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Peru: A Burden of Disease Assessment
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ABSTRACT. We explore the connection between exposure to particulate matter from forest fire
emissions in the Peruvian Amazon and pediatric asthma incidence. The bulk of research and media
coverage surrounding the Amazon Rainforest fires has focused on important environmental issues,
yet the direct impact that these fires have on the health of children living nearby remains under-
explored. We conducted a burden of disease assessment using publicly available data to estimate the
number of incident pediatric asthma cases attributable to long term exposure to ambient particulate
matter smaller than 2.5 microns (PM2.5) resulting from increased forest fires in the Peruvian Ama-
zon. Our model compares pediatric asthma burden that would have resulted from a more “typical”
fire year, such as 2009, with that from 2016, a severe fire year, by applying PM2.5 concentrations
from each of those years to the same 2016 population. We estimate that 75,160 (95 % CI 28,638,
121,682) pediatric asthma cases in 2016 were attributable to PM2.5, whereas counterfactually ap-
plying the 2009 PM2.5 concentrations would have resulted in 9,636 (95 % CI 5,657, 13,615) fewer
attributable cases. Thus, our results suggest that increased forest fire emissions have led to a notable
increase in pediatric asthma burden in Peru.

1. Introduction

Over the past few decades, the raging fires in the Amazon Rainforest have been upheld as a
global symbol for a suffering planet. The bulk of research and media coverage surrounding these
fires has focused primarily on important environmental issues, yet the impact that these fires have
had on the health of children remains under-explored. The children living near the Amazon fires,
which have been intentionally perpetrated, in part, by slash-and-burn cattle ranching practices, face
health consequences such as severe asthma, bronchitis, and other diseases (Jacobson et al., 2014;
Ignotti et al., 2010).

The increase in Amazon fires is one of the most pressing environmental disasters in the world.
As of 2019, Brazil alone lost four million acres of forest, and this number has since increased
drastically (Gibbens, 2019). These fires have great potential to detrimentally affect ecosystems,
endangered or undiscovered animal species, oxygen production, air quality, and public health. The
Amazon fires, unlike more localized forest fires, are an international issue that garner attention
from all countries around the world. Every nation has a card on the table because the global
environmental benefits that the Amazon Rainforest has always provided are now in jeopardy. The
most recent devastating Amazon fires in 2019 and 2020, although highly publicized, were not
the only recent major fire events in the Amazon. Other years, such as 2016, have been similarly
problematic, particularly in Peru. According to the Global Fire Emissions Database (2022), 2016
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FIGURE 1.1. Cumulative daily fire counts in Peru in 2009, 2011, 2014, and 2016,
from Global Fire Emissions Database

saw the highest cumulative number of fires in the Peruvian Amazon over the last decade, even more
than 2019 or 2020. As seen in Figure 1.1, Peru experienced almost double the amount of fires in
2016 as it had in 2009, 2011, or 2014, which is why we selected these three years for comparison
in our analysis.

Although the amounts and types vary depending on the biomass being burned, the most promi-
nent pollutants directly emitted from forest fires include ozone, carbon dioxide, carbon monoxide,
methane, nitrogen oxides, ammonia, non-methane hydrocarbon, and particulate matter (Carvalho
et al., 2011). Among these, particulate matter has great potential to affect human health, especially
in children. Notably, particulate matter is one of the main causes of childhood asthma (Anenberg
et al., 2018). When referring to particulate matter, it will be commonly denoted as PM2.5 or PM10,
where the subscript referes to the diameter of the particles, in microns. For example, PM2.5 are
particles that have diameters that are smaller than 2.5 microns. Radke et al. (1978) suggested that
the average forest fire can emit pollutants at a rate of about 20 kg/s. Because of this, massive
quantities of gases, PM2.5, and PM10 are released into the atmosphere each year. According to the
EPA, PM2.5 poses as the most dangerous form of particulate matter because these tiny particulates
can easily be inhaled and end up in the lungs, or even in the bloodstream (USEPA, 2021).

