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Geometry of a Family of Quartic Polynomials

Christopher Frayer and Lukas Smith

ABSTRACT. For a fixed A ∈ C with |A| = 1, let P denote the family of complex-valued polyno-
mials of the form p(z) = (z− 1)(z−A)(z− r1)(z− r2) with |r1| = |r2| = 1. By the Gauss-Lucas
Theorem, the critical points of a polynomial in P lie in the unit disk. This paper characterizes the
location and structure of these critical points. We show that the unit disk contains ‘desert’ regions in
which critical points of polynomials in P do not occur. In fact, depending on the location of A, the
unit disk contains one or two desert regions bounded by the curve implicitly defined by

|2z − (A+ 1)| = |4z2 − 3(A+ 1)z + 2A|.
In addition to determining where critical points of polynomials in P are located, we also show that
almost every c inside the unit disk and outside the desert region(s) is the critical point of a unique
polynomial in P .

1. Introduction

The Gauss-Lucas Theorem (Marden, 1966) guarantees that the critical points of a complex-
valued polynomial lie in the convex hull of the roots of that polynomial. Moreover, a critical
point lies on the boundary of the convex hull if and only if the critical point is a multiple root
of the polynomial. Refinements of the Gauss-Lucas Theorem (see Steinerberger (2020) and the
numerous references within) seek to characterize regions which contain all, some, or none of the
critical points of a polynomial.

One such refinement (Steinerberger, 2020) shows that if a polynomial p has m+ n roots with n
roots inside the unit disk and m roots outside the unit disk, then there exists a constant d0 > 1 such
that n − 1 critical points of p lie inside the unit disk and the other m critical points have modulus
larger than d0. That is, there exists an annular region {z : 1 < |z| ≤ d0} containing no critical
points of p. Another refinement (Rüdinger, 2014) investigates polynomials with a zero inside the
convex hull of its roots. Of particular interest is a degree four polynomial with four distinct roots
forming a concave quadrilateral. If p is such a polynomial, then one of the three triangles formed
by the roots of p contains no critical points of p.

Investigating polynomials whose roots lie on a circle leads to similar refinements of the Gauss-
Lucas Theorem. By changing coordinates, such a polynomial can be normalized to have roots on
the unit circle with one root located at z = 1. By the Gauss-Lucas Theorem, the critical points of
such a polynomial must lie in the unit disk. Families of polynomials of this form are investigated
in (Frayer et al., 2014; Frayer, 2017; Frayer and Gauthier, 2018), and in each case, the unit disk
contains ‘desert’ regions where critical points do not occur. For a fixed a ∈ [−1, 1], Frayer and
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Thomson (2020) extends these results to the family of complex-valued polynomials

Ωa = {p : C→ C | p(z) = (z − 1)(z − a)(z − r1)(z − r2), |r1| = |r2| = 1} .
For fixed z1 and z2 on the unit circle, it follows from (Rüdinger, 2014) and/or (Steinerberger, 2020),
depending on the position of a relative to z1 and z2, that a region inside the unit disk contains no
critical points of (z − 1)(z − a)(z − z1)(z − z2) ∈ Ωa. Surprisingly, as r1 and r2 vary around the
unit circle, the unit disk contains desert regions which contain no critical points of polynomials in
Ωa. Furthermore, almost every c inside the unit disk and outside the desert regions is the critical
point of a unique polynomial in Ωa.

For a fixed A ∈ C with |A| = 1, this paper extends the ideas of Frayer and Thomson (2020) to
the family of quartic polynomials

P = {p : C→ C | p(z) = (z − 1)(z −A)(z − r1)(z − r2), |r1| = |r2| = 1} .
Once again, the unit disk contains desert regions where critical points of polynomials in P do not
occur. In fact, depending upon the location of A, the unit disk contains one or two desert regions,
and almost every c inside the unit disk and outside the desert region(s) is the critical point of a
unique polynomial in P (see our Theorem 6).

2. Critical Points

Suppose A ∈ C with |A| = 1 and |r1| = |r2| = 1. Then, by the Gauss-Lucas Theorem

p(z) = (z − 1)(z −A)(z − r1)(z − r2) ∈ P
has three critical points, the zeros of p′, that lie in the unit disk.

