.$$
(3.3)

For  $|2c-2\alpha| \neq |3c^2-4\alpha c+1|$ ,  $S_c$  is a circle. By the definition of  $S_c$ ,  $z \in S_c$  if and only if there exists some  $w \in U$  with  $f_c(w) = z$ . Equivalently,  $f_c^{-1}(z) = f_c(z) = w$  implies  $|f_c(z)| = |w| = 1$ , and so

$$\frac{(3c^2 - 4\alpha c + 1)z - (4c^3 - 6\alpha c^2 + 2c)}{(2c - 2\alpha)z - (3c^2 - 4\alpha c + 1)} = 1.$$

Therefore,  $z \in S_c$  if and only if

$$\left|z - \frac{3c^2 - 4\alpha c + 1}{2c - 2\alpha}\right| = \left|\frac{3c^2 - 4\alpha c + 1}{2c - 2\alpha}\right| \left|z - \frac{4c^3 - 6\alpha c^2 + 2c}{3c^2 - 4\alpha c + 1}\right|.$$
(3.4)

When  $d \neq 1$ , the solution set of

$$|z - u| = d|z - v|$$

is a circle of Appollonius (see Partenskii (2008)) and has center C and radius R satisfying

$$C = \frac{d^2 v - u}{d^2 - 1} \text{ and } R = |v - u| \left| \frac{d}{d^2 - 1} \right|.$$
(3.5)

When  $d = \left|\frac{3c^2 - 4\alpha c + 1}{2c - 2\alpha}\right| = 1$  in (3.4),  $S_c$  is a line (verifying our previous observation in equation (3.3)). When  $d \neq 1$ ,  $S_c$  is a circle with center

$$C = \frac{\left|\frac{3c^2 - 4\alpha c + 1}{2c - 2\alpha}\right|^2 \frac{4c^3 - 6\alpha c^2 + 2c}{3c^2 - 4\alpha c + 1} - \frac{3c^2 - 4\alpha c + 1}{2c - 2\alpha}}{\left|\frac{3c^2 - 4\alpha c + 1}{2c - 2\alpha}\right|^2 - 1}.$$
(3.6)

As one last case of interest, we determine when  $S_c$  is tangent to U. According to Lemma 1 and Example 2, if  $S_c$  is tangent to U at  $r \notin \{A, \overline{A}\}$ , then c is a critical point of the unique polynomial

$$p_r(z) = (z - A)(z - \overline{A})(z - r)^2 \in P_A.$$

Furthermore, as seen in Example 2, the three critical points of  $p_r$  satisfy  $c_1 = r$  and  $c_{2,3} \in D_A$ . Therefore, if  $S_c$  is tangent to U, then  $c \in U \cup D_A$ . Let's explore  $S_c$  when  $c \in U \cup D_A$ .

**Lemma 3.** If  $c \in D_A \setminus \{A, \overline{A}\}$ , then  $S_c$  is internally tangent to U at  $\frac{2c^2 - 3\alpha c + 1}{c - \alpha}$ .

*Proof.* Let  $c \in D_A$ . Then  $|2c^2 - 3\alpha c + 1| = |c - \alpha|$  and it follows that

$$\left|\frac{2c^2 - 3\alpha c + 1}{c - \alpha}\right| = 1$$

Letting  $e^{i\phi} = \frac{2c^2 - 3\alpha c + 1}{c - \alpha}$ , direct calculations show that  $f_c(e^{i\phi}) = e^{i\phi} \in S_c$ . Furthermore, using standard manipulations and the definition of  $D_A$ , the center of  $S_c$  becomes

$$C = \frac{\overline{\frac{3c^2 - 4\alpha c + 1}{2c - 2\alpha}} - \frac{3c^2 - 4\alpha c + 1}{2c^2 - 3\alpha c + 1} \frac{2c^2 - 3\alpha c + 1}{2c^2 - 3\alpha c + 1} \frac{2c^2 - 3\alpha c + 1}{2c^2 - 3\alpha c + 1}}{2c^2 - 3\alpha c + 1}} \\ = \frac{(\overline{3c^2 - 4\alpha c + 1})(2c - 2\alpha)ce^{i\phi} - (3c^2 - 4\alpha c + 1)(\overline{2c^2 - 3\alpha c + 1})2e^{i\phi}}}{|3c^2 - 4\alpha c + 1|^2 - |2c - 2\alpha|^2} \\ = \frac{C_N}{C_D}e^{i\phi}.$$