Children are among the most vulnerable groups in the human population (Bearer, 1995). Chil-
dren living in and near the Amazon are in immediate danger of having severe health issues caused
by the smoke and particulate matter emitted from fires. Emitted PM2.5 can get into the respiratory
tract, causing asthma, acute bronchitis, and chronic obstructive pulmonary disease (Caamano-
Isorna et al., 2011). These issues are exacerbated in children because of their smaller organs, as
well as their higher metabolic rates and higher consumption of oxygen relative to their size (Bearer,
1995). In children under six years of age, their lungs have not developed full functionality and their
immune system is still in development. These effects are even more severe in children who have
been already diagnosed with asthma and can lead to chronic episodes of asthma attacks and pneu-
monia, as well as overall decreased lung function (Schwartz, 2004). We will focus on pediatric
asthma, one of the most common chronic diseases among children (Romani et al., 2020).
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The prevalence of asthma in Peru is one of the highest worldwide with “48% of children in
Peru reporting lifetime wheeze” (Robinson et al., 2012). Peru’s capital city of Lima alone has
asthma prevalence estimated to be around 20%, one of the highest in the world, largely due to
traffic-related pollution (Romani et al., 2020). We will conduct a burden of disease assessment to
estimate the burden of pediatric asthma incidence in Peru due to ambient PM2.5 exposure, specif-
ically as a result of increased Amazon fires. Burden of disease assessments are an appropriate
and effective method to estimate health burden, and “[they] have become increasingly popular and
have been more commonly used to assess the burden of mortality attributable to air pollution at the
global, national, regional and local scales” (Khreis et al., 2021, pg. 77). Childhood asthma is one
health outcome that has recently been given more attention through the use of burden of disease
assessments (Khreis et al., 2021). Burden of disease assessments are especially useful when using
large publicly available data sources to calculate an estimate, rather than collecting primary data.

This research will explore the relationship between PM2.5 exposure from increased forest fires
in the Peruvian Amazon and pediatric asthma incidence. Following an approach similar to that
described by Achakulwisut et al. (2019), we will use a burden of disease model to estimate the
number of incident pediatric asthma cases attributable to ambient PM2.5 exposure. We will then
use our model to quantify the effects that increasing Amazon fires have had on childhood health
in Peru. This research can provide a basis to further investigate this relationship in other parts of
the world recently severely afflicted by wildfires, such as Australia and California. The purpose of
this research is to shine a light on this increasing threat to children’s health, thus emphasizing that
Amazonian forest fires are not just a major environmental problem.

2. Methods

2.1. Burden of Disease Model

Our overall goal in this burden of disease assessment is to estimate the number of incident
pediatric asthma cases attributable to ambient PM2.5 exposure from increasing forest fires in the
Peruvian Amazon. To do this, we utilized a burden of disease model that compares pediatric
asthma burden between “typical” Amazon fire years (2009, 2011, and 2014) and a severe fire year,
2016. We selected the year 2016 because, at the time, this was the most recent severe fire year with
available PM2.5 data and because, as previously noted, 2016 saw the greatest cumulative number
of fires in Peru over the past decade (Global Fire Emissions Database, 2022). We compared 2016
with 2009, 2011, and 2014 by counterfactually applying PM2.5 concentration distributions for those
years to the same 2016 population. We chose to compare 2016 to “typical” fire years rather than to
a hypothetical year with no or minimal fires because, given the unfortunate ubiquity of these fires,
it is difficult to imagine what PM2.5 concentrations might look like in the Amazon in the absence
of fires.