2.1. Preliminary Information

We begin our analysis of these critical points by introducing a result from Frayer et al. (2014).
Given α > 0, we let Tα denote the circle of diameter α that passes through 1 and 1 − α in the
complex plane.

Theorem 1. (Frayer et al., 2014). Let f(z) = (z − 1)(z − z1) · · · (z − zn), where zk = eiθk for
each k. Let c1, . . . , cn denote the critical points of f(z), and suppose that 1 6= ck ∈ Tαk

for each
k. Then

n∑
k=1

1

αk
= n.

Applying Theorem 1 to polynomials in P gives a disk, |z − 3
4
| < 1

4
, where critical points cannot

occur.

Theorem 2. No polynomial in P has a critical point strictly inside T1/2.

Proof. Let c1, c2, and c3 be critical points of p(z) = (z − 1)(z − A)(z − r1)(z − r2) ∈ P with
c1 ∈ Tα1 , c2 ∈ Tα2 , and c3 ∈ Tα3 . Theorem 1 implies

1

α1

+
1

α2

+
1

α3

= 3.

Suppose to the contrary that α3 <
1
2
. Then,
1

α1

+
1

α2

= 3− 1

α3

= β < 1
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implies α1 = α2 = 2
β

, or α1 <
2
β

and α2 >
2
β

. Either possibility is a contradiction as 2
β
> 2 and all

three critical points must lie in the unit disk. �

Similarly, as a consequence of Theorem 2, no polynomial in P has a critical point inside the
disk

∣∣z − 3
4
A
∣∣ < 1

4
.

For p(z) = (z − 1)(z −A)(z − r1)(z − r2) ∈ P , rotation about the origin by 1
2
Arg(A) radians

in the clockwise direction forces the roots located at A and 1 to become complex conjugates. This
symmetry is conducive to further analysis. For a fixed A ∈ C with |A| = 1 we let PA denote the
family of polynomials

PA =
{
p : C→ C | p(z) = (z − A)(z − A)(z − r1)(z − r2), |r1| = |r2| = 1

}
.

This paper will characterize the critical points of polynomials in PA (see Theorem 5), and then
apply those results to the original family of polynomials P (see Theorem 6).

As an initial observation, Theorem 2 implies that the unit disk contains two disks in which
critical points of polynomials in PA cannot occur.

Corollary 1. No polynomial in PA has a critical point in the open disk
∣∣z − 3

4
A
∣∣ < 1

4
or
∣∣z − 3

4
A
∣∣ <

1
4
.

We now investigate several examples. For convenience, let U denote the unit circle.

Example 1. A polynomial p ∈ PA has a critical point at A whenever A is a repeated root of p. So,
for each r ∈ U ,

(z − A)2(z − A)(z − r) ∈ PA
has a critical point at A. Similarly, for each r ∈ U ,

(z − A)(z − A)2(z − r) ∈ PA
has a critical point at A.

As Example 1 describes the only polynomials in PA with a critical point at A or A, we will
assume that c /∈ {A,A} as necessary through the remainder of the paper. Before exploring another
example, we define and analyze an important family of curves.

Definition 1. Let A ∈ U with Re(A) = α and define

DA = {z ∈ C :
∣∣2z2 − 3αz + 1

∣∣ = |z − α|}.

The set DA depends upon A ∈ U . To visualize DA, we explain how DA changes as A moves
around the unit circle. IfA starts at z = 1 and moves around the unit circle in the counterclockwise
direction, DA is a simple closed curve tangent to U at A and A. When Re(A) = 7

9
, the curve bifur-

cates into two disconnected simple closed curves tangent to U atA andA. See Figure 2.1. By sym-
metry, asAmoves past z = i the two curves come back together when Re(A) = −7

9
. For future use

we note that both 3
4
A and 3

4
A are contained inside DA. A GeoGebra animation illustrating DA for

varying values ofA can be found at https://people.uwplatt.edu/∼frayerc/DA.html.
Example 1 shows that infinitely many polynomials in PA have a critical point at c ∈ {A,A}.

Similarly, one might wonder how many polynomials in PA will have a critical point at r ∈ U \
{A,A}.