Observing that  $C_D \in \mathbb{R}$  and further simplifying  $C_N$  eventually gives  $C = Ke^{i\phi}$  with  $K \in \mathbb{R}$ . Then, as  $e^{i\phi} \in S_C \cap U$  is on the line segment connecting the centers of  $S_c$  and U,  $S_c$  is tangent to U at  $e^{i\phi}$ . It remains to show that  $S_c$  is internally tangent to U.

To show that  $S_c$  is internally tangent to U, we verify that there exists a  $z_0 \in U$  with  $|f_c(z_0)| < 1$ . We do so by recalling the geometric interpretation of  $f_c$ . Letting L represent the line through c and  $e^{i\phi}$  (the two fixed points of  $f_c$ ) and  $\Omega$  the circle with diameter passing through c and  $e^{i\phi}$ ,  $f_c(z) = i_{\Omega}(r_L(z))$  where  $i_{\Omega}$  is inversion about the circle  $\Omega$  and  $r_L$  is reflection about the line L. See Figure 3.1. If E represents the second point of intersection between L and U, then  $f_c(E) = i_{\Omega}(r_L(E)) = i_{\Omega}(E) \in S_c$ . Furthermore, as E is outside of  $\Omega$ ,  $f_c(E) = i_{\Omega}(E)$  is inside  $\Omega$  with  $|f_c(E)| < 1$ . Therefore  $S_c$  is internally tangent to U at  $e^{i\phi}$ .

Similar, but less involved computations show that when  $c \in U$ ,  $S_c$  is externally tangent to U at c with  $C = \frac{4}{3}c$ . We have established the following result.

**Lemma 4.** Suppose  $c \in \mathbb{C} \setminus \{A, \overline{A}\}$ .

- (1)  $S_c$  is internally tangent to U if and only if  $c \in D_A$ .
- (2)  $S_c$  is externally tangent to U if and only if  $c \in U$ .



FIGURE 3.1. When  $c \in D_A$ ,  $e^{i\phi} \in U$  and  $E \in L \cap U$  is outside of  $\Omega$ . Therefore,  $f_c(E) = i_{\Omega}(r_L(E)) = i_{\Omega}(E) \in S_c$  with  $|f_c(E)| < 1$ .

### 4. Main Results

We let  $\mathcal{O}_A$  represent the open region inside the unit disk and outside the region(s) bounded by  $D_A$ . Visually, in Figure 2.1,  $\mathcal{O}_A$  is the region inside, but not on, the unit circle and enclosed between, but not on, the  $D_A$  curves. Denote the closure of  $\mathcal{O}_A$  by  $\overline{\mathcal{O}_A}$ .

When  $c \in D_A \cup U$ ,  $S_c$  is tangent to U. Lemmas 5 and 6 determine  $|S_c \cap U|$  when  $c \notin D_A \cup U$ .

**Lemma 5.** If c is contained inside  $D_A$ , then  $S_c \cap U = \emptyset$ .

*Proof.* Let c be contained inside  $D_A$  and recall that  $\frac{3}{4}A$  and  $\frac{3}{4}\overline{A}$  are also contained inside  $D_A$ . As  $c \notin D_A \cup U$ ,  $S_c$  is not tangent to U. Suppose to the contrary that  $|S_c \cap U| = 2$ . As we drag c to  $\frac{3A}{4}$  or  $\frac{3\overline{A}}{4}$  (which ever is closer) along a line segment contained in  $D_A$ ,  $S_c$  is continuously transformed into a circle not intersecting U. By the Intermediate Value Theorem, there must exist a  $c_0$  on the line segment with  $S_{c_0}$  tangent to U. However, as the line segment does not intersect  $D_A \cup U$ , this contradicts Lemma 4 and it follows that  $S_c \cap U = \emptyset$ .