To first find the number of incident asthma cases attributable to PM2.5 concentrations for each
year, we used the following epidemiological burden of disease model described by Anenberg et al.
(2018) and Achakulwisut et al. (2019):

B =
4∑

a=1

eγa
∑
i∈P

Nai(1− e−βXi) . (2.1)

Here, B represents incident asthma cases attributable to ambient PM2.5 for a specific year, γa
represents the natural logarithm of the asthma incidence rate for age group a (0-4, 5-9, 10-14,
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TABLE 2.1. Estimates of the relative risk of pediatric asthma incidence for each
10 µg/m3 increase in ambient PM2.5, along with 95% confidence intervals (from
Anenberg et al., 2018)

Article
Source

Estimated
Relative Risk

95% Confidence
Interval

Anderson et al., 2013 1.34 (0.96, 1.86)
Khreis et al., 2017 1.34 (1.11, 1.63)

or 15-19 years), Nai is the predicted number of people in age group a within grid cell i, β is a
concentration-response function relating PM2.5 concentrations and pediatric asthma incidence, Xi

represents gridded PM2.5 data for the specific year of interest in grid cell i, and P is the set of all
grid cells within Peru. An outcome of one iteration of this model will provide an estimate for the
number of pediatric asthma cases in Peru attributable to PM2.5 exposure. To compare the burdens
of disease for two different years, we use the following difference function:

∆ =
4∑

a=1

eγa
∑
i∈P

Nai(e
−βXt,i − e−βX2016,i) , (2.2)

where ∆ represents the difference in pediatric asthma burden attributed to PM2.5 between two
different years, and Xt,i represents the gridded PM2.5 data for year t in grid cell i. An outcome of
one iteration of this model will provide an estimate for the difference in asthma cases in the same
2016 population between two years of counterfactually applied PM2.5 concentrations.

To create and execute our burden of disease model, we used the R programming language,
version 4.0.2. We used a statistical approach called the delta method to derive approximate 95%
confidence intervals for Equations (2.1) and (2.2) (see Appendix A). We used a variety of data sets
from different sources as inputs for our model, and these are detailed in the following subsections.

2.2. Estimates for Relative Risk and β

For our model, we used estimates of β taken from previous studies. Table 2.1 shows the rel-
ative risk estimates from two relevant meta-analyses of epidemiological studies relating ambient
PM2.5 exposure and pediatric asthma incidence, along with their corresponding 95% confidence
intervals (Anenberg et al., 2018). Note that Anenberg et al. (2018) standardized all relative risk
estimates into units of 10 µg/m3 to allow for easier comparisons.

To get an estimate, β̂, to use in our model, we took the natural log of each relative risk estimate
in Table 2.1 and divided by 10 to convert it to a relative risk corresponding to a 1 µg/m3 increase
in PM2.5. For example: β̂ = ln(1.34)/10 ≈ 0.029, which suggests that for every 1 µg/m3 increase
in annual PM2.5 exposure, the risk of asthma incidence increases by a factor of e0.029 ≈ 1.029. We
performed a similar calculation on the respective confidence limits. Because the confidence inter-
vals were asymmetric, we calculated the approximate variance for each side of the interval, and
averaged those variances to derive an approximate variance for β̂. We then used this approximate
variance as an input into our variance estimation using the delta method (see Appendix A).
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TABLE 2.2. Inputs for Global Burden of Disease Results Tool

Input Parameter Value

GBD Estimate Cause of death or injury
Measure Incidence
Metric Number, Percent, Rate
Cause Asthma
Location Peru
Age <5 years, 5-9 years, 10-14 years, 15-19 years
Sex Both
Annual Rate of Change Unselected
Year 2016

2.3. Population Data

For the population data in Model (2.1), we used estimated population count raster data for four
age groups in Peru for the year 2016 from WorldPop.org. Raster data are a type of data set that
is comprised of a spatial grid of cells. Each cell contains data called attributes; in this case, the
attribute is the estimated population count for a particular age group and sex. Raster data sets
allow for efficient spatial analysis and mapping capabilities. In their raster data sets, WorldPop
uses “random forest regression tree-based mapping approaches” to get predicted population counts
(WorldPop.org, 2018). The raster data that we used covered the entire country of Peru. The four
age groups included were 0-4, 5-9, 10-14, and 15-19 years, and they were split into different raster
sets by sex. For each age group, we added the male and female raster sets together, as we were
only interested in total population cell counts for each age group. These data sets were originally
in 100m × 100m resolution, but we aggregated them to 1km × 1km resolution to align them with
the other data in our model using the “resample” function from the raster package (version 3.5-15)
in R (Hijmans et al., 2022). The result was a raster data set with 3,346,878 1km × 1km predicted
population cell counts for each age group in Peru. We used the same 2016 population data for all
calculations to minimize fluctuations in asthma incidence not due to PM2.5 exposure. This also
allows us to counterfactually apply different years’ PM2.5 exposures to the exact same population
to observe what would have happened had the PM2.5 distribution been other than it actually was.