Example 2. By the Gauss-Lucas Theorem,

pr(z) = (z − A)(z − A)(z − r)2 ∈ PA
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FIGURE 2.1. The curve DA when 0 < Re(A) < 7
9

on the left, and when 7
9
<

Re(A) < 1 on the right.

is the only polynomial in PA with a critical point at r ∈ U \{A,A}. Differentiating and simplifying
gives

p′r(z) = 2(z − r)(2z2 − (r + 3α)z + rα + 1).

Thus, pr has a critical point at z = r, as expected, and two other critical points that satisfy
2c2− (r+ 3α)c+ rα+ 1 = 0. Rewriting as 2c2− 3αc+ 1 = r(c−α), taking the modulus of both
sides, and noting that r ∈ U yields ∣∣2c2 − 3αc+ 1

∣∣ = |c− α| .

To summarize, pr(z) = (z−A)(z−A)(z−r)2 is the unique polynomial in PA with a critical point
at r ∈ U \ {A,A}. Furthermore, the other two critical points of pr lie on the curve DA.

2.2. The General Case

A polynomial of the form p(z) = (z−A)(z−A)(z− r1)(z− r2) ∈ PA has three critical points
in the unit disk. To further understand these critical points, we investigate how a critical point of p
is related to r1 and r2. For α = Re(A),

p(z) = (z2 − 2αz + 1)(z − r1)(z − r2)

and differentiation gives

p′(z) = 4z3 − (3r1 + 3r2 + 6α)z2 + (4αr1 + 4αr2 + 2r1r2 + 2)z − r1 − r2 − 2αr1r2.

If c is a critical point of p(z), then

0 = p′(c) = 4c3 − (3r1 + 3r2 + 6α)c2 + (4αr1 + 4αr2 + 2r1r2 + 2)c− r1 − r2 − 2αr1r2.

Solving for r1 gives

r1 =
(3c2 − 4αc+ 1)r2 − (4c3 − 6αc2 + 2c)

(2c− 2α)r2 − (3c2 − 4αc+ 1)
.

Definition 2. Given c ∈ C, we define

fc(z) =
(3c2 − 4αc+ 1)z − (4c3 − 6αc2 + 2c)

(2c− 2α)z − (3c2 − 4αc+ 1)

and let Sc = fc(U).
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Observe that fc is a Mobius transformation with fc(r2) = r1. Furthermore, for c ∈ C \ {A,A},
(fc)

−1 = fc, and it follows that fc(r1) = r2. We have established the following result.

Theorem 3. A polynomial p(z) = (z − A)(z − A)(z − r1)(z − r2) ∈ PA has a critical point at c
if and only if fc(r2) = r1.

Since r1, r2 ∈ U , fc(r1) = r2 ∈ Sc and fc(r2) = r1 ∈ Sc implies {r1, r2} ⊆ Sc ∩ U . Lemma 1
investigates |Sc ∩ U | and is a direct extension of a result from (Frayer and Thomson, 2020).

Lemma 1. Suppose c ∈ C.
(1) If Sc ∩ U = ∅, then no polynomial in PA has a critical point at c.
(2) If Sc = U , then infinitely many polynomials in PA have a critical point at c.
(3) If |Sc ∩ U | ∈ {1, 2}, then c is the critical point of a unique polynomial in PA.

As Sc = fc(U), characterizing the critical points of polynomials in PA requires a better under-
standing of the Mobius transformation fc. Direct computations show that the Mobius transforma-

tion fc has two fixed points, c and q =
2c2 − 3αc+ 1

c− α
, and pole z∞ =

3c2 − 4αc+ 1

2c− 2α
(also the

pole of inversion) which is the midpoint of the line segment connecting c and q. The normal form
of the Mobius transformation is given by

fc(z)− c
fc(z)− q

= reiθ
z − c
z − q

.

Observing that fc(z∞) = ∞ and manipulating algebraically gives reiθ = −1. Therefore, fc is an
elliptic Mobius transformation. See (Hitchman, 2018).

Elliptic Mobius transformations can be expressed as a composition of two inversions about
clines (circles or lines). In this case, as z∞ is on the line L passing through c and q, for Ω the circle
centered at z∞ passing through c and q,

fc(z) = iΩ(rL(z))

where iΩ is inversion about the circle Ω and rL is reflection about the line L. This allows us to
visualize Sc = fc(U) geometrically and will be useful for future observations. See Figure 2.2.