A similar argument can be used to prove Lemma 6.

**Lemma 6.** If  $c \in \mathcal{O}_A \setminus \{c_\infty\}$ , then  $|S_c \cap U| = 2$ .

We are now ready to characterize the critical points of polynomials in  $P_A$ .

# **Theorem 5.** *Let* $c \in \mathbb{C}$ *.*

- (1) If  $c \notin \overline{\mathcal{O}_A}$ , then no polynomial in  $P_A$  has a critical point at c.
- (2) If  $c \in \{c_{\infty}, A, A\}$ , then infinitely many polynomials in  $P_A$  have a critical point at c.
- (3) If  $c \in \overline{\mathcal{O}_A} \setminus \{c_{\infty}, A, \overline{A}\}$ , then a unique polynomial in  $P_A$  has a critical point at c.

*Proof.* Let  $c \in \mathbb{C}$ .

- (1) If c is inside  $D_A$ , Lemmas 5 and 1 imply that no polynomial in  $P_A$  has a critical point at c. Furthermore, by the Gauss-Lucas Theorem, no polynomial in  $P_A$  has a critical point outside the unit disk.
- (2) If  $c = c_{\infty}$ , then Lemma 2 implies  $S_c = U$ . Therefore, by Lemma 1 and Theorem 3,

$$(z-A)(z-\overline{A})(z-r)(z-f_c(r)) \in P_A$$

has a critical point at c for each  $r \in U$ . By Example 1, there are infinitely many polynomials in  $P_A$  with a critical point at  $c \in \{A, \overline{A}\}$ .

(3) If  $c \in \overline{\mathcal{O}_A} \setminus \{c_{\infty}, A, \overline{A}\}, c \in \mathcal{O}_A \setminus \{c_{\infty}\}$  or  $c \in \{U \cup D_A\} \setminus \{A, \overline{A}\}$ . When  $c \in \mathcal{O}_A \setminus \{c_{\infty}\}$ Lemma 6 implies  $|S_c \cap U| = 2$ . When  $c \in \{U \cup D_A\} \setminus \{A, \overline{A}\}$  Lemma 4 implies that  $|S_c \cap U| = 1$ . Therefore, by Lemma 1, there is a unique polynomial in  $P_A$  with a critical point at c

We finish our discussion by revisiting the family of polynomials  $\mathcal{P}$ . For a fixed  $A \in U$  and some  $r_1, r_2 \in U$ ,

$$(z-A)(z-\overline{A})(z-r_1)(z-r_2) \in P_A$$

Counterclockwise rotation by Arg(A) gives

$$(z - A^2)(z - 1)(z - \widetilde{r_1})(z - \widetilde{r_2}) \in \mathcal{P}$$

and demonstrates a one-to-one correspondence between  $P_A$  and  $\mathcal{P}$ . In fact, by redefining  $D_A$ ,  $\mathcal{O}_A$  and  $c_{\infty}$ , Theorem 5 can easily be restated for polynomials in  $\mathcal{P}$ .

For  $A \in U$ , we let D denote the set of complex numbers satisfying

$$|2z - (\mathcal{A} + 1)| = |4z^2 - 3(\mathcal{A} + 1)z + 2\mathcal{A}|$$

and  $\mathcal{O}$  represent the open region enclosed inside the unit disk and outside the region(s) bounded by D. To visualize D and  $\mathcal{O}$ , rotate the images in Figure 2.1 so that  $\overline{A}$  becomes z = 1. Furthermore, for  $\alpha = \operatorname{Re}(\mathcal{A})$  and k the unique real solution of  $8(\alpha + 1)k^3 - 6(\alpha + 1)k^2 + 1 = 0$ , we define  $\widetilde{c_{\infty}} = k(\mathcal{A} + 1)$ . We are now able to restate Theorem 5 for polynomials in  $\mathcal{P}$ .