2.4. Asthma Incidence Estimates

For the age-group-specific asthma incidence rates, we used estimated asthma incidence rates
per 100,000 people in Peru sourced from the Institute for Health Metrics and Evaluation’s (IHME)
Global Burden of Disease (GBD) data (IHME, 2019). Using the GBD Results Tool, we were able
to enter specific inputs to obtain the data we needed (Table 2.2).

This provided us with the necessary asthma incidence estimates for children in Peru (Table 2.3).
We divided these asthma incidence rates by 100,000 to get individual-level rates. We used the
confidence intervals from these rates to extrapolate variances for γ̂a, the log of the individual-level
rate, by using a similar process for asymmetric confidence intervals as described in Section 2.2.
We then multiplied these asthma incidence rates by the age group population raster data sets to get
estimated incident asthma case counts for each grid cell in Peru.
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TABLE 2.3. GBD asthma incidence rates (per 100,000) and confidence intervals
for Peru in 2016, by age group

Age Group Estimated
Incidence Rate

95% Confidence
Interval

0-4 years 3663.8 (2237.6, 5554.4)
5-9 years 1932.9 (903.9, 3399.0)
10-14 years 922.5 (479.1, 1454.7)
15-19 years 388.2 (210.9, 628.7)

2.5. PM2.5 Data

The final input for our burden of disease model was gridded PM2.5 data for a given year in each
1km × 1km cell. We used NASA’s Global Annual PM2.5 Grids, which are estimated from a model
using aerosol optical depth (Hammer et al., 2022). These estimates are “annual concentrations (mi-
crograms per cubic meter) of ground-level fine particulate matter (PM2.5), with dust and sea-salt
removed” (Hammer et al., 2022). These PM2.5 data are from all sources, such as vehicle emis-
sions, and not just forest fires. However, when running our comparison models, we assume that
these other sources remain fairly stable from year to year. For our model, we used the resample
function from the raster package (version 3.5-15) in R (Hijmans et al., 2022) on these data to align
the resolution with the Peruvian population data, and then created a PM2.5 risk data set, called the
attributable fraction, using 1−e−βX . We calculated incident asthma cases attributable to PM2.5 ex-
posure for each age group in each cell in the raster grid by multiplying the attributable fraction and
the respective asthma incidence data sets. This process was completed separately using PM2.5 data
from all four years. By comparing the estimated asthma incidence due to PM2.5 concentrations
from a year with increased forest fire activity, such as 2016, with that obtained using PM2.5 con-
centrations from a year with fewer fires, such as 2011, on the same population, we can estimate
the burden of pediatric asthma incidence attributable to increased fire-related PM2.5 in Peru.

3. Results

Figure 3.1 shows the WorldPop.org raster data from 2016 that breaks population data down into
our four age groups. The 0-4 year age group has a total population of 3,125,721, the 5-9 year
age group has a total population of 2,998,168, the 10-14 year age group has a total population of
2,907,767, and the 15-19 year age group has a total population of 2,860,034. The darker blue cells
represent more children located in each 1km × 1km cell, while the lighter blue cells represent
fewer children per cell. Overall, there are no major apparent differences in population distribution
between the four age groups, with the largest notable differences being between Age Groups 1 (0-4
years) and 4 (15-19 years).