3. Properties of Sc

Suppose c /∈ {A,A}. Since fc is a Mobius transformation and U is a circle, Sc = fc(U) is a
circle or a line. To further understand Sc, we begin with a special case. To determine the values of
c for which Sc = U , we make use of the following result.

Theorem 4. (see Frayer, 2017, Theorem 2) A Mobius transformation T sends the unit circle to the
unit circle if and only if

T (z) =
αz − β
βz − α

for some α, β ∈ C with |α
β
| 6= 1.

Applying Theorem 4 to

fc(z) =
(3c2 − 4αc+ 1)z − (4c3 − 6αc2 + 2c)

(2c− 2α)z − (3c2 − 4αc+ 1)
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FIGURE 2.2. The Mobius transformation fc can be visualized as the composition
of two inversions: reflection about the line L and inversion about the circle Ω.

implies that Sc = U whenever c satisfies

3c2 − 4αc+ 1 = 3c2 − 4α + 1 and 2c− 2α = 4c3 − 6αc2 + 2c. (3.1)

Manipulating the left equation in (3.1) and setting c = x+ iy gives

3c2 − 4αc+ 1 = 3c2 − 4αc+ 1

(c− c)(6x− 4α) = 0

(−2yi)(6x− 4α) = 0.

Therefore c = x + iy satisfies the left equation in (3.1) whenever y = 0 or x = 2
3
α. Substituting

c = 2
3
α+ iy into the right equation in (3.1) and equating real and imaginary parts eventually gives

Re : 2y2 +
40

27
α2 − 2 = 0

Im : 4y3 +
24

9
α2y − 4y = 0.

Since this system of equations has no solution, c = 2
3
α + iy does not satisfy (3.1), and the only

remaining possibility is y = 0. Substituting c = x into the right equation in (3.1) gives

4x3 − 6αx2 + 2α = 0. (3.2)

For α ∈ (−1, 1), (3.2) has a unique solution, call it c∞, with c∞ ∈ (−1, 1). Furthermore, when
α = 1 we have A = A = 1 and (3.2) has two solutions: −1

2
and 1. As Example 1 characterized the

polynomials in PA with a critical point atA (orA) we only have one solution of interest, c∞ = −1
2
.

Similarly, when α = −1 we have A = A = −1 and c∞ = 1
2
. We have established the following

result.

Lemma 2. Suppose A ∈ U with Re(A) = α and c∞ the unique value in (−1, 1) with 4(c∞)3 −
6α(c∞)2 + 2α = 0. Then, Sc = U if and only if c = c∞.
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As another special case, note that Sc is a line whenever there exists a z0 ∈ U with

(2c− 2α)z0 − (3c2 − 4αc+ 1) = 0.

Adding the right term to both sides, taking the modulus, and noting that |z0| = 1 implies Sc is a
line if and only if

|2c− 2α| = |3c2 − 4αc+ 1|. (3.3)

For |2c−2α| 6= |3c2−4αc+1|, Sc is a circle. By the definition of Sc, z ∈ Sc if and only if there
exists some w ∈ U with fc(w) = z. Equivalently, f−1

c (z) = fc(z) = w implies |fc(z)| = |w| = 1,
and so ∣∣∣∣(3c2 − 4αc+ 1)z − (4c3 − 6αc2 + 2c)

(2c− 2α)z − (3c2 − 4αc+ 1)

∣∣∣∣ = 1.

Therefore, z ∈ Sc if and only if∣∣∣∣z − 3c2 − 4αc+ 1

2c− 2α

∣∣∣∣ =

∣∣∣∣3c2 − 4αc+ 1

2c− 2α

∣∣∣∣ ∣∣∣∣z − 4c3 − 6αc2 + 2c

3c2 − 4αc+ 1

∣∣∣∣ . (3.4)

When d 6= 1, the solution set of

|z − u| = d|z − v|

is a circle of Appollonius (see Partenskii (2008)) and has center C and radius R satisfying

C =
d2v − u
d2 − 1

and R = |v − u|
∣∣∣∣ d

d2 − 1

∣∣∣∣ . (3.5)

When d =
∣∣∣3c2−4αc+1

2c−2α

∣∣∣ = 1 in (3.4), Sc is a line (verifying our previous observation in equation
(3.3)). When d 6= 1, Sc is a circle with center

C =

∣∣∣3c2−4αc+1
2c−2α

∣∣∣2 4c3−6αc2+2c
3c2−4αc+1

− 3c2−4αc+1
2c−2α∣∣3c2−4αc+1

2c−2α

∣∣2 − 1
. (3.6)

As one last case of interest, we determine when Sc is tangent to U . According to Lemma 1 and
Example 2, if Sc is tangent to U at r /∈ {A,A}, then c is a critical point of the unique polynomial

pr(z) = (z − A)(z − A)(z − r)2 ∈ PA.