**Theorem 6.** *Let*  $c \in \mathbb{C}$ *.* 

(1) If  $c \notin \overline{\mathcal{O}}$ , then no  $p \in \mathcal{P}$  has a critical point at c. (2) If  $c \in \{\widetilde{c_{\infty}}, \mathcal{A}, 1\}$ , then infinitely many polynomials in  $\mathcal{P}$  have a critical point at c. (3) If  $c \in \overline{O} \setminus \{\widetilde{c_{\infty}}, \mathcal{A}, 1\}$ , then a unique polynomial in  $\mathcal{P}$  has a critical point at c.

This completes our analysis of critical points of polynomials in  $\mathcal{P}$ , and as usual, many interesting questions remain. It would be nice to characterize critical points of families of polynomials similar to  $\mathcal{P}$  and  $\Omega_a$ . For example, when  $A \in \mathbb{C} \setminus \mathbb{R}$  with |A| < 1, what can be said about critical points of polynomials of the form

$$p(z) = (z - 1)(z - A)(z - r_1)(z - r_2)$$

with  $|r_1| = |r_2| = 1$ ? Such a polynomial lies 'inbetween'  $\mathcal{P}$  and  $\Omega_a$ . Preliminary analysis suggests that our methods apply nicely to this scenario. For fixed  $z_1$  and  $z_2$  on the unit circle, it follows from (Rüdinger, 2014) and/or (Steinerberger, 2020), depending on the position of A relative to  $z_1$  and  $z_2$ , that a region inside the unit disk contains no critical points of  $(z - 1)(z - A)(z - z_1)(z - z_2)$ . But what more can we say about the existence of a desert region(s) as  $r_1$  and  $r_2$  vary around the unit circle? Furthermore, for a specified  $c \in \mathbb{C}$ , how many, if any, such polynomials will have a critical point at c? Much more is waiting to be investigated.

## References

- C. Frayer. Geometry of polynomials with three roots. *Missouri Journal of Mathematical Sciences*, 29(2):161–175, 2017.
- C. Frayer and L. Gauthier. A tale of two circles: Geometry of a class of quartic polynomials. *Involve*, 11(3):489–500, 2018.
- C. Frayer and P. Thomson. Geometry of a family of quartic polynomials. *Pi Mu Epsilon Math Journal*, Fall, 2020.
- C. Frayer, M. Kwon, C. Shafhauser, and J. Swenson. The geometry of cubic polynomials. *Math. Magazine*, 87(2):113–124, 2014.
- M. Hitchman. *Geometry with an Introduction to Cosmic Topology*. This work is licensed under the Creative Commons Attribution-ShareAlike 4.0 International License, 2018.
- M. Marden. Geometry of polynomials. Second edition. Mathematical Surveys, No. 3. American Mathematical Society, 1966.
- M. Partenskii. The circle of apollonius and its applications in introductory physics. *The Physics Teacher*, 46:104–108, 2008.
- A. Rüdinger. Strengthening the gauss-lucas theorem for polynomials with zeros in the interior of the convex hull. *arXiv preprint arXiv:1405.0689*, 2014.

S. Steinerberger. A stability version of the gauss-lucas theorem and applications. *Journal of the Australian Mathematical Society*, 109(2):262–269, 2020.

(C. Frayer) DEPARTMENT OF MATHEMATICS, UNIVERSITY OF WISCONSIN-PLATTEVILLE, PLATTEVILLE, WI 53818, USA

*Email address*, Corresponding author: frayerc@uwplatt.edu

(L. Smith) Department of Mathematics, University of Wisconsin-Platteville, Platteville, WI 53818, USA

*Email address*: smithluk182@gmail.com