Figure 3.2 shows raster data from NASA’s Global Annual PM2.5 Grids. The darker pink cells
represent heavier concentrations of particulate matter. Later years tend to have more ambient
PM2.5, and 2016 clearly has the highest particulate matter concentrations compared to every other
year shown. This visualization suggests that the increase in forest fires most likely was one of
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FIGURE 3.1. Distribution of pediatric population in Peru, by age group, for 2016
from WorldPop.org
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FIGURE 3.2. Distribution of PM2.5 (µg/m3 ) in Peru over four selected years from
NASA’s Global Annual PM2.5 Grids

the causes of the higher levels of particulate matter in 2016 compared to the three other years of
interest, since much of the increase occurred in the Amazon basin.

Figure 3.3 shows the calculated asthma incidence for the four age groups in 2016. These visu-
alizations represent asthma incidence rates multiplied by the age group population data. As would
be expected, it is clear that the youngest age groups tend to have more asthma incidence, which is
confirmed in the Table 3.1. Children under the age of 10 are more likely to be afflicted by asthma
incidence than their older counterparts. The results in Table 3.1 are significant because they show
our calculated asthma cases for the four age groups compared with the 2016 Global Burden of Dis-
ease estimates from the IHME. Our estimates are all within ±1% of the Global Burden of Disease
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TABLE 3.1. Comparison between calculated estimated incident asthma cases and
Global Burden of Disease (GBD) estimated incident cases (IHME, 2019) for Peru
in 2016

Age
Group

Estimated
Asthma Cases

GBD Cases % Difference

0-4 years 114520.5 114692.6 -0.150%
5-9 years 57950.6 57742.3 0.361%
10-14 years 26824.4 26828.5 -0.015%
15-19 years 11102.5 11211.8 -0.975%

estimated counts, which helps to validate our results. The estimated asthma cases are the sums of
the cells from Figure 3.3 within each age group.

Table 3.2 provides our point estimates of incident asthma cases attributable to PM2.5 exposure,
along with 95% confidence intervals, using PM2.5 data for each of the years in our burden of disease
model (2.1). As a sensitivity check, we report confidence intervals calculated using estimated
variances for β̂ from two different sources, Anderson et al. (2013) and Khreis et al. (2017). The
results from Khreis et al. (2017) shown in Table 2.1 lead to an approximate standard error for β̂ of
0.0098, while the results from Anderson et al. (2013) lead to a larger approximate standard error
of 0.01687. The point estimate, β̂, obtained from both of these papers was 0.0293. To interpret the
results for the first row in Table 3.2, we estimate that 65,524.3 incident pediatric asthma cases in
2016 would have been attributable to PM2.5 had the distribution of PM2.5 in 2016 been the same as it
was in 2009. Using the Khreis et al. (2017) results from Table 2.1, we can be 95% confident that the
number of attributable incident pediatric cases would have been between 19,821.4 and 111,227.2
had the distribution of PM2.5 in 2016 been the same as it had been in 2009. The remaining results
can be interpreted similarly.
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TABLE 3.2. Point estimates for incident asthma cases attributable to PM2.5 expo-
sures from different years along with confidence intervals calculated using two dif-
ferent estimates of relative risk variance

PM2.5

Year
Estimated

Attributable
Asthma Cases

95% Confidence Interval
using Khreis et al. (2017)
Variance for β̂

95% Confidence Interval
using Anderson et al. (2013)
Variance for β̂

2009 65524.3 (19821.4, 111227.2) (2172.7, 128875.9)
2011 71248.5 (24890.3, 117606.7) (5676.1, 136821.0)
2014 72550.3 (26074.5, 119026.2) (6546.7, 138554.0)
2016 75160.2 (28638.1, 121682.4) (8724.6, 141595.8)

TABLE 3.3. Point estimates and confidence intervals for excess asthma cases cal-
culated from the difference between burden of disease models using PM2.5 values
from different years