Furthermore, as seen in Example 2, the three critical points of pr satisfy c1 = r and c2,3 ∈ DA.
Therefore, if Sc is tangent to U , then c ∈ U ∪DA. Let’s explore Sc when c ∈ U ∪DA.

Lemma 3. If c ∈ DA \ {A,A}, then Sc is internally tangent to U at
2c2 − 3αc+ 1

c− α
.

Proof. Let c ∈ DA. Then |2c2 − 3αc+ 1| = |c− α| and it follows that∣∣∣∣2c2 − 3αc+ 1

c− α

∣∣∣∣ = 1.
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Letting eiφ =
2c2 − 3αc+ 1

c− α
, direct calculations show that fc(eiφ) = eiφ ∈ Sc. Furthermore, using

standard manipulations and the definition of DA, the center of Sc becomes

C =
3c2−4αc+1

2c−2α
4c3−6αc2+2c

2c−2α
− 3c2−4αc+1

2c2−3αc+1
2c2−3αc+1

2c−2α
2c2−3αc+1
2c2−3αc+1∣∣3c2−4αc+1

2c−2α

∣∣2 − 1

=
(3c2 − 4αc+ 1)(2c− 2α)ceiφ − (3c2 − 4αc+ 1)(2c2 − 3αc+ 1)2eiφ

|3c2 − 4αc+ 1|2 − |2c− 2α|2

=
CN
CD

eiφ.

Observing that CD ∈ R and further simplifying CN eventually gives C = Keiφ with K ∈ R.
Then, as eiφ ∈ SC ∩ U is on the line segment connecting the centers of Sc and U , Sc is tangent to
U at eiφ. It remains to show that Sc is internally tangent to U .

To show that Sc is internally tangent to U , we verify that there exists a z0 ∈ U with |fc(z0)| < 1.
We do so by recalling the geometric interpretation of fc. Letting L represent the line through
c and eiφ (the two fixed points of fc) and Ω the circle with diameter passing through c and eiφ,
fc(z) = iΩ(rL(z)) where iΩ is inversion about the circle Ω and rL is reflection about the line L.
See Figure 3.1. If E represents the second point of intersection between L and U , then fc(E) =
iΩ(rL(E)) = iΩ(E) ∈ Sc. Furthermore, as E is outside of Ω, fc(E) = iΩ(E) is inside Ω with
|fc(E)| < 1. Therefore Sc is internally tangent to U at eiφ. �

Similar, but less involved computations show that when c ∈ U , Sc is externally tangent to U at
c with C = 4

3
c. We have established the following result.

Lemma 4. Suppose c ∈ C \ {A,A}.
(1) Sc is internally tangent to U if and only if c ∈ DA.
(2) Sc is externally tangent to U if and only if c ∈ U .
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00

FIGURE 3.1. When c ∈ DA, eiφ ∈ U and E ∈ L ∩ U is outside of Ω. Therefore,
fc(E) = iΩ(rL(E)) = iΩ(E) ∈ Sc with |fc(E)| < 1.
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4. Main Results

We let OA represent the open region inside the unit disk and outside the region(s) bounded
by DA. Visually, in Figure 2.1, OA is the region inside, but not on, the unit circle and enclosed
between, but not on, the DA curves. Denote the closure of OA by OA.

When c ∈ DA ∪ U , Sc is tangent to U . Lemmas 5 and 6 determine |Sc ∩ U | when c /∈ DA ∪ U .

Lemma 5. If c is contained inside DA, then Sc ∩ U = ∅.

Proof. Let c be contained inside DA and recall that 3
4
A and 3

4
A are also contained inside DA. As

c /∈ DA ∪U , Sc is not tangent to U . Suppose to the contrary that |Sc ∩U | = 2. As we drag c to 3A
4

or 3A
4

(which ever is closer) along a line segment contained in DA, Sc is continuously transformed
into a circle not intersecting U . By the Intermediate Value Theorem, there must exist a c0 on the
line segment with Sc0 tangent to U . However, as the line segment does not intersect DA ∪ U , this
contradicts Lemma 4 and it follows that Sc ∩ U = ∅.

�

A similar argument can be used to prove Lemma 6.

Lemma 6. If c ∈ OA \ {c∞}, then |Sc ∩ U | = 2.

We are now ready to characterize the critical points of polynomials in PA.

Theorem 5. Let c ∈ C.
(1) If c /∈ OA, then no polynomial in PA has a critical point at c.
(2) If c ∈ {c∞, A,A}, then infinitely many polynomials in PA have a critical point at c.
(3) If c ∈ OA \ {c∞, A,A}, then a unique polynomial in PA has a critical point at c.

Proof. Let c ∈ C.
(1) If c is inside DA, Lemmas 5 and 1 imply that no polynomial in PA has a critical point at

c. Furthermore, by the Gauss-Lucas Theorem, no polynomial in PA has a critical point
outside the unit disk.

(2) If c = c∞, then Lemma 2 implies Sc = U . Therefore, by Lemma 1 and Theorem 3,

(z − A)(z − A)(z − r)(z − fc(r)) ∈ PA
has a critical point at c for each r ∈ U . By Example 1, there are infinitely many polynomi-
als in PA with a critical point at c ∈ {A,A}.

(3) If c ∈ OA \ {c∞, A,A}, c ∈ OA \ {c∞} or c ∈ {U ∪DA} \ {A,A}. When c ∈ OA \ {c∞}
Lemma 6 implies |Sc ∩ U | = 2. When c ∈ {U ∪ DA} \ {A,A} Lemma 4 implies that
|Sc ∩ U | = 1. Therefore, by Lemma 1, there is a unique polynomial in PA with a critical
point at c

�

We finish our discussion by revisiting the family of polynomials P . For a fixed A ∈ U and some
r1, r2 ∈ U ,

(z − A)(z − A)(z − r1)(z − r2) ∈ PA.
Counterclockwise rotation by Arg(A) gives

(z − A2)(z − 1)(z − r̃1)(z − r̃2) ∈ P
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and demonstrates a one-to-one correspondence between PA and P . In fact, by redefining DA, OA
and c∞, Theorem 5 can easily be restated for polynomials in P .

For A ∈ U , we let D denote the set of complex numbers satisfying

|2z − (A+ 1)| = |4z2 − 3(A+ 1)z + 2A|

andO represent the open region enclosed inside the unit disk and outside the region(s) bounded by
D. To visualize D and O, rotate the images in Figure 2.1 so that A becomes z = 1. Furthermore,
for α = Re(A) and k the unique real solution of 8(α + 1)k3 − 6(α + 1)k2 + 1 = 0, we define
c̃∞ = k(A+ 1). We are now able to restate Theorem 5 for polynomials in P .

Theorem 6. Let c ∈ C.
(1) If c /∈ O, then no p ∈ P has a critical point at c.
(2) If c ∈ {c̃∞,A, 1}, then infinitely many polynomials in P have a critical point at c.
(3) If c ∈ O \ {c̃∞,A, 1}, then a unique polynomial in P has a critical point at c.

This completes our analysis of critical points of polynomials inP , and as usual, many interesting
questions remain. It would be nice to characterize critical points of families of polynomials similar
to P and Ωa. For example, when A ∈ C \R with |A| < 1, what can be said about critical points of
polynomials of the form

p(z) = (z − 1)(z − A)(z − r1)(z − r2)

with |r1| = |r2| = 1? Such a polynomial lies ‘inbetween’ P and Ωa. Preliminary analysis suggests
that our methods apply nicely to this scenario. For fixed z1 and z2 on the unit circle, it follows from
(Rüdinger, 2014) and/or (Steinerberger, 2020), depending on the position of A relative to z1 and
z2, that a region inside the unit disk contains no critical points of (z − 1)(z − A)(z − z1)(z − z2).
But what more can we say about the existence of a desert region(s) as r1 and r2 vary around the
unit circle? Furthermore, for a specified c ∈ C, how many, if any, such polynomials will have a
critical point at c? Much more is waiting to be investigated.
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