Comparison:
PM2.5 Data Years

Estimated Difference
in Attributable
Asthma Cases

95% Confidence Interval
using Khreis et al. (2017)
Variance for β̂

95% Confidence Interval
using Anderson et al. (2013)
Variance for β̂

2016 vs. 2009 9635.9 (5657.2, 13614.7) (4299.3, 14972.5)
2016 vs. 2011 3911.7 (2462.5, 5360.9) (2120.7, 5702.7)
2016 vs. 2014 2609.9 (1694.9, 3524.8) (1536.7, 3683.1)

Table 3.3 shows the excess incident pediatric asthma cases attributable to PM2.5 when comparing
burden of disease from 2016 to burden of disease that would have occurred had the PM2.5 distribu-
tion been similar to each of the other three years. For example, when comparing 2009 and 2016,
we estimated that PM2.5 resulting from the severe fires in 2016 would lead to 9,635.9 more pe-
diatric asthma cases than would have been observed had the PM2.5 levels been representative of
a more typical fire year, 2009. Although the widths of the confidence intervals differ depending
on whether the Anderson et al. (2013) or Khreis et al. (2017) variance estimate for β̂ was used,
they both suggest that we can be 95% confident that there were at least 1,500-4,300 more incident
asthma cases (and possibly as many as 14,000-15,000 more) in 2016 than there would have been
had PM2.5 been similar to that in a more “typical” fire year.

4. Discussion and Conclusion

We have identified a significant connection between forest fires in the Peruvian Amazon and
pediatric asthma incidence. Our asthma incident case estimates for each age group lies within 1%
of the 2016 Global Burden of Disease estimates from IHME. We have also found that particulate
matter concentrations have steadily increased between the years 2009 and 2016. This is potentially
due to a few reasons, but a main cause is almost certainly an increase in forest fires in the Amazon.
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According to our burden of disease model, the estimated incident asthma cases decrease when the
particulate matter concentrations for each of years 2009, 2011, and 2014 are applied to the 2016
population. The point estimates for incident asthma cases attributable to PM2.5 range between
65,000 and 76,000. Using uncertainty estimates based on Khreis et al. (2017), we estimate that the
actual attributable cases may range between 19,000 and 122,000, while using uncertainty estimates
based on Anderson et al. (2013), the cases may range between 2,000 and 142,000. When we
compared estimated asthma cases using 2009 and 2016 PM2.5 data, we see the largest difference
in cases, as opposed to the 2011/2016 and 2014/2016 comparisons. These differences in point
estimates range between 2,600 and 9,700 estimated incident cases. Overall, our results suggest
that the excessive number of Peruvian Amazon fires in 2016 resulted in increased pediatric asthma
incidence.

Some recent publications, such as Lavigne et al. (2021), have studied the global relationship
between particulate matter concentration and childhood asthma incidence. Other studies, such as
Khreis et al. (2021), looked at the relationship between air pollution and onset of childhood asthma
in the United States. Others, such as Anenberg et al. (2018) and Anderson et al. (2013), have looked
at the effects of traffic and fire-related air pollution on asthma incidence. Our study attempts to look
specifically at the effects of the particulate matter emissions from increasing Amazon Rainforest
fires on children living in Peru. Overall, our results coincides with the results from similar recent
studies.

Our approach does have some potential limitations. The first limitation has to do with the data
that our model is based on. All of the data that we used, although from validated sources, are
model-based estimates and not directly observed values. In calculating our confidence intervals,
we were able to account for variability in both asthma incidence and the estimates of the response
function, β, but not for uncertainty regarding either the population size or particulate matter data.
However, our use of the delta method, which simultaneously accounted for both of these sources
of variation, is a step beyond previous research (Anenberg et al., 2018; Achakulwisut et al., 2019),
which each only accounted for a single source of variation. The next limitations have to do with
the assumptions surrounding our model. Acknowledging that particulate matter is not the only
cause of asthma, we use estimates from previous meta-analyses that quantify the relationship be-
tween particulate matter and asthma incidence to help account for this. We also understand that not
all particulate matter is emitted from forest fires. However, our visualizations showing the dras-
tic increase in forest fires in 2016 compared with other years and the corresponding increases in
PM2.5 specifically in the Amazon basin do suggest that fire is a major cause. Although we cannot
control for additional sources such as traffic-related air pollution, we hope that applying PM2.5 dis-
tributions from different years to exactly the same population can help to control for these other
sources. Using the same population also ensures that there would be no confounding due to pop-
ulation changes over time, and made it easier to make direct comparisons between the estimated
asthma incident cases across all four years of PM2.5 data. Finally, we do not account for particu-
late matter coming from fires in neighboring countries, such as Brazil. Given the prevailing wind
patterns, it is highly likely that fires in the Brazilian Amazon influenced air quality in Peru. De-
spite these limitations, we believe that our research provides valuable insights into the connection
between forest fires and pediatric asthma incidence in Peru.

Overall, we provide statistical evidence to suggest that the increase in Peruvian Amazon fires
has caused an increase in pediatric asthma incidence. This is largely due to the particulate matter
that was absorbed into the lungs of children living in Peru. With our burden of disease model, we
found that the year 2016 had significantly more estimated asthma incident cases from particulate
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matter than would have been observed had the particulate matter concentrations been more similar
to the years 2009, 2011, or 2014.
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Appendix A. Estimating Variances using the Delta Method

We used the delta method to approximate the variance of a complex function with several ran-
dom terms to allow for a more accurate confidence interval around our estimations. This approach
represents an advance over previous analyses which only accounted for uncertainty in the relative
risk estimates (Anenberg et al., 2018; Achakulwisut et al., 2019). Although there is also uncertainty
present in the estimators of population and PM2.5, we have no information about the variability of
these estimates. However, we were able to approximate the variances for both β̂ and γ̂a. Using
these variances, we created 95% confidence intervals around our estimates. We then repeated this
entire process for comparing the years 2009, 2011, and 2014 with 2016. We used this method to
estimate the difference, along with a confidence interval, between the burden of disease models for
each of the three comparisons. As a sensitivity analysis, we separately applied variance estimates
for β̂ from both the Anderson et al. (2013) and Khreis et al. (2017) papers to evaluate how much
that would change our uncertainty intervals.

Here, we show how to derive our confidence intervals using the delta method. We first use the
delta method to approximate the variance for the difference model (2.2). We start by using a first-
order multivariate Taylor series expansion around the true parameters β and γa and rearranging
terms to obtain

(
∆̂−∆

)
≈

(
β̂ − β

){
4∑

a=1

eγa
∑
i∈P

Nai

(
−Xt,i e

−βXt,i +X2016,i e
−βX2016,i

)}

+
4∑

a=1

(γ̂a − γa)

{
eγa

∑
i∈P

Nai(e
−βXt,i − e−βX2016,i)

}
. (A.1)

We then square and take the expected values of both sides to obtain (noting that β̂ and γ̂a are
from different sources and so are uncorrelated):

Var
(
∆̂
)
≈ Var

(
β̂
){

4∑
a=1

eγa
∑
i∈P

Nai

(
−Xt,i e

−βXt,i +X2016,i e
−βX2016,i

)}2

+
4∑

a=1

Var (γ̂a)

{
eγa

∑
i∈P

Nai(e
−βXt,i − e−βX2016,i)

}2

. (A.2)

We can then use this approximate variance for ∆̂ to get an approximate 95% confidence interval

for ∆ as ∆̂± 1.96 ∗
√

Var
(
∆̂
)

.
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Similarly, we can approximate the variance for the burden of disease model (2.1) as

Var
(
B̂
)
≈ Var

(
β̂
){

4∑
a=1

eγa
∑
i∈P

NaiXi e
−βXi

}2

+
4∑

a=1

Var (γ̂a)

{
eγa

∑
i∈P

Nai

(
1− e−βXi

)}2

,(A.3)

and use this to calculate an approximate 95% confidence interval for B.
Using the delta method, we were thus able to simultaneously account for the variances in β̂ and

γ̂a when estimating the number of pediatric asthma incidence cases attributable to increased fire
related PM2.5 in Peru.
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